We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The crystal structure of iprodione has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Iprodione crystallizes in the space group P21/c (#14) with a = 15.6469(3), b = 22.8436(3), c = 8.67226(10) Å, β = 94.1303(7)°, V = 3,091.70(9) Å3, and Z = 8 at 298 K. The crystal structure contains clusters of four iprodione molecules. The only two classical N–H···O hydrogen bonds in the structure are both intramolecular. The powder pattern has been submitted to the International Centre for Diffraction Data for inclusion in the Powder Diffraction File™ (PDF®).
Phenelzine sulfate crystallizes in the space group P21/c (#14) with a = 20.7418(15), b = 5.51507(5), c = 20.6038(11) Å, β = 109.5490(25)°, V = 2,221.06(9) Å3, and Z = 8 (Ẓ̣′ = 2) at 298 K. The crystal structure consists of supramolecular double layers of cations and anions parallel to the bc-plane. The inner portion of the layers consists of the charged parts of the cations and the anions, whereas the outer surfaces consist of phenyl rings, with van der Waals interactions between the layers. The sulfate anions stack along the c-axis. Each N–H acts as a donor to at least one sulfate O atom, and each O atom acts as an acceptor in at least one N–H···O hydrogen bond. The powder pattern has been submitted to the International Centre for Diffraction Data for inclusion in the Powder Diffraction File™ (PDF®).
The crystal structure of ethynodiol diacetate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Ethynodiol diacetate crystallizes in space group P21 (#4) with a = 17.4055(12), b = 7.25631(17), c = 19.6008(14) Å, β = 116.2471(23)°, V = 2,220.33(13) Å3, and Z = 4 at 298 K. The crystal structure consists of alternating layers of the two independent molecules parallel to the (101) plane. The molecules do not interact strongly with each other, as reflected by the low density of 1.150 g/cm3. The powder pattern has been submitted to the International Centre for Diffraction Data (ICDD) for inclusion in the Powder Diffraction File™ (PDF®).
The First Large Absorption Survey in H i (FLASH) is a large-area radio survey for neutral hydrogen in and around galaxies in the intermediate redshift range 0.4 < z < 1.0, using the 21-cm H i absorption line as a probe of cold neutral gas. The survey uses the ASKAP radio telescope and will cover 24,000 deg2 of sky over the next five years. FLASH breaks new ground in two ways – it is the first large H i absorption survey to be carried out without any optical preselection of targets, and we use an automated Bayesian line-finding tool to search through large datasets and assign a statistical significance to potential line detections. Two Pilot Surveys, covering around 3000 deg2 of sky, were carried out in 2019-22 to test and verify the strategy for the full FLASH survey. The processed data products from these Pilot Surveys (spectral-line cubes, continuum images, and catalogues) are public and available online. In this paper, we describe the FLASH spectral-line and continuum data products and discuss the quality of the H i spectra and the completeness of our automated line search. Finally, we present a set of 30 new H i absorption lines that were robustly detected in the Pilot Surveys, almost doubling the number of known H i absorption systems at 0.4 < z < 1. The detected lines span a wide range in H i optical depth, including three lines with a peak optical depth τ > 1, and appear to be a mixture of intervening and associated systems. Interestingly, around two-thirds of the lines found in this untargeted sample are detected against sources with a peaked-spectrum radio continuum, which are only a minor (5-20%) fraction of the overall radio-source population. The detection rate for H i absorption lines in the Pilot Surveys (0.3 to 0.5 lines per 40 deg2 ASKAP field) is a factor of two below the expected value. One possible reason for this is the presence of a range of spectral-line artefacts in the Pilot Survey data that have now been mitigated and are not expected to recur in the full FLASH survey. A future paper in this series will discuss the host galaxies of the H i absorption systems identified here.
The crystal structure of trametinib dimethyl sulfoxide has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Trametinib dimethyl sulfoxide crystallizes in space group P-1 (#2) with a = 10.7533(4), b = 12.6056(5), c = 12.8147(6) Å, α = 61.2830(8), β = 69.9023(11), γ = 77.8038(10)°, V = 1,428.40(3) Å3, and Z = 2 at 298 K. The crystal structure contains hydrogen-bonded trametinib and dimethyl sulfoxide (DMSO) molecules. These are arranged into layers parallel to the (101) plane. There are two strong classical hydrogen bonds in the structure. One links the trametinib and DMSO molecules. Another is an intramolecular hydrogen bond. The powder pattern has been submitted to the International Centre for Diffraction Data for inclusion in the Powder Diffraction File™.
The crystal structure of niraparib tosylate monohydrate Form I has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Niraparib tosylate monohydrate Form I crystallizes in space group P-1 (#2) with a = 7.22060(7), b = 12.76475(20), c = 13.37488(16) Å, α = 88.7536(18), β = 88.0774(10), γ = 82.2609(6)°, V = 1,220.650(16) Å3, and Z = 2 at 298 K. The crystal structure consists of alternating double layers of cations and anions (including the water molecules) parallel to the ab-plane. Hydrogen bonds are prominent in the crystal structure. The water molecule acts as a donor to two different O atoms of the tosylate anion and as an acceptor from one of the H of the protonated piperidine ring. The other piperidyl N–H acts as a donor to the carbonyl group of another cation. Surprisingly, there are no cation–anion N–H···O hydrogen bonds. The amide group forms as a N–H···O hydrogen bond to the anion and an intramolecular N–H···N hydrogen bond to the indazole ring. The powder pattern has been submitted to the International Centre for Diffraction Data for inclusion in the Powder Diffraction File™.
The crystal structure of aprocitentan Form A has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Aprocitentan Form A crystallizes in space group P-1 (#2) with a = 11.7381(11), b = 10.6771(12), c = 9.6624(5) Å, α = 110.4365(13), β = 92.3143(13), γ = 113.513 (2)°, V = 1,017.53(5) Å3, and Z = 2 at 298 K. The crystal structure consists of layers of aprocitentan molecules, approximately along the 1,-7,7 plane. N–H···N hydrogen bonds link the molecules within these layers. The powder pattern has been submitted to the International Centre for Diffraction Data for inclusion in the Powder Diffraction File™.
Hidradenitis suppurativa (HS) is a chronic, painful inflammatory skin disease affecting 0.1% of the US population. Limited understanding of HS biology and ineffective treatments leave patients dissatisfied, facing misdiagnosis, and diagnostic delays. To address these challenges, the Rockefeller University Center for Clinical Translational Science, Clinical Directors Network, and the HS Foundation launched an initiative to foster engagement among stakeholders. Three full spectrum town halls (FSTH) were designed to engage patients, scientists, and clinicians bidirectionally. Topics spanned the translational research spectrum to amplify patient testimony, update the HS community on scientific and clinical research advances, and promote patient-centered research and care. The FSTH model aims to enhance empathy, foster trust, accelerate scientific discovery, and improve care. FSTH-2018 showcased patients’ experiences living with HS, the scientific and clinical state of the art, and tailored a new HS study to patient preferences. FSTH-2021 shared results of the study, including new insights into HS biology. FSTH-2023 highlighted best practices for outpatient surgical care of HS. Participant feedback underscored FSTH’s role in nurturing empathy and advancing discovery and patient engagement. FSTH serves as an effective model for uniting stakeholders, bridging gaps in knowledge and trust, and accelerating translational research to improve HS care.
Objectives/Goals: This study aims to evaluate the performance of a third-party artificial intelligence (AI) product in predicting diagnosis-related groups (DRGs) in a community healthcare system. We highlight a use case illustrating how clinical practice leverages AI-predicted information in unexpected yet advantageous ways and assess the AI predictions accuracy and practical application. Methods/Study Population: DRGs are crucial for hospital reimbursement under the prospective payment model. The Mayo Clinic Health System (MCHS), a network of clinics and hospitals serving a substantial rural population in Minnesota and Wisconsin, has recently adopted an AI algorithm developed by Xsolis (an AI-focused healthcare solution provider). This algorithm, a 1D convolutional neural network, predicts DRGs based on clinical documentation. To assess the accuracy of AI-generated DRG predictions for inpatient discharges, we analyzed data from 930 patients hospitalized at MCHS Mankato between March 2 and May 13, 2024. The Xsolis platform provided the top three DRG predictions for the first 48 hours of each inpatient stay. The accuracy of these predictions was then compared against the final billed DRG codes from the hospital’s records. Results/Anticipated Results: In our validation set, Xsolis achieved a top-3 DRG prediction accuracy of 71% at 24 hours and 81% at 48 hours, which is lower than the originally reported accuracy of 81.1% and 83.3%, respectively. Interestingly, discussions with clinical practice leaders revealed that the most valuable information derived from the AI predictions was the expected geometric mean length of stay (GMLOS), which Xsolis was perceived to predict accurately. In the Medicare system, each DRG is associated with an expected GMLOS, a critical factor for efficient hospital flow planning. A subsequent analysis comparing predicted GMLOS with the actual length of stay showed variances of -0.10 days on day 1 and 0.14 days on day 2, indicating a high degree of accuracy and aligning with clinical practice perceptions. Discussion/Significance of Impact: Our research underscores that clinical practice can leverage AI predictions in unexpected yet beneficial ways. While initially focused on DRG prediction, the associated GMLOS emerged as more significant. This suggests that AI algorithm validation should be tailored to specific clinical needs rather than relying solely on generalized benchmarks.
The crystal structure of flumethasone has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional theory techniques. Flumethasone crystallizes in space group P21 (#4) with a = 6.46741(5), b = 24.91607(20), c = 12.23875(11) Å, β = 90.9512(6)°, V = 1971.91(4) Å3, and Z = 4 at 298 K. The crystal structure consists of O–H⋯O hydrogen-bonded double layers of flumethasone molecules parallel to the ac-plane. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).
The crystal structure of diroximel fumarate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional theory techniques. Diroximel fumarate crystallizes in space group P-1 (#2) with a = 6.12496(15), b = 8.16516(18), c = 12.7375(6) Å, α = 85.8174(21), β = 81.1434(12), γ = 71.1303(3)°, V = 595.414(23) Å3, and Z = 2 at 298 K. The crystal structure consists of interleaved double layers of hook-shaped molecules parallel to the ab-plane. The side chains form the inner portion of the layers, and the rings comprise the outer surfaces. There are no classical hydrogen bonds in the structure, but 9 C▬H⋯O hydrogen bonds contribute to the crystal energy. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).
The crystal structure of etrasimod has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Etrasimod crystallizes in space group P1 (#1) with a = 10.6131(5), b = 10.7003(5), c = 11.1219(8) Å, α = 72.756(2), β = 76.947(2), γ = 77.340(1)°, V = 1159.28(6) Å3, and Z = 2 at 298 K. The crystal structure contains O▬H⋯O hydrogen-bonded etrasimod dimers, which lie in layers approximately parallel to the (2,0,−1) plane. The amino group of each molecule forms an intramolecular N▬H⋯O hydrogen bond to the carbonyl group of the adjacent carboxylic acid group. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).
We present the first results from a new backend on the Australian Square Kilometre Array Pathfinder, the Commensal Realtime ASKAP Fast Transient COherent (CRACO) upgrade. CRACO records millisecond time resolution visibility data, and searches for dispersed fast transient signals including fast radio bursts (FRB), pulsars, and ultra-long period objects (ULPO). With the visibility data, CRACO can localise the transient events to arcsecond-level precision after the detection. Here, we describe the CRACO system and report the result from a sky survey carried out by CRACO at 110-ms resolution during its commissioning phase. During the survey, CRACO detected two FRBs (including one discovered solely with CRACO, FRB 20231027A), reported more precise localisations for four pulsars, discovered two new RRATs, and detected one known ULPO, GPM J1839 $-$10, through its sub-pulse structure. We present a sensitivity calibration of CRACO, finding that it achieves the expected sensitivity of 11.6 Jy ms to bursts of 110 ms duration or less. CRACO is currently running at a 13.8 ms time resolution and aims at a 1.7 ms time resolution before the end of 2024. The planned CRACO has an expected sensitivity of 1.5 Jy ms to bursts of 1.7 ms duration or less and can detect $10\times$ more FRBs than the current CRAFT incoherent sum system (i.e. 0.5 $-$2 localised FRBs per day), enabling us to better constrain the models for FRBs and use them as cosmological probes.
With wide-field phased array feed technology, the Australian Square Kilometre Array Pathfinder (ASKAP) is ideally suited to search for seemingly rare radio transient sources that are difficult to discover previous-generation narrow-field telescopes. The Commensal Real-time ASKAP Fast Transient (CRAFT) Survey Science Project has developed instrumentation to continuously search for fast radio transients (duration $\lesssim$ 1 s) with ASKAP, with a particular focus on finding and localising fast radio bursts (FRBs). Since 2018, the CRAFT survey has been searching for FRBs and other fast transients by incoherently adding the intensities received by individual ASKAP antennas, and then correcting for the impact of frequency dispersion on these short-duration signals in the resultant incoherent sum (ICS) in real time. This low-latency detection enables the triggering of voltage buffers, which facilitates the localisation of the transient source and the study of spectro-polarimetric properties at high time resolution. Here we report the sample of 43 FRBs discovered in this CRAFT/ICS survey to date. This includes 22 FRBs that had not previously been reported: 16 FRBs localised by ASKAP to $\lesssim 1$ arcsec and 6 FRBs localised to $\sim 10$ arcmin. Of the new arcsecond-localised FRBs, we have identified and characterised host galaxies (and measured redshifts) for 11. The median of all 30 measured host redshifts from the survey to date is $z=0.23$. We summarise results from the searches, in particular those contributing to our understanding of the burst progenitors and emission mechanisms, and on the use of bursts as probes of intervening media. We conclude by foreshadowing future FRB surveys with ASKAP using a coherent detection system that is currently being commissioned. This will increase the burst detection rate by a factor of approximately ten and also the distance to which ASKAP can localise FRBs.
Molnupiravir Form I crystallizes in space group C2 (#5) with a = 6.48110(17), b = 8.71848(19), c = 27.0607(19) Å, β = 91.920(4)°, V = 1528.22(12) Å3, and Z = 4 at 295 K. The crystal structure consists of supramolecular double layers of molecules parallel to the ab-plane. The layer centers consist of hydrogen-bonded rings forming a 2D network and the outer surfaces of isopropyl groups, with van der Waals interactions between the layers. Each O atom acts as an acceptor in at least one hydrogen bond. A strong O–H⋯O hydrogen bond forms between the hydroxyl group of the oxolane ring and the carbonyl group of the oxopyrimidine ring. The other oxolane hydroxyl group forms bifurcated intra- and intermolecular hydrogen bonds. The hydroxylamino group forms an intramolecular O–H⋯N hydrogen bond with an N atom of the oxopyrimidine ring. The amino group forms an intermolecular N–H⋯N hydrogen bond to the same N atom of the ring. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).
Antarctica is populated by a diverse array of terrestrial fauna that have successfully adapted to its extreme environmental conditions. The origins and diversity of the taxa have been of continuous interest to ecologists since their discovery. Early theory considered contemporary populations as descendants of recent arrivals; however, mounting molecular evidence points to firmly established indigenous taxa far earlier than the Last Glacial Maximum, thus indicating more ancient origins. Here we present insights into Antarctica's terrestrial invertebrates by synthesizing available phylogeographic studies. Molecular dating supports ancient origins for most indigenous taxa, including Acari (up to 100 million years ago; Ma), Collembola (21–11 Ma), Nematoda (~30 Ma), Tardigrada (> 1 Ma) and Chironomidae (> 49 Ma), while Rotifera appear to be more recent colonizers (~130 Ka). Subsequent population bottlenecks and rapid speciation have occurred with limited gene transfer between Continental and Maritime Antarctica, while repeated wind- or water-borne dispersal and colonization of contiguous regions during interglacial periods shaped current distributions. Greater knowledge of Antarctica's fauna will focus conservation efforts to ensure their persistence.
Accurate diagnosis of bipolar disorder (BPD) is difficult in clinical practice, with an average delay between symptom onset and diagnosis of about 7 years. A depressive episode often precedes the first manic episode, making it difficult to distinguish BPD from unipolar major depressive disorder (MDD).
Aims
We use genome-wide association analyses (GWAS) to identify differential genetic factors and to develop predictors based on polygenic risk scores (PRS) that may aid early differential diagnosis.
Method
Based on individual genotypes from case–control cohorts of BPD and MDD shared through the Psychiatric Genomics Consortium, we compile case–case–control cohorts, applying a careful quality control procedure. In a resulting cohort of 51 149 individuals (15 532 BPD patients, 12 920 MDD patients and 22 697 controls), we perform a variety of GWAS and PRS analyses.
Results
Although our GWAS is not well powered to identify genome-wide significant loci, we find significant chip heritability and demonstrate the ability of the resulting PRS to distinguish BPD from MDD, including BPD cases with depressive onset (BPD-D). We replicate our PRS findings in an independent Danish cohort (iPSYCH 2015, N = 25 966). We observe strong genetic correlation between our case–case GWAS and that of case–control BPD.
Conclusions
We find that MDD and BPD, including BPD-D are genetically distinct. Our findings support that controls, MDD and BPD patients primarily lie on a continuum of genetic risk. Future studies with larger and richer samples will likely yield a better understanding of these findings and enable the development of better genetic predictors distinguishing BPD and, importantly, BPD-D from MDD.
The modern idea of purebred dogs has come under increasing critical scrutiny over recent decades. In light of this critical focus and other developments in society, some new trends in how companion dogs are bred and acquired have emerged. This means a diminishing influence from traditional kennel clubs with more dogs being sold without a pedigree, stricter legal restrictions on dog breeding, growing popularity of deliberate crosses of established breeds (i.e. so-called designer breeds) and growing hype around the benefits of mixed-breed dogs. We give an overview of these trends and discuss to what extent they will serve to promote dogs that are innately healthy, have good welfare and function well in their various roles in today’s world. We argue that newly invented designer breeds and mixed breeds also have worrying health and behavioural problems, and that the predictability of purebred dogs with respect to body size, basic behaviours, known need for grooming, disorder profiles and other attributes may well offer some benefits for a satisfying human-dog relationship seen from both sides. The optimal future seems to lie in the middle ground, where the future organised dog world (i.e. kennel and breed clubs or their successor organisations) will need to re-open the breed registries, remove wording from breed standards that currently promotes extreme conformation, support selection against disease-predisposing genotypes and phenotypes and refocus dog showing and breeding to promote health and appropriate behaviour.
By taking advantage of an experimental design which increases the number of observations per subject, the sensitivity of the proposed test is increased. In the first of a series of subexperiments, the score of a randomly selected experimentalS is ranked with the scores of the remaining (control) Ss, and the experimental S is discarded. This procedure is repeated until one S remains. The test criterion, Rn, is the sum of ranks of the experimental Ss; its exact sampling distribution, a normal approximation, and the sensitivity of the test relative to the Wilcoxon T, are described. Because of the large number of scores obtained, the test is particularly useful when preparing Ss is more costly than testing them, e.g., in tests following involved conditioning procedures. Since each S is discarded after experimental treatment, the test fills a real need in studies involving radiation, ablation, or other irreversible treatments.
A two-variable generating function is described which yields the sampling probabilities of the Shannon-Wiener information measure. Expansion and collection of terms in like powers of the first variable imposes the restriction that the sum of the k category frequencies equal n; collection of terms in like powers of the second variable then produces terms whose coefficients are the required probabilities. The method may be used with either equal or unequal category probabilities for any finite n and k, and thus represents a general solution to the small sample problem. Tables of sampling probabilities are presented.