Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-29T15:27:44.568Z Has data issue: false hasContentIssue false

12 - Camouflage in decorator crabs

Integrating ecological, behavioural and evolutionary approaches

Published online by Cambridge University Press:  05 June 2012

Kristin M. Hultgren
Affiliation:
Smithsonian Institution, Washington DC, USA
John J. Stachowicz
Affiliation:
University of California at Davis, CA, USA
Martin Stevens
Affiliation:
University of Cambridge
Sami Merilaita
Affiliation:
Åbo Akademi University, Finland
Get access

Summary

Camouflage is one of the most common anti-predator strategies in the animal kingdom, and many examples of camouflage have become classic case studies of adaptation and natural selection (Cott 1940; Kettlewell 1955; Stevens & Merilaita 2009). Although most examples of animal camouflage involve body coloration or patterning, decorator crabs in the brachyuran superfamily Majoidea (majoids) are a large and diverse group of crabs best known for a distinctive form of ‘decoration’ camouflage, in which they attach materials from the environment to specialised hooked setae on their body. This unique form of camouflage is dependent both on crab morphology and behaviour, and makes decorator crabs an ideal group in which to study the adaptive consequences and mechanistic bases of camouflage. Decorator crabs are also fairly unusual among camouflaged animals in that the adaptive anti-predatory consequences of decoration camouflage have in many cases been directly tested in the field (Stachowicz & Hay 1999b; Thanh et al. 2003; Hultgren & Stachowicz 2008a). Yet despite its clear adaptive value, decoration camouflage varies widely across the majoids – both within and between species. Many majoids exhibit intra- and interspecific decreases in decoration with size (Dudgeon 1980; Wicksten 1993; Stachowicz & Hay 1999b; Berke & Woodin 2008; Hultgren & Stachowicz 2009). Along with experimental work documenting energetic costs of carrying decoration (Berke & Woodin 2008), and trade-offs with other forms of defence (Hultgren & Stachowicz 2008a), these data suggest that cost–benefit trade-offs may drive the evolution of decoration in these crabs (Hultgren & Stachowicz 2009). These results more broadly imply that the value of camouflage as a concealment strategy is strongly influenced by constraints such as body size, providing predictions to be tested in other groups of organisms.

Type
Chapter
Information
Animal Camouflage
Mechanisms and Function
, pp. 212 - 236
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acuna, F. H., Excoffon, A. C. & Scelzo, M. A. 2003. Mutualism between the sea anemoneAntholoba achates (Drayton, 1846) (Cnidaria: Actiniaria: Actinostolidae) and the spider crab Libinia spinosa Milne-Edwards, 1834 (Crustacea: Decapoda, Majidae). Belgian Journal of Zoology, 133, 85–87.Google Scholar
Aurivillius, C. W. 1889. Die Maskirung der oxyrrhynchen Decapoden. K. Svenska Vetensk. Akad. Handl, 23, 1–72.Google Scholar
Berke, S. K. & Woodin, S. A. 2008. Energetic costs, ontogenetic shifts and sexual dimorphism in majoid decoration. Functional Ecology, 22, 1125–1133.CrossRefGoogle Scholar
Berke, S. K. & Woodin, S. A. 2009. Behavioral and morphological aspects of decorating in Oregonia gracilis (Brachyura: Majoidea). Invertebrate Biology, 128, 172–181.Google Scholar
Berke, S. K., Miller, M. & Woodin, S. A. 2006. Modelling the energy-mortality trade-offs of invertebrate decorating behaviour. Evolutionary Ecology Research, 8, 1409–1425.Google Scholar
Bond, A. B. & Kamil, A. C. 2006. Spatial heterogeneity, predator cognition, and the evolution of color polymorphism in virtual prey. Proceedings of the National Academy of Sciences of the USA, 103, 3214–3219.CrossRefGoogle ScholarPubMed
Boschi, E. E. 1964. Los crustaceos decapodos Brachyura del litoral Bonaerense (R. Argentina). Boletin del Instituto de Biologia Marina, 6, 1–100.Google Scholar
Brusca, R. 1980. Common Intertidal Invertebrates of the Gulf of California. Tucson, AZ: University of Arizona Press.Google Scholar
Caro, T. 2005. The adaptive significance of coloration in mammals. BioScience, 55, 125–136.CrossRefGoogle Scholar
Coen, L. D. 1988. Herbivory by Caribbean majid crabs: feeding ecology and plant susceptibility. Journal of Experimental Marine Biology and Ecology, 122, 257–276.CrossRefGoogle Scholar
Cott, H. B. 1940. Adaptive Coloration in Animals. London: Methuen.Google Scholar
Cruz-Rivera, E. 2001. Generality and specificity in the feeding and decoration preferences of three Mediterranean crabs. Journal of Experimental Marine Biology and Ecology, 266, 17–31.CrossRefGoogle Scholar
Cuthill, I. C., Hiby, E. & Lloyd, E. 2006. The predation costs of symmetrical cryptic coloration. Proceedings of the Royal Society, Series B, 273, 1267–1271.CrossRefGoogle ScholarPubMed
Cutress, C., Ross, D. M. & Sutton, L. 1970. The association of Calliactis tricolor with its pagurid, calappid, and majid partners in the Caribbean. Canadian Journal of Zoology, 48, 371–376.CrossRefGoogle Scholar
De Grave, S., Pentcheff, N. D., Ahyong, S. T. et al. 2009. A classification of living and fossil genera of decapod crustaceans. Raffles Bulletin of Zoology, Supplement No. 21, 1–109.Google Scholar
Dudgeon, D. 1980. Some inter- and intraspecific differences in the decorating patterns of majid crabs (Crustacea: Decapoda) from the coastal waters of Hong Kong. In Proceedings of the 1st International Marine Biological Workshop: The Marine Flora and Fauna of Hong Kong and Southern China. Hong Kong: Hong Kong University Press, pp. 825–835.Google Scholar
Endler, J. A. 1978. A predator's view of animal color patterns. Evolutionary Biology, 11, 319–364.Google Scholar
Fürböck, S. & Patzner, R. A. 2005. Decoration preferences of Maja crispata Risso 1827 (Brachyura, Majidae). Natura Croatica, 14, 175–184.
Gamberale, G. & Tullberg, B. S. 1996. Evidence for a more effective signal in aggregated aposematic prey. Animal Behaviour, 52, 597–601.CrossRefGoogle Scholar
Getty, T. & Hazlett, B. A. 1978. Decoration behavior in Microphrys bicornutus (Latreille, 1825) (Decapoda, Brachyura). Crustaceana, 34, 105–108.
Gianbruno, G. 1989. Notes on decapod fauna of “Archipelago Toscano”. Bios (Macedonia, Greece), 1, 1–18.Google Scholar
Goh, N. K. C., Ng, P. K. L. & Chou, L. M. 1999. Notes on the shallow water gorgonian-associated fauna on coral reefs in Singapore. Bulletin of Marine Science, 65, 259–282.Google Scholar
Grant, J. B. 2007. Ontogenetic colour change and the evolution of aposematism: a case study in panic moth caterpillars. Journal of Animal Ecology, 76, 439–447.CrossRefGoogle ScholarPubMed
Griffin, D. J. G. & Tranter, H. A. 1986. The Decapoda Brachyura of the Siboga Expedition, Part VIII, Majidae. Leiden, the Netherlands: E. J. Brill.Google Scholar
Hagman, M. & Forsman, A. 2003. Correlated evolution of conspicuous coloration and body size in poison frogs (Dendrobatidae). Evolution, 57, 2904–2910.CrossRefGoogle ScholarPubMed
Hay, M. E., Duffy, J. E., Paul, V. J., Renaud, P. E. & Fenical, W. 1990. Specialist herbivores reduce their susceptibility to predation by feeding on the chemically defended seaweedAvrainvillea longicaulis. Limnology and Oceanography, 35, 1734–1743.CrossRefGoogle Scholar
Hazlett, B. A. & Estabrook, G. F. 1974. Examination of agonistic behavior by character analysis. I. The spider crabMicrophrys bicornutus. Behaviour, 48, 131–144.CrossRefGoogle Scholar
Hines, A. H. 1982. Coexistence in a kelp forest: size, population dynamics, and resource partitioning in a guild of spider crabs (Brachyura: Majidae). Ecological Monographs, 52, 179–198.CrossRefGoogle Scholar
Hultgren, K. M. & Stachowicz, J. J. 2008a. Alternative camouflage strategies mediate predation risk among closely related co-occurring kelp crabs. Oecologia, 155, 519–528.CrossRefGoogle ScholarPubMed
Hultgren, K. M. & Stachowicz, J. J. 2008b. Molecular phylogeny of the brachyuran crab superfamily Majoidea indicates close congruence with trees based on larval morphology. Molecular Phylogenetics and Evolution, 48, 986–996.CrossRefGoogle ScholarPubMed
Hultgren, K. M. & Stachowicz, J. J. 2009. Evolution of decoration in majoid crabs: a comparative phylogenetic analysis of the role of body size and alternative defensive strategies. American Naturalist, 173, 566–578.CrossRefGoogle ScholarPubMed
Hultgren, K. M. & Stachowicz, J. J. 2010. Size-related habitat shifts facilitated by positive preference induction in a marine kelp crab. Behavioral Ecology, 21, 329–336.CrossRefGoogle Scholar
Hultgren, K. M., Thanh, P. D. & Sato, M. 2006. Geographic variation in decoration selectivity of Micippa platipes and Tiarinia cornigera in Japan. Marine Ecology Progress Series, 326, 235–244.CrossRefGoogle Scholar
Hultgren, K. M., Palero, F., Marques, F. P. L. & Guerao, G. 2009. Assessing the contribution of molecular and larval morphological characters in a combined phylogenetic analysis of the superfamily Majoidea. In: Decapod Crustacean Phylogenetics (Crustacean Issues), eds. Martin, J. W., Crandall, K. A. & Felder, D. L. Boca Raton, FL: CRC Press, pp. 437–474.CrossRefGoogle Scholar
Iampietro, P. J. 1999. Distribution, diet, and pigmentation of the Northern kelp crab, Pugettia producta (Randall) in Central California kelp forests. MS thesis, California State University.Google Scholar
Kettlewell, H. B. D. 1955. Selection experiments on industrial melanism in the Lepidoptera. Heredity, 9, 323–342.CrossRefGoogle Scholar
Kilar, J. A. & Lou, R. M. 1984. Ecological and behavioral studies of the decorator crab Microphrys bicornutus (Decapoda: Brachyura): a test of optimum foraging theory. Journal of Experimental Marine Biology and Ecology, 74, 157–168.CrossRefGoogle Scholar
Kilar, J. A. & Lou, R. M. 1986. The subtleties of camouflage and dietary preference of the decorator crab Microphrys bicornutus Decapoda Brachyura. Journal of Experimental Marine Biology and Ecology, 101, 143–160.CrossRefGoogle Scholar
Lopanik, N. B., Targett, N. M. & Lindquist, N. 2006. Ontogeny of a symbiont-produced chemical defense in Bugula neritina (Bryozoa). Marine Ecology Progress Series, 327, 183–191.CrossRefGoogle Scholar
Maldonado, M. & Uriz, M. J. 1992. Relationships between sponges and crabs: patterns of epibiosis on Inachus aguiarii (Decapoda: Majidae). Marine Biology, 113, 281–286.Google Scholar
Marques, F. P. L. & Pohle, G. 2003. Searching for larval support for majoid families (Crustacea: Brachyura) with particular reference to Inachoididae Dana, 1851. Invertebrate Reproduction and Development, 43, 71–82.CrossRefGoogle Scholar
Martinelli, M., Calcinai, B. & Bavestrello, G. 2006. Use of sponges in the decoration of Inachus phalangium (Decapoda, Majidae) from the Adriatic Sea. Italian Journal of Zoology, 73, 347–353.CrossRefGoogle Scholar
Mastro, E. 1981. Algal preferences for decoration by the Californian kelp crab, Pugettia producta (Randall) (Decapoda, Majidae). Crustaceana, 41, 64–70.CrossRefGoogle Scholar
Merilaita, S. & Lind, J. 2005. Background-matching and disruptive coloration, and the evolution of cryptic coloration. Proceedings of the Royal Society, Series B, 272, 665–670.CrossRefGoogle ScholarPubMed
Merilaita, S. & Ruxton, G. D. 2007. Aposematic signals and the relationship between conspicuousness and distinctiveness. Journal of Theoretical Biology, 245, 268–277.CrossRefGoogle ScholarPubMed
Merilaita, S., Tuomi, J. & Jormalainen, V. 1999. Optimization of cryptic coloration in heterogeneous habitats. Biological Journal of the Linnean Society, 67, 151–161.CrossRefGoogle Scholar
Nilsson, M. & Forsman, A. 2003. Evolution of conspicuous colouration, body size and gregariousness: a comparative analysis of lepidopteran larvae. Evolutionary Ecology, 17, 51–66.CrossRefGoogle Scholar
Ortolani, A. 1999. Spots, stripes, tail tips and dark eyes: predicting the function of carnivore colour patterns using the comparative method. Biological Journal of the Linnean Society, 67, 433–476.CrossRefGoogle Scholar
Parapar, J., Fernandez, L., Gonzalez-Gurriaran, E. & Muino, R. 1997. Epibiosis and masking material in the spider crab Maja squinado (Decapoda: Majidae) in the Ria de Arousa (Galicia, NW Spain). Cahiers de Biologie Marine, 38, 221–234.
Patton, W. K. 1979. On the association of the spider crab, Mithrax (Mithraculus) cinctimanus (Stimpson) with Jamaican sea anemones. Crustaceana, 5 (Suppl.), 55–61.Google Scholar
Porter, M. L., Perez-Losada, M. & Crandall, K. A. 2005. Model-based multi-locus estimation of decapod phylogeny and divergence times. Molecular Phylogenetics and Evolution, 37, 355–369.CrossRefGoogle ScholarPubMed
Rathbun, M. J. 1925. The Spider Crabs of America. Washington, DC: Smithsonian Institution.Google Scholar
Riipi, M., Alatalo, R. V., Lindstrom, L. & Mappes, J. 2001. Multiple benefits of gregariousness cover detectability costs in aposematic aggregations. Nature, 413, 512–514.CrossRefGoogle ScholarPubMed
Rorandelli, R., Gomei, M., Vannini, M. & Cannicci, S. 2007. Feeding and masking selection in Inachus phalangium (Decapoda, Majidae): dressing up has never been so complicated. Marine Ecology Progress Series, 336, 225–233.Google Scholar
Ruxton, G. D., Sherratt, T. N. & Speed, M. P. 2004. Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals, and Mimicry. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Sanchez-Vargas, D. P. & Hendrickx, M. E. 1987. Utilization of algae and sponges by tropical decorating crabs (Majidae) in the southeastern Gulf of California, Mexico. Revista de Biologia Tropical, 35, 161–164.Google Scholar
Sato, M. & Wada, K. 2000. Resource utilization for decorating in three intertidal majid crabs (Brachyura: Majidae). Marine Biology, 137, 705–714.CrossRefGoogle Scholar
Stachowicz, J. J. & Hay, M. E. 1996. Facultative mutualism between an herbivorous crab and a coralline alga: advantages of eating noxious seaweeds. Oecologia, 105, 377–387.CrossRefGoogle Scholar
Stachowicz, J. J. & Hay, M. E. 1999a. Mutualism and coral persistence: the role of herbivore resistance to algal chemical defense. Ecology, 80, 2085–2101.CrossRefGoogle Scholar
Stachowicz, J. J. & Hay, M. E. 1999b. Reducing predation through chemically mediated camouflage: indirect effects of plant defenses on herbivores. Ecology, 80, 495–509.CrossRefGoogle Scholar
Stachowicz, J. J. & Hay, M. E. 2000. Geographic variation in camouflage specialization by a decorator crab. American Naturalist, 156, 59–71.CrossRefGoogle ScholarPubMed
Stevens, M. & Merilaita, S. 2009. Animal camouflage: current issues and new perspectives. Philosophical Transactions of the Royal Society, Series B, 364, 423–427.CrossRefGoogle ScholarPubMed
Stoner, C. J., Caro, T. M. & Graham, C. M. 2003. Ecological and behavioral correlates of coloration in artiodactyls: systematic analyses of conventional hypotheses. Behavioral Ecology, 14, 823–840.CrossRefGoogle Scholar
Summers, K. & Clough, M. E. 2001. The evolution of coloration and toxicity in the poison frog family (Dendrobatidae). Proceedings of the National Academy of Sciences of the USA, 98, 6227–6232.CrossRefGoogle Scholar
Szebeni, T. & Hartnoll, R. G. 2005. Structure and distribution of carapace setae in British spider crabs. Journal of Natural History, 39, 3795–3809.CrossRefGoogle Scholar
Tazioli, S., Bo, M., Boyer, M., Rotinsulu, H. & Bavestrello, G. 2007. Ecological observations of some common antipatharian corals in the marine park of Bunaken (North Sulawesi, Indonesia). Zoological Studies, 46, 227–241.Google Scholar
Thanh, P. D., Wada, K., Sato, M. & Shirayama, Y. 2003. Decorating behaviour by the majid crab Tiarinia cornigera as protection against predators. Journal of the Marine Biological Association of the United Kingdom, 83, 1235–1237.CrossRefGoogle Scholar
Thanh, P. D., Wada, K., Sato, M. & Shirayama, Y. 2005. Effects of resource availability, predators, conspecifics and heterospecifics on decorating behaviour by the majid crab Tiarinia cornigera. Marine Biology, 147, 1191–1199.CrossRefGoogle Scholar
Thompson, J. N. 1994. The Coevolutionary Process. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
Tullberg, B. S. & Hunter, A. F. 1996. Evolution of larval gregariousness in relation to repellent defences and warning coloration in tree-feeding Macrolepidoptera: a phylogenetic analysis based on independent contrasts. Biological Journal of the Linnean Society, 57, 253–276.CrossRefGoogle Scholar
Vasconcelos, M. A., Mendes, T. C., Fortes, W. L. S. & Pereira, R. C. 2009. Feeding and decoration preferences of the epialtidae crabAcanthonyx scutiformis. Brazilian Journal of Oceanography, 57, 137–143.CrossRefGoogle Scholar
Wicksten, M. K. 1976. Studies on the hooked setae of Hyas lyratus (Brachyura: Majidae). Syesis, 9, 367–368.Google Scholar
Wicksten, M. K. 1978. Attachment of decorating materials in Loxorhynchus crispatus (Brachyura: Majidae). Transactions of the American Microscopical Society, 97, 217–220.CrossRefGoogle Scholar
Wicksten, M. K. 1979. Decorating behavior in Loxorhynchus crispatus and Loxorhynchus grandis (Brachyura Majidae). Crustaceana (Suppl.), 5, 37–46.Google Scholar
Wicksten, M. K. 1980. Decorator crabs. Scientific American, 242, 116–122.CrossRefGoogle Scholar
Wicksten, M. K. 1983. Camouflage in marine invertebrates. Oceanography and Marine Biology, 21, 177–193.Google Scholar
Wicksten, M. K. 1993. A review and a model of decorating behavior in spider crabs (Decapoda, Brachyura, Majidae). Crustaceana, 64, 314–325.CrossRefGoogle Scholar
Wilson, P. R. 1987. Substrate selection and decorating behavior in Acanthonyx petiveri related to exoskeleton color (Brachyura Majidae). Crustaceana, 52, 135–140.CrossRefGoogle Scholar
Wirtz, P. & Diesel, R. 1983. The social structure of Inachus phalangium, a spider crab associated with the sea anemone Anemonia sulcata. Zietscrift für Tierpsychologie, 6, 209–234.Google Scholar
Woods, C. M. C. & Mclay, C. L. 1994a. Masking and ingestion preferences of the spider crab Notomithrax ursus (Brachyura: Majidae). New Zealand Journal of Marine and Freshwater Research, 28, 105–111.CrossRefGoogle Scholar
Woods, C. M. C. & Mclay, C. L. 1994b. Use of camouflage materials as a food store by the spider crab Notomithrax ursus (Brachyura: Majidae). New Zealand Journal of Marine and Freshwater Research, 28, 97–104.CrossRefGoogle Scholar
Woods, C. M. C. & Page, M. J. 1999. Sponge masking and related preferences in the spider crab Thacanophrys filholi (Brachyura: Majidae). Marine and Freshwater Research, 50, 135–143.CrossRefGoogle Scholar
Wu, S. H., Yu, H. P. & Ng, P. K. L. 1999. Acanthonyx formosa, a new species of spider crab (Decapoda, Brachyura, Majidae) from seaweed beds in Taiwan. Crustaceana, 72, 193–202.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×