Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-30T06:00:04.292Z Has data issue: false hasContentIssue false

4 - Non-linear stability of steady geophysical flows

Published online by Cambridge University Press:  30 November 2009

Andrew Majda
Affiliation:
New York University
Xiaoming Wang
Affiliation:
Iowa State University
Get access

Summary

Introduction

The observation of the geophysical flows in the atmosphere and the ocean reveal the existence of large-scale coherent flow structures. Examples of these structures are the atmospheric cyclonic and anti-cyclonic flow patterns, mesoscale ocean eddies, currents, and jets. These structures develop under fairly broad conditions and are characterized by their essentially steady nature, as well as their robustness and persistence in time. Possibly the most dramatic example of such coherent flow structures is exemplified by the Great Red Spot of Jupiter, discovered by Robert Hooke in 1664, which has persisted for at least 300 years.

From a dynamical point of view, such robust and persistent steady states must be non-linearly stable; small but finite initial perturbations of the steady states must remain small in time for the coherent flow structures to be observable. It is therefore clear that a fundamental problem is the study of the non-linear dynamical stability of the steady geophysical flows under small initial perturbations of the flow. This chapter and the next are devoted to the study of non-linear stability or instability of several classes of steady flows introduced earlier in Chapter 1. This study considers geophysical flows with topography and beta-plane effects, but without external forcing and dissipation mechanisms. In particular, we are interested in gaining a better understanding of what is the role played in the stability of the steady states by the beta-plane effect, and by the non-linear interaction of the large-scale mean flow and the small-scale flow through topographic stress.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×