We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Clostridioides difficile infection (CDI) may be misdiagnosed if testing is performed in the absence of signs or symptoms of disease. This study sought to support appropriate testing by estimating the impact of signs, symptoms, and healthcare exposures on pre-test likelihood of CDI.
Methods:
A panel of fifteen experts in infectious diseases participated in a modified UCLA/RAND Delphi study to estimate likelihood of CDI. Consensus, defined as agreement by >70% of panelists, was assessed via a REDCap survey. Items without consensus were discussed in a virtual meeting followed by a second survey.
Results:
All fifteen panelists completed both surveys (100% response rate). In the initial survey, consensus was present on 6 of 15 (40%) items related to risk of CDI. After panel discussion and clarification of questions, consensus (>70% agreement) was reached on all remaining items in the second survey. Antibiotics were identified as the primary risk factor for CDI and grouped into three categories: high-risk (likelihood ratio [LR] 7, 93% agreement among panelists in first survey), low-risk (LR 3, 87% agreement in first survey), and minimal-risk (LR 1, 71% agreement in first survey). Other major factors included new or unexplained severe diarrhea (e.g., ≥ 10 liquid bowel movements per day; LR 5, 100% agreement in second survey) and severe immunosuppression (LR 5, 87% agreement in second survey).
Conclusion:
Infectious disease experts concurred on the importance of signs, symptoms, and healthcare exposures for diagnosing CDI. The resulting risk estimates can be used by clinicians to optimize CDI testing and treatment.
Nine halloysite nanotubes (HNTs) have been examined using scanning electron microscopy (SEM), atomic force microscopy (AFM) and (cross-sectional) transmission electron microscopy (TEM) to evaluate details of their external and internal morphologies. The samples span morphologies within the cylindrical to prismatic-polygonal framework proposed by Hillier et al. (2016). The ‘carpet roll’ model assumed in the conceptualization of most technological applications of HNTs is shown to be far too simplistic. Both cylindrical and prismatic forms have abundant edge steps traversing their surfaces that, by analogy with plates of kaolinite, correspond to prism faces. The mean value for the diameter of the central lumen of the tubes is 12 nm. Numerous slit-like nanopores, with diameters up to 18 nm, also occur between packets of layers, particularly in prismatic forms at the junction between a central cylindrical core and outer packets of planar layers. These pores expose aluminol and siloxane surfaces, but unlike the lumen, which is assumed only to expose an aluminol surface, they do not extend along the entire length of the nanotube. Edge steps seen most clearly by AFM correspond in height to the packets of layers seen in TEM. TEM cross-sections suggest that tube growth occurs by accretion of a spiralled thickening wedge of layers evolving from cylindrical to polygonal form and reveal that planar sectors may be joined by either abrupt angular junctions or by short sections of curved layers. A more realistic model of the internal and external morphologies of HNTs is proposed to assist with understanding of the behaviour of HNTs in technological applications.
Multiple micronutrient deficiencies are widespread in Ethiopia. However, the distribution of Se and Zn deficiency risks has previously shown evidence of spatially dependent variability, warranting the need to explore this aspect for wider micronutrients. Here, blood serum concentrations for Ca, Mg, Co, Cu and Mo were measured (n 3102) on samples from the Ethiopian National Micronutrient Survey. Geostatistical modelling was used to test spatial variation of these micronutrients for women of reproductive age, who represent the largest demographic group surveyed (n 1290). Median serum concentrations were 8·6 mg dl−1 for Ca, 1·9 mg dl−1 for Mg, 0·4 µg l−1 for Co, 98·8 µg dl−1 for Cu and 0·2 µg dl−1 for Mo. The prevalence of Ca, Mg and Co deficiency was 41·6 %, 29·2 % and 15·9 %, respectively; Cu and Mo deficiency prevalence was 7·6 % and 0·3 %, respectively. A higher prevalence of Ca, Cu and Mo deficiency was observed in north western, Co deficiency in central and Mg deficiency in north eastern parts of Ethiopia. Serum Ca, Mg and Mo concentrations show spatial dependencies up to 140–500 km; however, there was no evidence of spatial correlations for serum Co and Cu concentrations. These new data indicate the scale of multiple mineral micronutrient deficiency in Ethiopia and the geographical differences in the prevalence of deficiencies suggesting the need to consider targeted responses during the planning of nutrition intervention programmes.
We summarize some of the past year's most important findings within climate change-related research. New research has improved our understanding about the remaining options to achieve the Paris Agreement goals, through overcoming political barriers to carbon pricing, taking into account non-CO2 factors, a well-designed implementation of demand-side and nature-based solutions, resilience building of ecosystems and the recognition that climate change mitigation costs can be justified by benefits to the health of humans and nature alone. We consider new insights about what to expect if we fail to include a new dimension of fire extremes and the prospect of cascading climate tipping elements.
Technical summary
A synthesis is made of 10 topics within climate research, where there have been significant advances since January 2020. The insights are based on input from an international open call with broad disciplinary scope. Findings include: (1) the options to still keep global warming below 1.5 °C; (2) the impact of non-CO2 factors in global warming; (3) a new dimension of fire extremes forced by climate change; (4) the increasing pressure on interconnected climate tipping elements; (5) the dimensions of climate justice; (6) political challenges impeding the effectiveness of carbon pricing; (7) demand-side solutions as vehicles of climate mitigation; (8) the potentials and caveats of nature-based solutions; (9) how building resilience of marine ecosystems is possible; and (10) that the costs of climate change mitigation policies can be more than justified by the benefits to the health of humans and nature.
Social media summary
How do we limit global warming to 1.5 °C and why is it crucial? See highlights of latest climate science.
We present the data and initial results from the first pilot survey of the Evolutionary Map of the Universe (EMU), observed at 944 MHz with the Australian Square Kilometre Array Pathfinder (ASKAP) telescope. The survey covers
$270 \,\mathrm{deg}^2$
of an area covered by the Dark Energy Survey, reaching a depth of 25–30
$\mu\mathrm{Jy\ beam}^{-1}$
rms at a spatial resolution of
$\sim$
11–18 arcsec, resulting in a catalogue of
$\sim$
220 000 sources, of which
$\sim$
180 000 are single-component sources. Here we present the catalogue of single-component sources, together with (where available) optical and infrared cross-identifications, classifications, and redshifts. This survey explores a new region of parameter space compared to previous surveys. Specifically, the EMU Pilot Survey has a high density of sources, and also a high sensitivity to low surface brightness emission. These properties result in the detection of types of sources that were rarely seen in or absent from previous surveys. We present some of these new results here.
The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years.
Antarctica's ice shelves modulate the grounded ice flow, and weakening of ice shelves due to climate forcing will decrease their ‘buttressing’ effect, causing a response in the grounded ice. While the processes governing ice-shelf weakening are complex, uncertainties in the response of the grounded ice sheet are also difficult to assess. The Antarctic BUttressing Model Intercomparison Project (ABUMIP) compares ice-sheet model responses to decrease in buttressing by investigating the ‘end-member’ scenario of total and sustained loss of ice shelves. Although unrealistic, this scenario enables gauging the sensitivity of an ensemble of 15 ice-sheet models to a total loss of buttressing, hence exhibiting the full potential of marine ice-sheet instability. All models predict that this scenario leads to multi-metre (1–12 m) sea-level rise over 500 years from present day. West Antarctic ice sheet collapse alone leads to a 1.91–5.08 m sea-level rise due to the marine ice-sheet instability. Mass loss rates are a strong function of the sliding/friction law, with plastic laws cause a further destabilization of the Aurora and Wilkes Subglacial Basins, East Antarctica. Improvements to marine ice-sheet models have greatly reduced variability between modelled ice-sheet responses to extreme ice-shelf loss, e.g. compared to the SeaRISE assessments.
The German Twin Family Panel (TwinLife) is a German longitudinal study of monozygotic and dizygotic same-sex twin pairs and their families that was designed to investigate the development of social inequalities over the life course. The study covers an observation period from approximately 2014 to 2023. The target population of the sample are reared-together twins of four different age cohorts that were born in 2009/2010 (cohort 1), in 2003/2004 (cohort 2), in 1997/1998 (cohort 3) and between 1990 and 1993 (cohort 4). In the first wave, the study included data on 4097 twin families. Families were recruited in all parts of Germany so that the sample comprises the whole range of the educational, occupational and income structure. As of 2019, two face-to-face, at-home interviews and two telephone interviews have been conducted. Data from the first home and telephone interviews are already available free of charge as a scientific use-file from the GESIS data archive. This report aims to provide an overview of the study sample and design as well as constructs that are unique in TwinLife in comparison with previous twin studies — such as an assessment of cognitive abilities or information based on the children’s medical records and report cards. In addition, major findings based on the data already released are displayed, and future directions of the study are presented and discussed.
In 2015 and 2016, the Canadian Journal of Emergency Medicine (CJEM) Social Media (SoMe) Team collaborated with established medical websites to promote CJEM articles using podcasts and infographics while tracking dissemination and readership.
Methods
CJEM publications in the “Original Research” and “State of the Art” sections were selected by the SoMe Team for podcast and infographic promotion based on their perceived interest to emergency physicians. A control group was composed retrospectively of articles from the 2015 and 2016 issues with the highest Altmetric score that received standard Facebook and Twitter promotions. Studies on SoMe topics were excluded. Dissemination was quantified by January 1, 2017 Altmetric scores. Readership was measured by abstract and full-text views over a 3-month period. The number needed to view (NNV) was calculated by dividing abstract views by full-text views.
Results
Twenty-nine of 88 articles that met inclusion were included in the podcast (6), infographic (11), and control (12) groups. Descriptive statistics (mean, 95% confidence interval) were calculated for podcast (Altmetric: 61, 42-80; Abstract: 1795, 1135-2455; Full-text: 431, 0-1031), infographic (Altmetric: 31.5, 19-43; Abstract: 590, 361-819; Full-text: 65, 33-98), and control (Altmetric: 12, 8-15; Abstract: 257, 159-354; Full-Text: 73, 38-109) articles. The NNV was 4.2 for podcast, 9.0 for infographic, and 3.5 for control articles.
Discussion
Limitations included selection bias, the influence of SoMe promotion on the Altmetric scores, and a lack of generalizability to other journals.
Conclusion
Collaboration with established SoMe websites using podcasts and infographics was associated with increased Altmetric scores and abstract views but not full-text article views.
Lake Ejagham is a small, shallow lake in Cameroon, West Africa, which supports five endemic species of cichlid fishes in two distinct lineages. Genetic evidence suggests a relatively young age for the species flocks, but supporting geologic evidence has thus far been unavailable. Here we present diatom, geochemical, mineralogical, and radiocarbon data from two sediment cores that provide new insights into the age and origin of Lake Ejagham and its endemic fishes. Radiocarbon ages at the base of the longer core indicate that the lake formed approximately 9 ka ago, and the diatom record of the shorter core suggests that hydroclimate variability during the last 3 millennia was similar to that of other lakes in Cameroon and Ghana. These findings establish a maximum age of ca. 9 cal ka BP for the lake and its endemic species and suggest that repeated cichlid speciation in two distinct lineages occurred rapidly within the lake. Local geology and West African paleoclimate records argue against a volcanic, chemical, or climatic origin for Lake Ejagham. Although not conclusive, the morphometry of the lake and possible signs of impact-induced effects on quartz grains are instead more suggestive of a bolide impact.
Weed science has contributed much to agriculture, forestry and natural resource management during its history. However, if it is to remain relevant as a scientific discipline, it is long past time for weed scientists to move beyond a dominating focus on herbicide efficacy testing and address the basic science underlying complex issues in vegetation management at many levels of biological organization currently being solved by others, such as invasion ecologists and molecular biologists. Weed science must not be circumscribed by a narrowly-defined set of tools but rather be seen as an integrating discipline. As a means of assessing current and future research interests and funding trends among weed scientists, the Weed Science Society of America conducted an online survey of its members in summer of 2007. There were 304 respondents out of a membership of 1330 at the time of the survey, a response rate of 23%. The largest group of respondents (41%) reported working on research problems primarily focused on herbicide efficacy and maintenance, funded mainly by private industry sources. Another smaller group of respondents (22%) reported focusing on research topics with a complex systems focus (such as invasion biology, ecosystem restoration, ecological weed management, and the genetics, molecular biology, and physiology of weedy traits), funded primarily by public sources. Increased cooperation between these complementary groups of scientists will be an essential step in making weed science increasingly relevant to the complex vegetation management issues of the 21st century.
We construct a ‘structure invariant’ of a one-ended, finitely presented group that describes the way in which the factors of its JSJ decomposition over two-ended subgroups fit together. For hyperbolic groups satisfying a very general condition, these invariants completely reduce the problem of classifying such groups up to quasi-isometry to a relative quasi-isometry classification of the factors of their JSJ decomposition. Under some additional assumption, our results extend to more general finitely presented groups, yielding a far-reaching generalisation of the quasi-isometry classification of some 3–manifolds obtained by Behrstock and Neumann.
The same approach also allows us to obtain such a reduction for the problem of determining when two hyperbolic groups have homeomorphic Gromov boundaries.