Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-30T06:30:28.596Z Has data issue: false hasContentIssue false

14 - The statistical relevance of additional conserved quantities for truncated geophysical flows

Published online by Cambridge University Press:  30 November 2009

Andrew Majda
Affiliation:
New York University
Xiaoming Wang
Affiliation:
Iowa State University
Get access

Summary

Introduction

A major theme of Chapters 6–13 of this book is to illustrate that systematic application of ideas from equilibrium statistical mechanics leads to novel promising strategies for assessing the unresolved scales of motion in geophysical flows. The various theories range from the simplest energy–enstrophy statistical theory (EEST) discussed in Chapters 6 and 8 to the empirical statistical theories discussed in Section 9.4 attempting to encode all the conserved quantities (ESTMC), to point vortex statistical theories discussed in Section 9.3, and, finally, to the empirical statistical theories with a few large-scale constraints and a judicious small-scale prior distribution (ESTP) formulated in Section 9.2. It was established in Chapters 11, 12, and 13 that the ESTP theories have a wide range of applicability in predicting large-scale behavior in damped and driven flows, as well as for observations such as the Great Red Spot of Jupiter. The ESTP formulation also includes the predictions of the energy–enstrophy statistical theory for the mean flow from Chapters 6 and 8 by utilizing a simple Gaussian prior probability distribution for potential vorticity fluctuations.

As discussed earlier, in Chapters 8, 9, and 10, the different equilibrium statistical theories all attempt to predict the coarse-grained behavior at large scales through the use of some of the formally infinite list of conserved quantities for idealized geophysical flows derived in Chapter 1.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×