Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-29T20:11:09.766Z Has data issue: false hasContentIssue false

13 - Predicting the jets and spots on Jupiter by equilibrium statistical mechanics

Published online by Cambridge University Press:  30 November 2009

Andrew Majda
Affiliation:
New York University
Xiaoming Wang
Affiliation:
Iowa State University
Get access

Summary

Introduction

Prominent examples of long-lived large-scale vortices in geophysical flows are those such as the Great Red Spot (GRS) on Jupiter (Dowling, 1995; Marcus, 1993; Rogers, 1995). The emergence and persistence of such coherent structures at specific latitudes such as 22.4° S for the GRS in a background zonal shear flow that seems to violate all of the standard stability criteria (Dowling, 1995) are a genuine puzzle. Here we show how to utilize the equilibrium statistical theory with a suitable prior distribution, ESTP, introduced in Section 9.2 and discussed in Chapters 10, 11, and 12 to predict the actual coherent structures on Jupiter in a fashion which is consistent with the known observational record. As discussed in Section 9.2, the statistical theory is based on a few judiciously chosen conserved quantities for the inviscid dynamics such as energy and circulation and does not involve any detailed resolution of the fluid dynamics. The key ingredient of the ESTP is the prior distribution, Π(λ), for the one-point statistics of the potential vorticity which parameterizes the unresolved small-scale turbulent eddies that produce the large-scale coherent structures. Below, we show how the observational record of Jupiter from the recent Galileo mission suggests a special structure for such a prior distribution resulting from intense small-scale forcing. Recall from the studies discussed in Chapter 12 (DiBattista, Majda, and Grote, 2001) that ESTP can potentially describe the meta-stable large-scale coherent structures occurring from strong small-scale forcing, provided that the flux of energy to large scales is sufficiently weak.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×