We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Laterite could play a crucial role in soil stabilization and environmental remediation, but its internal particle interaction mechanism remains unclear. This study, based on molecular dynamics simulations, used umbrella sampling methods to measure the interaction strength between amorphous alumina and montmorillonite particles in laterite. The mechanisms were explored using differential charge density analysis and bond energy analysis. The results show that the interaction process between alumina and montmorillonite exhibited initial repulsion, then attraction, followed again by repulsion. Calcium ion-induced polarization, the negative charge on the alumina surface and the bonding strength during adsorption played key roles in this interaction. Notably, the bond energy measurement results in this study are consistent with data from other related research, validating the data’s accuracy. These findings improve our understanding of the microscopic mechanisms of laterite particle interactions, providing a scientific basis for its application in soil stabilization and environmental remediation.
The whitefly, Bemisia tabaci is a cryptic species complex in which one member, Middle East-Asia Minor 1 (MEAM1) has invaded globally. After invading large countries like Australia, China, and the USA, MEAM1 spread rapidly across each country. In contrast, our analysis of MEAM1 in India showed a very different pattern. Despite the detection of MEAM1 being contemporaneous with invasions in Australia, the USA, and China, MEAM1 has not spread widely and instead remains restricted to the southern regions. An assessment of Indian MEAM1 genetic diversity showed a level of diversity equivalent to that found in its presumed home range and significantly higher than that expected across the invaded range. The high level of diversity and restricted distribution raises the prospect that its home range extends into India. Similarly, while the levels of diversity in Australia and the USA conformed to that expected for the invaded range, China did not. It suggests that China may also be part of its home range. We also observed that diversity across the invaded range was primarily accounted for by a single haplotype, Hap1, which accounted for 79.8% of all records. It was only the invasion of Hap1 that enabled outbreaks to occur and MEAM1’s discovery.
The emotion regulation network (ERN) in the brain provides a framework for understanding the neuropathology of affective disorders. Although previous neuroimaging studies have investigated the neurobiological correlates of the ERN in major depressive disorder (MDD), whether patients with MDD exhibit abnormal functional connectivity (FC) patterns in the ERN and whether the abnormal FC in the ERN can serve as a therapeutic response signature remain unclear.
Methods
A large functional magnetic resonance imaging dataset comprising 709 patients with MDD and 725 healthy controls (HCs) recruited across five sites was analyzed. Using a seed-based FC approach, we first investigated the group differences in whole-brain resting-state FC of the 14 ERN seeds between participants with and without MDD. Furthermore, an independent sample (45 MDD patients) was used to evaluate the relationship between the aforementioned abnormal FC in the ERN and symptom improvement after 8 weeks of antidepressant monotherapy.
Results
Compared to the HCs, patients with MDD exhibited aberrant FC between 7 ERN seeds and several cortical and subcortical areas, including the bilateral middle temporal gyrus, bilateral occipital gyrus, right thalamus, calcarine cortex, middle frontal gyrus, and the bilateral superior temporal gyrus. In an independent sample, these aberrant FCs in the ERN were negatively correlated with the reduction rate of the HAMD17 score among MDD patients.
Conclusions
These results might extend our understanding of the neurobiological underpinnings underlying unadaptable or inflexible emotional processing in MDD patients and help to elucidate the mechanisms of therapeutic response.
Loess, a geologic record of dust, is an optimal archive for exploring paleoclimate and the paleo-dust path from source to sink. The dust path for the Songnen Plain, NE China, during the last glacial period has not been established. To address this, 63 surface sediment samples from the Northeast China Sandy Lands, i.e., Onqin Daga Sandy Land (OD), Horqin Sandy Land (HQ), Hulun Buir Sandy Land (HL), and Songnen Sandy Land (SN), and six samples from the last glacial loess in the Harbin area were collected for elemental geochemical analysis of the <10 μm fraction to quantitatively reconstruct the dust pathway using a frequentist model. The results show that these sandy lands have a distinct geochemical composition due to a control from markedly different provenances. The quantitative results indicate that the dust contribution of the southwestern SN to the Harbin loess is as high as 50.4–77.2%, followed by the OD and HQ (3.3–34.8%), the northwestern SN (0–36.8%), and the HL (0–8%). Notably, the dust contribution to the Harbin loess began to change considerably after ~46–41 ka BP, with a significant increase from 1.1% to 41.2% from the northwestern direction. Some ecological safety strategies are proposed to address dust pollution in the Harbin area.
Prehistoric humans seem to have preferred inhabiting small river basins, which were closer in distance to most settlements compared to larger rivers. The Holocene landscape evolution is considered to have played a pivotal role in shaping the spatiotemporal patterns of these settlements. In this study, we conducted comprehensive research on the relationship between landscape evolution and settlement distribution within the Huangshui River basin, which is a representative small river in Central China with numerous early settlements, including a prehistoric city known as the Wangjinglou site (WJL). Using geoarchaeological investigations, optically stimulated luminescence dating, pollen analysis, and grain-size analysis, we analyzed the characteristics of the Holocene environment. The results indicate the presence of two distinct geomorphic systems, namely the red clay hills and the river valley. The red clay hills, formed in the Neogene, represent remnants of the Songshan piedmont alluvial fan that was eroded by rivers. There are three grades of terraces within the river valley. T3 is a strath terrace and formed around 8.0 ka. Both T2 and T1 are fill terraces, which were developed around 4.0 ka and during the historical period, respectively. The sedimentary features and pollen analysis indicate the existence of an ancient lake-swamp on the platform during 11.0–9.0 ka. This waterbody gradually shrank during 9.0–8.0 ka, and ultimately disappeared after 8.0 ka. Since then, the development of large-scale areas of water ceased on the higher geomorphic units. River floods also cannot reach the top of these high geomorphic units, where numerous prehistoric settlements are located, including the Xia–Shang cities of the WJL site. Our research demonstrates that landscape stability supported the long-term and sustainable development of ancient cultures and facilitated the establishment of the WJL ancient cities in the region.
Trioctahedral phyllosilicate minerals are widely distributed on the Earth’s surface, especially in soil. The mineral–water interfacial reaction of lizardite, chlorite and talc, with various structural properties (tetrahedral sheet, octahedral sheet, 1:1-type and 2:1-type interlayer domain/two-dimensional structural units), was carried out in sulfuric acid solution (1 mol L–1). The mineral samples were characterized by powder X-ray diffraction, Fourier-transform infrared spectroscopy, scanning and transmission electron microscopy and inductively coupled plasma mass spectrometry. The dissolution concentration, dissolution rate, dissolution rules and structural changes of the components during the dissolution processes of the various two-dimensional structural units were studied. The results show that the dissolution concentrations of Si and Mg in the sulfuric acid solution decrease in the following order: chlorite > lizardite > talc and lizardite > chlorite > talc. The dissolution rates of Si in chlorite and Mg in lizardite are the greatest, while talc is the most stable compared with lizardite and chlorite. With increasing interfacial reaction time and the dissolution of the ionic components of the minerals, the structure of lizardite is gradually destroyed; the structural destruction of chlorite is more obvious during the early stages of the reaction; and the structure of talc does not significantly change over the course of the entire reaction. By analysing the microtopography of the minerals, it was found that the structural failure of lizardite occurred from the surface to the interior. Chlorite had more structural defects and showed collapse of the layered structure during structural failure. The surface layer of talc decomposed by corrosion into a small lamellae structure attached to the surface, but there was no obvious structural change similar to those of lizardite and chlorite. The relationship between the evolution of composition and structure during the mineral–water interfacial reaction process with the two-dimensional structure layer type provides the mineralogical basis for studying the coupling mechanism of the migration and transformation of materials in key regions of the Earth.
Working memory deficit, a key feature of schizophrenia, is a heritable trait shared with unaffected siblings. It can be attributed to dysregulation in transitions from one brain state to another.
Aims
Using network control theory, we evaluate if defective brain state transitions underlie working memory deficits in schizophrenia.
Method
We examined average and modal controllability of the brain's functional connectome in 161 patients with schizophrenia, 37 unaffected siblings and 96 healthy controls during a two-back task. We use one-way analysis of variance to detect the regions with group differences, and correlated aberrant controllability to task performance and clinical characteristics. Regions affected in both unaffected siblings and patients were selected for gene and functional annotation analysis.
Results
Both average and modal controllability during the two-back task are reduced in patients compared to healthy controls and siblings, indicating a disruption in both proximal and distal state transitions. Among patients, reduced average controllability was prominent in auditory, visual and sensorimotor networks. Reduced modal controllability was prominent in default mode, frontoparietal and salience networks. Lower modal controllability in the affected networks correlated with worse task performance and higher antipsychotic dose in schizophrenia (uncorrected). Both siblings and patients had reduced average controllability in the paracentral lobule and Rolandic operculum. Subsequent out-of-sample gene analysis revealed that these two regions had preferential expression of genes relevant to bioenergetic pathways (calmodulin binding and insulin secretion).
Conclusions
Aberrant control of brain state transitions during task execution marks working memory deficits in patients and their siblings.
Modern fluvial sediments provide important information about source-to-sink process and regional tectono-magmatic events in the source area, but many factors, e.g., chemical weathering, sedimentary cycles and source-rock types, can interfere with the establishment of the source-sink system. The Lalin River (LR) and the Jilin Songhua River (JSR) are two important tributaries of the Songhua River in the Songnen Plain in NE China. They have similar flow direction, topography and identical climate backgrounds, but have notably different parent-rock types in the headwater, which provides an opportunity to explore the influencing factors of river sediment composition. To this end, the point bar sediments in the two rivers were sampled for an analysis of geochemistry (including element and Sr-Nd isotopic ratios), heavy mineral and detrital zircon U-Pb dating. The results are indicative of the fact that the two rivers have the similar geochemical composition (e.g., elements and Sr isotopes) as well as chemical weathering (CIA = 51.41–57.60, CIW = 59.68–66.11, PIA = 51.95–60.23, WIP = 56.00–65.47, Rb/Sr = 0.38–0.42) and recycling (SiO2/Al2O3 = 5.79 and 5.03, ICV = 1.0 and 1.2, CIA/WIP = 0.81–1.03) characteristics, showing a major control of climate on the low-level weathering and recycling of the river sediments. However, there are significant differences in the detrital zircon U-Pb age (a significant Mesozoic age peak for the LR but an additional Precambrian peak for the JSR), Nd isotope ratio (−6.2812–8.5830 and −8.1149–10.2411 for the LR and the JSR, respectively) and to a certain extent heavy mineral composition (e.g., for the < 63 μm fraction, a dominance of hornblende and magnetite in the LR, but haematite-limonite in the JSR) in the two river sediments, indicating that source rocks largely control the composition of the river sediments. Some of the major tectono-magmatic events (e.g., crustal growth and cratonisation of the North China Craton, closure of the Paleo-Asian Ocean, subduction and rollback of the Paleo-Pacific plate) occurring in the eastern Songnen Plain are well documented in the JSR sediments but not in the LR, the difference of which is largely regulated by the source rocks in the source area.
A multifunctional optical diagnostic system, which includes an interferometer, a refractometer and a multi-frame shadowgraph, has been developed at the Shenguang-II upgrade laser facility to characterize underdense plasmas in experiments of the double-cone ignition scheme of inertial confinement fusion. The system employs a 266 nm laser as the probe to minimize the refraction effect and allows for flexible switching among three modes of the interferometer, refractometer and multi-frame shadowgraph. The multifunctional module comprises a pair of beam splitters that attenuate the laser, shield stray light and configure the multi-frame and interferometric modules. By adjusting the distance and angle between the beam splitters, the system can be easily adjusted and switched between the modes. Diagnostic results demonstrate that the interferometer can reconstruct electron density below 1019 cm–3, while the refractometer can diagnose density approximately up to 1020 cm–3. The multi-frame shadowgraph is used to qualitatively characterize the temporal evolution of plasmas in the cases in which the interferometer and refractometer become ineffective.
Our study aimed to develop and validate a nomogram to assess talaromycosis risk in hospitalized HIV-positive patients. Prediction models were built using data from a multicentre retrospective cohort study in China. On the basis of the inclusion and exclusion criteria, we collected data from 1564 hospitalized HIV-positive patients in four hospitals from 2010 to 2019. Inpatients were randomly assigned to the training or validation group at a 7:3 ratio. To identify the potential risk factors for talaromycosis in HIV-infected patients, univariate and multivariate logistic regression analyses were conducted. Through multivariate logistic regression, we determined ten variables that were independent risk factors for talaromycosis in HIV-infected individuals. A nomogram was developed following the findings of the multivariate logistic regression analysis. For user convenience, a web-based nomogram calculator was also created. The nomogram demonstrated excellent discrimination in both the training and validation groups [area under the ROC curve (AUC) = 0.883 vs. 0.889] and good calibration. The results of the clinical impact curve (CIC) analysis and decision curve analysis (DCA) confirmed the clinical utility of the model. Clinicians will benefit from this simple, practical, and quantitative strategy to predict talaromycosis risk in HIV-infected patients and can implement appropriate interventions accordingly.
We demonstrated a method to improve the output performance of a Ti:sapphire laser in the long-wavelength low-gain region with an efficient stimulated Raman scattering process. By shifting the wavelength of the high-gain-band Ti:sapphire laser to the long-wavelength low-gain region, high-performance Stokes operation was achieved in the original long-wavelength low-gain region of the Ti:sapphire laser. With the fundamental wavelength tuning from 870 to 930 nm, first-order Stokes output exceeding 2.5 W was obtained at 930–1000 nm, which was significantly higher than that directly generated by the Ti:sapphire laser, accompanied by better beam quality, shorter pulse duration and narrower linewidth. Under the pump power of 42.1 W, a maximum first-order Stokes power of 3.24 W was obtained at 960 nm, with a conversion efficiency of 7.7%. Furthermore, self-mode-locked modulations of first- and second-order Stokes generation were observed in Ti:sapphire intracavity solid Raman lasers for the first time.
In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients poses a challenge to reaching a unified conclusion.
Methods
To address this variability, our study adopts a novel framework to parse individualized ALFF abnormalities. We hypothesize that individualized ALFF abnormalities can be portrayed as a unique linear combination of shared differential factors. Our study involved two large multi-center datasets, comprising 2424 patients with MDD and 2183 healthy controls. In patients, individualized ALFF abnormalities were derived through normative modeling and further deconstructed into differential factors using non-negative matrix factorization.
Results
Two positive and two negative factors were identified. These factors were closely linked to clinical characteristics and explained group-level ALFF abnormalities in the two datasets. Moreover, these factors exhibited distinct associations with the distribution of neurotransmitter receptors/transporters, transcriptional profiles of inflammation-related genes, and connectome-informed epicenters, underscoring their neurobiological relevance. Additionally, factor compositions facilitated the identification of four distinct depressive subtypes, each characterized by unique abnormal ALFF patterns and clinical features. Importantly, these findings were successfully replicated in another dataset with different acquisition equipment, protocols, preprocessing strategies, and medication statuses, validating their robustness and generalizability.
Conclusions
This research identifies shared differential factors underlying individual spontaneous neural activity abnormalities in MDD and contributes novel insights into the heterogeneity of spontaneous neural activity abnormalities in MDD.
Exercise-based cardiac rehabilitation is effective in improving cardiovascular disease risk factor management, cardiopulmonary function, and quality of life. However, the precise mechanisms underlying exercise-induced cardioprotection remain elusive. Recent studies have shed light on the beneficial functions of noncoding RNAs in either exercise or illness models, but only a limited number of noncoding RNAs have been studied in both contexts. Hence, the present study aimed to elucidate the pathophysiological implications and molecular mechanisms underlying the association among exercise, noncoding RNAs, and cardiovascular diseases. Additionally, the present study analysed the most effective and personalized exercise prescription, serving as a valuable reference for guiding the clinical implementation of cardiac rehabilitation in patients with cardiovascular diseases.
This study investigates the molecular intricacies of the transmembrane protein TSP11 gene in Echinococcus strains isolated from livestock and patients in Yunnan Province afflicted with Echinococcus granulosus (E. granulosus) between 2016 and 2020. Gene typing analysis of the ND1 gene revealed the presence of the G1 type, G5 type and untyped strains, constituting 52.4, 38.1 and 9.5%, respectively. The analysis of 42 DNA sequences has revealed 24 novel single nucleotide polymorphic sites, delineating 11 haplotypes, all of which were of the mutant type. Importantly, there were no variations observed in mutation sites or haplotypes in any of the hosts. The total length of the TSP11 gene's 4 exons is 762 bp, encoding 254 amino acids. Our analysis posits the existence of 6 potential B-cell antigenic epitopes within TSP11, specifically at positions 49-KSN-51, 139-GKRG-142, 162-DNG-164, 169-NGS-171, 185-DS-186 and 231-PPRFTN-236. Notably, these epitopes exhibit consistent presence among various intermediate hosts and haplotypes. However, further validation is imperative to ascertain their viability as diagnostic antigens for E. granulosus in the Yunnan Province.
Choline and betaine are important in the body, from cell membrane components to methyl donors. We aimed to investigate trends in dietary intake and food sources of total choline, individual choline forms and betaine in Chinese adults using data from the China Health and Nutrition Survey (CHNS) 1991–2011, a prospective cohort with a multistage, random cluster design. Dietary intake was estimated using three consecutive 24-h dietary recalls in combination with a household food inventory. Linear mixed-effect models were constructed using R software. A total of 11 188 men and 12 279 women aged 18 years or older were included. Between 1991 and 2011, total choline intake increased from 219·3 (95 % CI 215·1, 223·4) mg/d to 269·0 (95 % CI 265·6, 272·5) mg/d in men and from 195·6 (95 % CI 191·8, 199·4) mg/d to 240·4 (95 % CI 237·4, 243·5) mg/d in women (both P-trends < 0·001). Phosphatidylcholine was the major form of dietary choline, and its contribution to total choline increased from 46·9 % in 1991 to 58·8 % in 2011. Cereals were the primary food source of total choline before 2000, while eggs had ranked at the top since 2004. Dietary betaine intake was relatively steady over time with a range of 134·0–151·5 mg/d in men (P-trend < 0·001) and 111·7–125·3 mg/d in women (P-trend > 0·05). Chinese adults experienced a significant increase in dietary intake of choline, particularly phosphatidylcholine during 1991–2011 and animal-derived foods have replaced plant-based foods as the main food sources of choline. Betaine intake remained relatively stable over time. Future efforts should address the health effects of these changes.
This study aimed to explore the combined association between the dietary antioxidant quality score (DAQS) and leisure-time physical activity on sleep patterns in cancer survivors. Data of cancer survivors were extracted from the National Health and Nutrition Examination Surveys database in 2007–2014 in this cross-sectional study. Weighted multivariable logistic regression models were used to estimate OR and 95 % CI for the association of DAQS and leisure-time physical activity on sleep patterns. The combined association was also assessed in subgroups of participants based on age and use of painkillers and antidepressants. Among the eligible participants, 1133 had unhealthy sleep patterns. After adjusting for covariates, compared with low DAQS level combined with leisure-time physical activity level < 600 MET·min/week, high DAQS level combined with leisure-time physical activity ≥ 600 MET·min/week was associated with lower odds of unhealthy sleep patterns (OR = 0·41, 95 % CI: 0·23, 0·72). Additionally, the association of high DAQS level combined with high leisure-time physical activity with low odds of unhealthy sleep patterns was also significant in < 65 years old (OR = 0·30, 95 % CI: 0·13, 0·70), non-painkiller (OR = 0·39, 95 % CI: 0·22, 0·71), non-antidepressant (OR = 0·49, 95 % CI: 0·26, 0·91) and antidepressant (OR = 0·11, 95 % CI: 0·02, 0·50) subgroups. DAQS and leisure-time physical activity had a combined association on sleep patterns in cancer survivors. However, the causal associations of dietary nutrient intake and physical activity with sleep patterns in cancer survivors need further clarification.
This study presents observations of coherent modes (CMs) in a spherical tokamak using a microwave interferometer near the midplane. The CMs within the 30–60 kHz frequency range were observed during electron cyclotron resonance heating only, and the frequency of the CMs increased proportionally with the square root of the electron temperature near $R = 0.7m$. Generally, these modes displayed bursting and chirping signatures with strong density rise and fall. Their appearance indicated an increase in the intensity of hard x rays, suggesting a deterioration in energetic electron confinement. Furthermore, the effect of CMs on the intensity of energetic electron-driven whistler waves was observed. They decreased when CMs were present and gradually increased with the decrease in CM intensity. The CMs may influence the intensity of whistler waves by affecting the energetic electron confinement.
Extracellular polymeric substances (EPS) are high molecular weight polymers that microorganisms secrete into their extracellular environment. EPS serves as the carrier of the structural integrity of microbial biofilms, determining the physicochemical properties and the functional complexity of biofilms. EPS creates an ideal environment for interfacial reactions and nutrient trapping around microbial cells, while also acting as a buffer zone against environmental stresses. EPS in soil can contribute to soil health through its own properties such as adhesion, hygroscopicity and complexing ability. Here, we first introduce the concept, components, properties and controlled factors of EPS in the soil environment, and outline current advances in extraction methods and characterization techniques for soil EPS. EPS form a dynamic biophysical-chemical interface between microbes and the soil matrix. We explore the role of EPS in the colonization and survival of microorganisms, aggregation and weathering of soil minerals, and cross-linking with soil organic matter. We then summarize the soil ecological functions of microbial EPS: 1) promoting aggregate formation and stabilization; 2) enhancing water retention and holding capacity; 3) mediating nutrient storage and trapping; and 4) regulating contaminant sequestration and transformation. Finally, we propose several future research interests for microbial EPS in soil, thereby calling for more attention and research on microbial EPS and its functions in soil ecosystems, and exploring their potential applications in the development of environment-friendly agriculture.
Childhood maltreatment is a well-established transdiagnostic risk factor for suicidal ideation; however, previous studies on their association in schizophrenia have produced highly varied results. Moreover, the mechanism linking childhood maltreatment and suicide ideation remains unclear in schizophrenia.
Aims
This cross-sectional study aimed to investigate the association between childhood maltreatment and suicide ideation in people with schizophrenia and tested whether insomnia mediated this relationship.
Method
Positive and Negative Syndrome Scale (PANSS), Insomnia Severity Index (ISI), Childhood Trauma Questionnaire – Short Form and Beck Suicidal Ideation Inventory were employed. Logistic regression and mediation analysis were performed.
Results
(a) The prevalence of suicide ideation, insomnia, sexual abuse, emotional neglect, emotional abuse, physical abuse and physical neglect was 10% (n = 61), 18% (n = 111), 11% (n = 68), 25% (n = 153), 6.3% (n = 39), 17% (n = 106) and 39% (n = 239), respectively. In all, 52% (n = 320) reported childhood maltreatment; (b) patients with suicide ideation demonstrated higher insomnia and childhood maltreatment. PANSS depression factor, ISI, lifetime suicidal attempts and emotional abuse were independently associated with suicide ideation; (c) insomnia partially mediated the effects of emotional abuse and emotional neglect on suicide ideation, and insomnia completely mediated the effects of physical neglect and physical abuse on suicide ideation.
Conclusion
Our study calls for formal assessments for childhood maltreatment and insomnia in schizophrenia, which might help identify suicide ideation early. In addition, interventions targeting insomnia might help reduce suicide ideation among people with schizophrenia who experience childhood maltreatment.
The assessment of seed quality and physiological potential is essential in seed production and crop breeding. In the process of rapid detection of seed viability using tetrazolium (TZ) staining, it is necessary to spend a lot of labour and material resources to explore the pretreatment and staining methods of hard and solid seeds with physical barriers. This study explores the TZ staining methods of six hard seeds (Tilia miqueliana, Tilia henryana, Sassafras tzumu, Prunus subhirtella, Prunus sibirica, and Juglans mandshurica) and summarizes the TZ staining conditions required for hard seeds by combining the difference in fat content between seeds and the kinship between species, thus providing a rapid viability test method for the protection of germplasm resources of endangered plants and the optimization of seed bank construction. The TZ staining of six species of hard seeds requires a staining temperature above 35 °C and a TZ solution concentration higher than 1%. Endospermic seeds require shorter staining times than exalbuminous seeds. The higher the fat content of the seeds, the lower the required incubation temperature and TZ concentration for staining, and the longer the staining time. And the closer the relationship between the two species, the more similar their staining conditions become. The TZ staining method of similar species can be predicted according to the genetic distance between the phylogenetic trees, and the viability of new species can be detected quickly.