We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Coastal wetlands are hotspots of carbon sequestration, and their conservation and restoration can help to mitigate climate change. However, there remains uncertainty on when and where coastal wetland restoration can most effectively act as natural climate solutions (NCS). Here, we synthesize current understanding to illustrate the requirements for coastal wetland restoration to benefit climate, and discuss potential paths forward that address key uncertainties impeding implementation. To be effective as NCS, coastal wetland restoration projects will accrue climate cooling benefits that would not occur without management action (additionality), will be implementable (feasibility) and will persist over management-relevant timeframes (permanence). Several issues add uncertainty to understanding if these minimum requirements are met. First, coastal wetlands serve as both a landscape source and sink of carbon for other habitats, increasing uncertainty in additionality. Second, coastal wetlands can potentially migrate outside of project footprints as they respond to sea-level rise, increasing uncertainty in permanence. To address these first two issues, a system-wide approach may be necessary, rather than basing cooling benefits only on changes that occur within project boundaries. Third, the need for NCS to function over management-relevant decadal timescales means methane responses may be necessary to include in coastal wetland restoration planning and monitoring. Finally, there is uncertainty on how much data are required to justify restoration action. We summarize the minimum data required to make a binary decision on whether there is a net cooling benefit from a management action, noting that these data are more readily available than the data required to quantify the magnitude of cooling benefits for carbon crediting purposes. By reducing uncertainty, coastal wetland restoration can be implemented at the scale required to significantly contribute to addressing the current climate crisis.
Art libraries play a vital role in building, managing and sustaining collections to support art scholarship. Ensuring that these valuable collections remain available long into the future requires innovative thinking about collection development, resource sharing and stewardship. The specialized and decentralized nature of the art research collective collection suggests that multi-institutional collaboration is an important option for art libraries as they seek sustainable pathways for their collections. Findings and recommendations from the Operationalizing the Art Research Collective Collection (OpArt) project show that data-driven analysis, as well as the practical experiences and lessons learned from real-world partnerships, are important sources of intelligence for art libraries as they address their sustainability challenges through collaborative approaches.
Greenhouse and outdoor container experiments were conducted to determine garden spurge and large crabgrass emergence when seeds were placed either on top of or below three different mulch materials [pine bark (PB), hardwood (HW), or pine straw (PS)] applied at five depths (0, 1.3, 2.5, 5.1, and 10.2 cm). To elucidate mulch characteristics that contributed to weed control, photosynthetic active radiation (PAR) was recorded underneath each mulch layer, moisture retention was monitored for 24 h following irrigation, and particle size was determined using standard soil sieves. HW reduced PAR (97%) more than did PB (90%) or PS (92%) at 1.3 cm, but few or no differences were noted between mulches at greater mulch depths. HW also contained the highest percentage of small particles and consequently retained more water (29%), than PB (14%) or PS (22%) 24 h following a simulated irrigation event. Emergence of large crabgrass and garden spurge was consistently greater when seeds were placed on top of the mulch, compared to seeds placed below. Emergence of both species also tended to respond to increasing depth in a quadratic manner, indicating that once a critical level of mulch was applied (2.5 to 5 cm), further reductions in weed emergence would not be observed, at least over the short term (12 wk). PB and PS tended to provide a greater reduction in emergence of both species compared to HW. This research also indicates that larger particle materials such as PB or PS would be advantageous because of their ability to suppress weed emergence regardless of seed position.
Inspired by the famous Prisoner's Dilemma game theory model, Karin Marie Fierke introduced the Warden's Dilemma to explain self-sacrifice and compromise in asymmetric interactions and to show that such an explanation requires a social ontology. She applied her model to Irish Republican Army hunger strikes in 1980–1981. Her model, however, closely resembles what game theorists call a ‘nested game’. This article (re)introduces the nested Warden's Dilemma, focuses on the tripartite relationship inherent to the model and examines hunger strikes as part of a strategy potentially informed by instrumental rationality and knowledge of the Warden's Dilemma dynamic. After briefly discussing the implications of approaching self-sacrificial behaviour from a rationalist perspective, a case study of strategic non-violence in Myanmar (Burma) demonstrates how third parties can both diffuse instrumental rationality regarding political self-sacrifice and facilitate patterns of resistance that appear to capitalize on the Warden's Dilemma dynamic.
A new family of six ionenes containing aromatic amide linkages has been synthesized from ready available starting materials at scales up to ∼50 g. These ionene-polyamides are all constitutional isomers and vary only in the regiochemistry of the amide linkages (para, meta) and xylyl linkages (ortho, meta, para) which are present in the polymer backbone. This paper details the synthesis of these ionenes and associated characterizations. Ionene-polyamides exhibit relatively low melting points (∼150 oC) allowing them to be readily processed into films and other objects. These ionene-polyamide materials are being developed for further study as polymer membranes for the separations of gases such as CO2, N2, CH4 and H2.
Studies to predict pesticide fate often lack measurements of model input parameters. Using independent data sets and understanding how soil properties affect herbicide retention and degradation may result in more accurate prediction of herbicide fate. We conducted laboratory studies to determine the influence of soil properties on atrazine adsorption and degradation. These data will be used in a separate study involving a pesticide fate model. Atrazine adsorption and desorption isotherms were constructed for six soil depths of a Hastings silty clay loam (fine, montmorillonitic, mesic Udic Argiustoll) using batch equilibration. The Freundlich adsorption constants (log Kf) ranged from 0.38 (60 to 90 cm) to 2.91 (0 to 30 cm). Adsorption was higher in the low pH, high organic matter-containing surface soil compared to the lower soil depths. Multiple regression of the adsorption constants against selected soil properties indicated that organic matter content was the best single predictor of atrazine adsorption (R2 = 0.98) followed by soil pH (R2 = 0.82). Combining organic matter and cation exchange capacity in the model produced the lowest Cp statistic (2.33) and highest R2 value (0.99). We observed hysteresis in atrazine adsorption–desorption isotherms by higher adsorption slopes (1/n)ads compared to desorption slopes (1/n)des. Soils that adsorbed more atrazine also desorbed less atrazine. Desorption correlated negatively with organic matter content and positively with soil pH. Atrazine degradation after 84 d of incubation generally decreased with increasing depth. The first-order degradation rate was highest 0 to 30 cm deep (0.0187 day−1) and lowest 270 to 300 cm deep (0.0031 day−1). Atrazine degradation was faster in soil treated annually for 12 yr than in soil with no previous atrazine history (p = 0.01).
Oregon's Fort Rock Cave is iconic in respect to both the archaeology of the northern Great Basin and the history of debate about when the Great Basin was colonized. In 1938, Luther Cressman recovered dozens of sagebrush bark sandals from beneath Mt. Mazama ash that were later radiocarbon dated to between 10,500 and 9350 cal B.P. In 1970, Stephen Bedwell reported finding lithic tools associated with a date of more than 15,000 cal B.P., a date dismissed as unreasonably old by most researchers. Now, with evidence of a nearly 15,000-year-old occupation at the nearby Paisley Five Mile Point Caves, we returned to Fort Rock Cave to evaluate the validity of Bedwell's claim, assess the stratigraphic integrity of remaining deposits, and determine the potential for future work at the site. Here, we report the results of additional fieldwork at Fort Rock Cave undertaken in 2015 and 2016, which supports the early Holocene occupation, but does not confirm a pre–10,500 cal B.P. human presence.
Composite copper oxide–copper bromide films were electrodeposited on gas diffusion layer (GDL) supports under controlled potential from aqueous copper salt solutions in the presence of a complexing/surfactant agent such as lactate. The solution pH was adjusted to target simultaneous deposition of cubic nanostructures composed of copper, oxygen, and bromine elements. The film composition and morphology were carefully tuned for enhanced electrochemical conversion of CO2 to hydrocarbons. Hydrocarbon products, predominantly ethylene and minor amounts of methane, ethane, and propylene were observed along with inevitable H2 co-generation. Importantly, CO gas was not detected during CO2 electrolyses. Low temperatures (3–5 °C) enhanced the conversion of CO intermediate to C2H4. The durability and electroactivity of these composite films were maintained for extended periods (up to 10 h) of CO2 electrolysis by periodic in situ application of anodic pulses to regenerate the cathode surface.
Magnetotactic bacteria mineralize nanometer-size crystals of magnetite (Fe3O4) through a series of protein-mediated reactions that occur inside of organelles called magnetosomes. Mms6 is a transmembrane protein thought to play a key role in magnetite mineralization. We used both electron and fluorescent microscopy to examine the subcellular location of Mms6 protein within single cells of Magnetospirillum magneticum AMB-1 using Mms6-specific antibodies. We also purified magnetosomes from M. magneticum to determine if Mms6 was physically attached to magnetite crystals. Our results show that Mms6 proteins are present during crystal growth, and Mms6 is found in direct contact with the magnetite crystals or within the lipid/protein membrane surrounding the magnetite crystals. Mms6 was not detected at other subcellular locations within the bacteria or isolated fractions. Because Mms6 was found to completely surround the magnetosomes rather than being localized to one specific area of the magnetosome, it appears that this protein could act on the entire magnetite crystal during the biomineralization process. This supports a model in which Mms6 functions to regulate Fe3O4 crystal morphology. This knowledge is important for future in vitro experiments utilizing Mms6 to synthesize tailored nanomagnets with specific physical or magnetic properties.
Previous studies examining the role of single foods or nutrients in the aetiology of non-Hodgkin lymphoma (NHL) have produced inconsistent findings. Few studies have examined associations for dietary patterns, which may more accurately reflect patterns of consumption and the complexity of dietary intake. The objective of the present study was to examine whether dietary patterns identified by factor analysis were associated with NHL risk.
Design
Case–control.
Setting
Population-based sample residing in Nebraska from 1999 to 2002.
Subjects
A total of 336 cases and 460 controls.
Results
Factor analysis identified two major dietary patterns: (i) a ‘Meat, Fat and Sweets’ dietary pattern characterized by high intakes of French fries, red meat, processed meat, pizza, salty snacks, sweets and desserts, and sweetened beverages; and (ii) a ‘Fruit, Vegetables and Starch’ dietary pattern characterized by high intakes of vegetables, fruit, fish, and cereals and starches. In multivariable logistic regression models, the ‘Meat, Fat and Sweets’ dietary pattern was associated with an increased risk of overall NHL (ORQ4v.Q1 = 3·6, 95 % CI 1·9, 6·8; Ptrend = 0·0004), follicular lymphoma (ORQ4v.Q1 = 3·1, 95 % CI 1·2, 8·0; Ptrend = 0·01), diffuse large B-cell lymphoma (ORQ4v.Q1 = 3·2, 95 % CI 1·1, 9·0; Ptrend = 0·09) and marginal zone lymphoma (ORQ4v.Q1 = 8·2, 95 % CI 1·3, 51·2; Ptrend = 0·05). No association with overall or subtype-specific risk was detected for the ‘Fruit, Vegetables and Starch’ dietary pattern. No evidence of heterogeneity was detected across strata of age, sex, BMI, smoking status or alcohol consumption.
Conclusions
Our results suggest that a dietary pattern high in meats, fats and sweets may be associated with an increased risk of NHL.
This study examined the frequency of seclusion intervention and factors associated with its use in the acute general adult psychiatric ward serving the Southland area of New Zealand. Details of the use of seclusion and relevant demographic data were collected over a 12-month period in 2007–2008.
Results
During the study period there were 30 seclusion episodes involving 23 patients. The median duration of seclusion was 17 hours. The duration of seclusion was found to be inversely related to the treatment received during the period of isolation. Most patients under seclusion had a diagnosis of psychosis, and the nature of this was directly related to the Mental Health Act order applied.
Clinical implications
The duration of seclusion in this study is long but compares with a similar study from elsewhere in New Zealand. The duration of treatment while in seclusion could be reduced if optimal treatment is given.
A study was conducted to examine the relationship between development rate and constant temperatures (14, 21, 24, 27, 33, 36, 40, and 45°C) for the rangeland grasshoppers Melanoplus sanguinipes (F.) and Aulocara elliotti (Thomas). Non-linear regression was used to generate estimates of lower development thresholds. The chosen model provided for a concave-shaped development rate function at temperatures above the lower threshold and required fewer parameters than previous models. Although experimental results suggested that no precise estimates of upper development thresholds could be obtained, previous field studies indicate that preferred body temperatures may be lower than ambient temperatures and probably are related in part to the thermoregulatory abilities of the two species studied. Results will be of interest to insect ecologists and those studying grasshopper biology as well as researchers and pest managers interested in predicting grasshopper development.