Defining habitat selection features and predicting the distribution of species are important for conservation management, and habitat suitability models can provide the statistical framework linking environmental variables to occurrence locations. However, the reliability of such models is restricted for datasets that have limited presence data, which is problematic when population size is low and population dynamics are transient, such as in reintroductions. We characterized and projected nest-site suitability for a black vulture Aegypius monachus population reintroduced in the Grands Causses, France. We performed temporal validations with subsample datasets based on chronological establishment, to assess whether first nests are able to predict subsequent nests. We compared these results to a spatial validation to ensure robustness. Predictions were reliable even with only 10 nest locations. The black vultures reintroduced in the Grands Causses selected pine trees and steep slopes, similar to natural populations elsewhere in Europe. Although our projections were made from only a small number of founders, they are conservative and indicate that a large area in this region is available for nesting and thus availability of breeding habitat is not currently a limiting factor for the species. Our findings will aid the modelling of habitat suitability for further reintroductions. We propose conservation management strategies for this region that integrate socio-economic constraints with the prediction of sites suitable for nesting. Where habitat is the most suitable for black vultures, logging and human activities need to be reduced during the critical breeding stages.