Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-28T09:43:17.847Z Has data issue: false hasContentIssue false

8 - Camouflage and visual perception

Published online by Cambridge University Press:  05 June 2012

Tom Troscianko
Affiliation:
University of Bristol
Christopher P. Benton
Affiliation:
University of Bristol
P. George Lovell
Affiliation:
University of St Andrews
David J. Tolhurst
Affiliation:
University of Cambridge
Zygmunt Pizlo
Affiliation:
Purdue University
Martin Stevens
Affiliation:
University of Cambridge
Sami Merilaita
Affiliation:
Åbo Akademi University, Finland
Get access

Summary

The visual sense is very useful to many animals. It allows the detection and identification of distant objects. The properties of visual systems vary considerably between different animals (e.g. Walls 1942; Autrum et al. 1973; Weckstrom & Laughlin 1995; Bowmaker & Hunt 2006), but the main issues concern the directional sensitivity (acuity) of the system; the light levels under which it operates; the field of view, including any areas of binocular overlap; the extent to which specific features such as spectral or motion information are extracted from the visual environment; and the spatial and temporal characteristics of sampling the environment.

Type
Chapter
Information
Animal Camouflage
Mechanisms and Function
, pp. 118 - 144
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelson, E. H. & Movshon, J. T. 1982. Phenomenal coherence of moving visual patterns. Nature, 300, 523–525.CrossRefGoogle ScholarPubMed
Anderson, A. J. & McOwan, P. W. 2003a. Humans deceived by predatory stealth strategy camouflaging motion. Proceedings of the Royal Society, Series B, 270, S18–S20.CrossRefGoogle ScholarPubMed
Anderson, A. J. & McOwan, P. W. 2003b. Model of a predatory stealth behaviour camouflaging motion. Proceedings of the Royal Society, Series B, 270, 489–495.CrossRefGoogle ScholarPubMed
Autrum, H., Jung, R., Loewenstein, W. R., Mackay, D. M. & Teuber, H. L. 1973. Handbook of Sensory Physiology, vol. VII/5. New York: Springer.Google Scholar
Barlow, H. B., Hill, R. M. & Levick, W. R. 1964. Retinal ganglion cells responding selectively to direction + speed of image motion in rabbit. Journal of Physiology, 173, 377–407.CrossRefGoogle ScholarPubMed
Barnard, K., Finlayson, G. & Funt, B. 1997. Colour constancy for scenes with varying illumination, Computer Vision and Image Understanding, 65, 311–321.CrossRefGoogle Scholar
Basri, R. & Ullman, S. 1993. The alignment of objects with smooth surfaces. Computer Vision and Image Understanding, 57, 331–345.CrossRefGoogle Scholar
Behrens, R. R. 1999. The role of artists in ship camouflage during World War I. Leonardo, 32, 53–59.CrossRefGoogle Scholar
Biederman, I. 1987. Recognition-by-components: a theory of human image understanding. Psychological Review, 94, 115–147.CrossRefGoogle ScholarPubMed
Blake, R. & Shiffrar, M. 2007. Perception of human motion. Annual Review of Psychology, 58, 47–73.CrossRefGoogle ScholarPubMed
Blakemore, C. & Tobin, E. 1972. Lateral inhibition between orientation detectors in cat's visual cortex. Experimental Brain Research, 15, 439–440.CrossRefGoogle ScholarPubMed
Bonds, A. B. 1989. Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex. Visual Neuroscience, 2, 41–55.CrossRefGoogle ScholarPubMed
Born, R. T. & Bradley, D. C. 2005. Structure and function of visual area MT. Annual Review of Neuroscience, 28, 157–189.CrossRefGoogle ScholarPubMed
Bowmaker, J. K. & Hunt, D. M. 2006. Evolution of vertebrate visual pigments. Current Biology, 16, R484–R489.CrossRefGoogle ScholarPubMed
Canny, J. 1986. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 679–698.CrossRefGoogle ScholarPubMed
Carandini, M., Demb, J. B., Mante, V.et al. 2005. Do we know what the early visual system does? Journal of Neuroscience, 25, 10577–10597.CrossRefGoogle Scholar
Cavanaugh, J. R., Bair, W. & Movshon, J. A. 2002a. Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. Journal of Neurophysiology, 88, 2530–2546.CrossRefGoogle ScholarPubMed
Cavanaugh, J. R., Bair, W. & Movshon, J. A. 2002b. Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. Journal of Neurophysiology, 88, 2547–2556.CrossRefGoogle ScholarPubMed
Cott, H. B. 1940. Adaptive Coloration in Animals. London: Methuen.Google Scholar
Cuthill, I. C., Stevens, M., Sheppard, J.et al. 2005. Disruptive coloration and background pattern matching. Nature, 434, 72–74.CrossRefGoogle ScholarPubMed
Dawkins, M. 1971. Perceptual changes in chicks: another look at the ‘search image’ concept. Animal Behaviour, 19, 566–574.CrossRefGoogle Scholar
Dayan, E., Casile, A., Levit-Binnun, N.et al. 2007. Neural representations of kinematic laws of motion: Evidence for action-perception coupling. Proceedings of the National Academy of Sciences of the USA, 104, 20582–20587.CrossRefGoogle ScholarPubMed
Dimitrova, M., Stobbe, N., Schaefer, H. M. & Merilaita, S. 2009. Concealed by conspicuousness: distractive markings and backgrounds. Proceedings of the Royal Society, Series B, 276: 1905–1910.CrossRefGoogle ScholarPubMed
Dittrich, W. H., Troscianko, T., Lea, S. E. G. & Morgan, D. 1996. Perception of emotion from dynamic point-light displays represented in dance. Perception, 25, 727–738.CrossRefGoogle ScholarPubMed
Dukas, R. & Kamil, A. C. 2001. Limited attention: the constraint underlying search image. Behavioral Ecology, 12, 192–199.CrossRefGoogle Scholar
Duncan, J. & Humphreys, G. W. 1989. Visual search and stimulus similarity. Psychological Review, 96, 433–458.CrossRefGoogle ScholarPubMed
Duncan, J. & Humphreys, G. 1992. Beyond the search surface: visual search and attentional engagement. Journal of Experimental Psychology: Human Perception and Performance, 18, 578–588.Google ScholarPubMed
Enns, J. T. & Rensink, R. A. 1990a. Influence of scene-based properties on visual search. Science, 247, 721–723.CrossRefGoogle ScholarPubMed
Enns, J. T. & Rensink, R. A. 1990b. Sensitivity to 3-dimensional orientation in visual search. Psychological Science, 1, 323–326.CrossRefGoogle Scholar
Field, D. J. & Tolhurst, D. J. 1986. The structure and symmetry of simple cell receptive-field profiles in the cat's visual cortex. Proceedings of the Royal Society, Series B, 228, 379–400.CrossRefGoogle ScholarPubMed
Finkelstein, D. & Grüsser, O. J. 1965. Frog retina: detection of movement. Science, 150, 1050–1051.CrossRefGoogle Scholar
Finlayson, G. D. & Funt, B. V. 1994. Color constancy using shadows. Perception, 23, 89–90.Google Scholar
Ghose, K., Horiuchi, T. K., Krishnaprasad, P. S. & Moss, C. F. 2006. Echolocating bats use a nearly time-optimal strategy to intercept prey. PLoS Biology, 4, 865–873.CrossRefGoogle ScholarPubMed
Gilbert, C. D. 1977. Laminar differences in receptive field properties of cells in cat primary visual cortex. Journal of Physiology, 268, 391–421.CrossRefGoogle ScholarPubMed
Glendinning, P. 2004. The mathematics of motion camouflage. Proceedings of the Royal Society, Series B, 271, 477–481.CrossRefGoogle ScholarPubMed
Grosof, D. H., Shapley, R. M. & Hawken, M. J. 1993. Macaque VI neurons can signal ‘illusory’ contours. Nature, 365, 550–552CrossRefGoogle Scholar
Grossberg, S., Mingolla, E. & Ross, W. D. 1997. Visual brain and visual perception: how does the cortex do perceptual grouping? Trends in Neuroscience, 20, 106–111.CrossRefGoogle ScholarPubMed
Harmon, L. D. & Julesz, B. 1973. Masking in visual recognition: effects of two-dimensional filtered noise. Science, 180, 1194–1197.CrossRefGoogle ScholarPubMed
Heeger, D. J. 1992. Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9, 181–197.CrossRefGoogle ScholarPubMed
Hiris, E. 2007. Detection of biological and nonbiological motion. Journal of Vision, 7, 1–16.CrossRefGoogle ScholarPubMed
Hubel, D. H. & Wiesel, T. N. 1959. Receptive fields of single neurones in the cat's striate cortex. Journal of Physiology, 148, 574–591.CrossRefGoogle ScholarPubMed
Hubel, D. H. & Wiesel, T. N. 1962. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology, 160, 106–154.CrossRefGoogle ScholarPubMed
Hubel, D. H. & Wiesel, T. N. 1965. Receptive fields and functional architecture in two nonstriate areas (18 and 19) of the cat. Journal of Neurophysiology, 28, 229–289.CrossRefGoogle Scholar
Ivanenko, Y. P., Grasso, R., Macellari, V. & Lacquaniti, F. 2002. Two-thirds power law in human locomotion: role of ground contact forces. Neuroreport, 13, 1171–1174.CrossRefGoogle Scholar
Johansson, G. 1973. Visual perception of biological motion and a model for its analysis. Perception and Psychophysics, 14, 201–211.CrossRefGoogle Scholar
Jones, J. P. & Palmer, L. A. 1987. An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58, 1233–1258.CrossRefGoogle ScholarPubMed
Julesz, B. 1971. Foundations of Cyclopean Perception. Chicago, IL: University of Chicago Press.Google Scholar
Justh, E. W. & Krishnaprasad, P. S. 2006. Steering laws for motion camouflage. Proceedings of the Royal Society, Series A, 462, 3629–3643.CrossRefGoogle Scholar
Kelman, E. J., Baddeley, R. J., Shohet, A. J. & Osorio, D. 2007. Perception of visual texture and the expression of disruptive camouflage by the cuttlefish, Sepia officinalis. Proceedings of the Royal Society, Series B, 274, 1369–1375.CrossRefGoogle ScholarPubMed
Krebs, J. R. 1973. Behavioural aspects of predation. In Perspectives in Ethology, eds. Bateson, P. P. G. & Klopfer, P. H.New York: Plenum Press, pp. 73–111.CrossRefGoogle Scholar
Lamme, V. A. 1995. The neurophysiology of figure–ground segregation in primary visual cortex. Journal of Neuroscience, 15, 1605–1615.CrossRefGoogle ScholarPubMed
Lamme, V. A. F. 2003. Why visual attention and awareness are different. Trends in Cognitive Sciences, 7, 12–18.CrossRefGoogle ScholarPubMed
Land, M. F. & Nilsson, D.-E. 2001. Animal Eyes. Oxford, UK:Oxford University Press.Google Scholar
Lauritzen, J. S. & Tolhurst, D. J. 2005. Contrast constancy in natural scenes in shadow or direct light – a proposed role for contrast-normalisation (non-specific suppression) in visual cortex. Network, Computation in Neural Systems, 16, 151–173.CrossRefGoogle Scholar
Lawrence, E. S., & Allen, J. A. 1983. On the term ‘search image’. Oikos, 40, 313–314.CrossRefGoogle Scholar
Li, Y., Pizlo, Z. & Steinman, R. M. 2009. A computational model that recovers the 3D shape of an object from a single 2D retinal representation. Vision Research, 49, 979–991.CrossRefGoogle ScholarPubMed
Longuet-Higgins, H. C. 1981. A computer algorithm for reconstructing a scene from two projections. Nature, 293, 133–135.CrossRefGoogle Scholar
Lovell, P. G., Tolhurst, D. J., Párraga, C. A.et al. 2005. On the stability of the color-opponent signals under changes of illuminant in natural scenes. Journal of the Optical Society of America A, 22, 2060–2071.CrossRefGoogle ScholarPubMed
Lovell, P. G., Párraga, C. A., Ripamonti, C., Troscianko, T., & Tolhurst, D. 2006. Evaluation of a multi-scale color model for visual difference prediction. Transactions on Applied Perception, 3, 155–178.CrossRefGoogle Scholar
Lovell, P. G., Gilchrist, I. D., Tolhurst, D. J., To, M., & Troscianko, T. 2008. Predicting search efficiency with a low-level visual difference model. Journal of Vision, 8, 1082.CrossRefGoogle Scholar
Lowe, D. G. 1985. Perceptual Organization and Visual Recognition. Boston, MA: Kluwer.CrossRefGoogle Scholar
Maffei, L. & Fiorentini, A. 1973. The visual cortex as a spatial frequency analyzer. Vision Research, 13, 1255–1267.CrossRefGoogle Scholar
Marr, D. 1969. A theory of cerebral cortex. Proceedings of the Royal Society, Series B, 174, 161–234.Google Scholar
Marr, D. 1982. Vision. San Francisco, CA: W. H. Freeman.Google Scholar
Marr, D. & Hildreth, E. 1980. Theory of edge detection. Proceedings of the Royal Society, Series B, 207, 187–217.CrossRefGoogle ScholarPubMed
Mendola, J. D., Dale, A. M., Fischl, B., Liu, A. K. & Tootell, R. B. H. 1999. The representation of illusory and real contours in human cortical visual areas revealed by functional Magnetic Resonance Imaging. Journal of Neuroscience, 19, 8560–8572.CrossRefGoogle ScholarPubMed
Mizutani, A., Chahl, J. S. & Srinivasan, M. V. 2003. Motion camouflage in dragonflies. Nature, 423, 604.CrossRef
Movshon, J. A., Thompson, I. D. & Tolhurst, D. J. 1978. Spatial summation in the receptive fields of simple cells in the cat's striate cortex. Journal of Physiology, 283, 53–77.CrossRefGoogle ScholarPubMed
Mundy, J. L. & Zisserman, A. 1992. Geometric Invariance in Computer Vision. Cambridge, MA: MIT Press.Google Scholar
Orban, G. A., Sunaert, S., Todd, J. T., Van Hecke, P. & Marchal, G. 1999. Human cortical regions involved in extracting depth from motion. Neuron, 24, 929–940.CrossRefGoogle ScholarPubMed
Osorio, D. & Vorobyev, M. 1996. Colour vision as an adaptation to frugivory in primates. Proceedings of the Royal Society, Series B, 263, 593–599.CrossRefGoogle ScholarPubMed
Pack, C. C., Livingstone, M. S., Duffy, K. R. & Born, R. T. 2003. End-stopping and the aperture problem: two-dimensional motion signals in macaque V1. Neuron, 39, 671–680.CrossRefGoogle ScholarPubMed
Párraga, C. A., Troscianko, T. & Tolhurst, D. J. 2002. Spatio-chromatic properties of natural images and human vision. Current Biology, 12, 483–487.CrossRefGoogle Scholar
Párraga, C. A., Troscianko, T. & Tolhurst, D. J. 2005. The effects of amplitude-spectrum statistics on foveal and peripheral discrimination of changes in natural images, and a multi-resolution model. Vision Research, 45, 3145–3168.CrossRefGoogle Scholar
Pizlo, Z. 2008. 3D Shape: Its Unique Place in Visual Perception. Cambridge, MA: MIT Press.Google Scholar
Pizlo, Z. & Loubier, K. 2000. Recognition of a solid shape from its single perspective image obtained by a calibrated camera. Pattern Recognition, 33, 1675–1681.CrossRefGoogle Scholar
Porrill, J., Pollard, S., Pridmore, T. P.et al. 1988. TINA: a 3D vision system for pick and place. Image Vision Computing, 6, 91–99.CrossRefGoogle Scholar
Ramachandran, V. S. 1988. Perception of shape from shading. Nature, 331, 163–166.CrossRefGoogle ScholarPubMed
Reddy, P. V., Justh, E. W. & Krishnaprasad, P. S. 2007. Motion camouflage with sensorimotor delay. In Proceedings of the 46th IEEE Conference on Decision and Control, vols. 1–14, pp. 3148–3153.Google Scholar
Regan, B. C., Julliot, C., Simmen, B.et al. 2001. Fruits, foliage and the evolution of primate colour vision. Philosophical Transactions of the Royal Society, Series B, 356, 229–283.CrossRefGoogle ScholarPubMed
Ringach, D. L. 2002. Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. Journal of Neurophysiology, 88, 455–463.CrossRefGoogle ScholarPubMed
Rosenholtz, R., Li, Y. Z., & Nakano, L. 2007. Measuring visual clutter. Journal of Vision, 7, 1–22.CrossRefGoogle ScholarPubMed
Sawada, T. & Pizlo, Z. 2008. Detecting mirror-symmetry of a volumetric shape from its single 2D image. Proceedings of the Workshop on Perceptual Organization in Computer Vision, IEEE International Conference on Computer Vision and Pattern Recognition, Anchorage, Alaska, June 23.Google Scholar
Schwartz, O. & Simoncelli, E. P. 2001. Natural signal statistics and sensory gain control. Nature Neuroscience, 4, 819–825.CrossRefGoogle ScholarPubMed
Shohet, A. J., Baddeley, R. J., Anderson, J. C., Kelman, E. J. & Osorio, D. 2006. Cuttlefish responses to visual orientation of substrates, water flow and a model of motion camouflage. Journal of Experimental Biology, 209, 4717–4723.CrossRefGoogle Scholar
Smyth, D., Willmore, B., Thompson, I. D., Baker, G. E. & Tolhurst, D. J. 2003. The receptive-field organisation of simple cells in primary visual cortex (V1) of ferrets under natural scene stimulation. Journal of Neuroscience, 23, 4746–4759.CrossRefGoogle Scholar
Srinivasan, M. V. & Davey, M. 1995. Strategies for active camouflage of motion. Proceedings of the Royal Society, Series B, 259, 19–25.CrossRefGoogle Scholar
Stevens, M. & Cuthill, I. C. 2006. Disruptive coloration, crypsis and edge detection in early visual processing. Proceedings of the Royal Society, Series B, 273, 2141–2147.CrossRefGoogle ScholarPubMed
Stevens, M., Yule, D. H. & Ruxton, G. D. 2008. Dazzle coloration and prey movement. Proceedings of the Royal Society, Series B, 275, 2639–2643.CrossRefGoogle ScholarPubMed
Steverding, D. & Troscianko, T. 2004. On the role of blue shadows in the visual behaviour of tsetse flies. Proceedings of the Royal Society, Series B, 271, S16–S17.CrossRefGoogle ScholarPubMed
Thayer, G. H. 1909. Concealing Coloration in the Animal Kingdom: An Exposition of the Laws of Disguise through Color and Pattern; Being a Summary of Abbott H. Thayer's Discoveries. New York: Macmillan.Google Scholar
Thompson, d'Arcy W. 1942/1992. On Growth and Form. New York: Dover.Google Scholar
Tinbergen, L. 1960. The natural control of insects in pine woods. I. Factors influencing the intensity of predation by songbirds. Archives Neerlandaises de Zoologie, 13, 265–343.CrossRefGoogle Scholar
Tolhurst, D. J. 1972. On the possible existence of edge detectors in the human visual system. Vision Research, 12, 797–804.CrossRefGoogle Scholar
Tolhurst, D. J. & Dean, A. F. 1987. Spatial summation by simple cells in the striate cortex of the cat. Experimental Brain Research, 66, 607–620.CrossRefGoogle ScholarPubMed
Tolhurst, D. J. & Heeger, D. J. 1997. Comparison of contrast-normalization and threshold models of the responses of simple cells in cat striate cortex. Visual Neuroscience, 14, 293–309.CrossRefGoogle ScholarPubMed
Tootell, R. B. H., Reppas, J. B., Kwong, K. K.et al. 1995. Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. Journal of Neuroscience, 15, 3215–3230.CrossRefGoogle ScholarPubMed
Treisman, A. 1988. Features and objects: the 14th Bartlett Memorial Lecture. Quarterly Journal of Experimental Psychology Section A – Human Experimental Psychology, 40, 201–237.CrossRefGoogle Scholar
Treisman, A. M., & Gelade, G. 1980. Feature-integration theory of attention. Cognitive Psychology, 12, 97–136.CrossRefGoogle Scholar
Ullman, S. 1979. The Interpretation of Visual Motion. Cambridge, MA: MIT Press.Google Scholar
Vanduffel, W., Fize, D., Peuskens, H.et al. 2002. Extracting 3D from motion: differences in human and monkey intraparietal cortex. Science, 298, 413–415.CrossRefGoogle ScholarPubMed
von der Heydt, R., Peterhans, E. & Baumgartner, G. 1984. Illusory contours and cortical neuron responses. Science, 224, 1260–1262.CrossRefGoogle ScholarPubMed
von der Heydt, R., Zhou, H. & Friedman, H. S. 2003. Neural coding of border ownership: implications for the theory of figure–ground perception. In Perceptual Organization in Vision: Behavioral and Neural Perspectives, eds. Behrmann, M., Kirchi, R. & Olson, C. R. Mahwah, NJ: Lawrence Erlbaum, pp. 281–304.Google Scholar
Walls, G. L. 1942. The Vertebrate Eye and its Adaptive Radiation. New York: Hafner.Google Scholar
Ward, G. & Shakespeare, R. 2004. Rendering with Radiance: The Art and Science of Lighting Visualization. Booksurge Press.Google Scholar
Weckstrom, M. & Laughlin, S. B. 1995. Visual ecology and voltage-gated ion channels in insect photoreceptors. Trends in Neuroscience, 18, 17–21.CrossRefGoogle ScholarPubMed
Weiss, I. 1993. Geometric invariants and object recognition. International Journal of Computer Vision, 10, 207–231.CrossRefGoogle Scholar
Weisstein, N. & Bisaha, J. 1972. Gratings mask bars and bars mask gratings: visual frequency response to aperiodic stimuli. Science, 176, 1047–1049.CrossRefGoogle ScholarPubMed
Wolfe, J. M. 1994a. Guided Search 2.0: a revised model of visual-search. Psychonomic Bulletin and Review, 1, 202–238.CrossRefGoogle ScholarPubMed
Wolfe, J. M. 1994b. Visual-search in continuous, naturalistic stimuli. Vision Research, 34, 1187–1195.CrossRefGoogle ScholarPubMed
Wuerger, S., Shapley, R. & Rubin, N. 1996. ‘’On the visually perceived direction of motion’’ by Hans Wallach: 60 years later. Perception, 25, 1317–1367.CrossRefGoogle Scholar
Zeki, S., Watson, J. D. G., Lueck, C. J.et al. 1991. A direct demonstration of the functional specialisation in the human visual cortex. Journal of Neuroscience, 11, 641–649.CrossRefGoogle ScholarPubMed
Zhou, H., Friedman, H. S. & von der Heydt, R. 2000. Coding of border ownership in monkey visual cortex. Journal of Neuroscience, 20, 6594–6611.CrossRefGoogle ScholarPubMed
Zylinski, S., Osorio, D. & Shohet, A. J. 2009. Cuttlefish camouflage: context-dependent body pattern use during motion. Proceedings of the Royal Society, Series B, 276, 3963–3969.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×