Skip to main content Accessibility help
×
Hostname: page-component-76dd75c94c-68sx7 Total loading time: 0 Render date: 2024-04-30T07:54:14.978Z Has data issue: false hasContentIssue false

12 - Equilibrium statistical theories and dynamical modeling of flows with forcing and dissipation

Published online by Cambridge University Press:  30 November 2009

Andrew Majda
Affiliation:
New York University
Xiaoming Wang
Affiliation:
Iowa State University
Get access

Summary

Introduction

In the previous chapters we discussed various equilibrium statistical theories. These statistical theories are developed for the idealized inviscid unforced geophysical flows. However, as we have discussed in Section 10.4, virtually all practical geophysical flows are subject to both forcing and dissipation. For instance, the earth's atmosphere is subject to intense random small-scale forcing from convective storms, and the ocean is subject to forcing from unresolved baroclinic instability processes on a small length scale. Thus, a natural question to ask is whether the equilibrium statistical theories can be applied in a forced and damped environment. The purpose of this chapter is to address this question. More precisely, we want to provide answers to the applied issue (A-4) and theoretical issue (T-5) from Chapter 10.

As was discussed in Section 10.4, equilibrium statistical theories will not be able to approximate geophysical flows in a statistical sense for all forcing. This is not a surprise, since intuitively we could only expect equilibrium theories to succeed when the flow is near equilibrium. What we are interested in here are external forcing which is random and small scale in space and kicks in time. This kind of forcing mimics the small-scale random forcing in the atmosphere and ocean as discussed above and in Chapter 10. The “quasi-equilibrium” state of the geophysical flow is achieved if the inverse cascade of energy from the small scales, where the external forcing occurs, to the large scales (the scale characterized by the equilibrium statistical theory) is sufficiently weak.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×