We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Although disconnectivity among brain regions has been one of the main hypotheses for schizophrenia, the superficial white matter (SWM) has received less attention in schizophrenia research than the deep white matter (DWM) owing to the challenge of consistent reconstruction across subjects.
Methods:
We obtained the diffusion magnetic resonance imaging (dMRI) data of 223 healthy controls and 143 patients with schizophrenia. After harmonising the raw dMRIs from three different studies, we performed whole-brain two-tensor tractography and fibre clustering on the tractography data. We compared the fractional anisotropy (FA) of white matter tracts between healthy controls and patients with schizophrenia. Spearman’s rho was adopted for the associations with clinical symptoms measured by the Positive and Negative Syndrome Scale (PANSS). The Bonferroni correction was used to adjust multiple testing.
Results:
Among the 33 DWM and 8 SWM tracts, patients with schizophrenia had a lower FA in 14 DWM and 4 SWM tracts than healthy controls, with small effect sizes. In the patient group, the FA deviations of the corticospinal and superficial–occipital tracts were negatively correlated with the PANSS negative score; however, this correlation was not evident after adjusting for multiple testing.
Conclusion:
We observed the structural impairments of both the DWM and SWM tracts in patients with schizophrenia. The SWM could be a potential target of interest in future research on neural biomarkers for schizophrenia.
The topographical effect on a strong wind event that occurred on 7 January 2013 at King Sejong Station (KSJ), Antarctica, was investigated using the Polar Weather Research and Forecasting (WRF) model. Numerical experiments applying three different terrain heights of the Antarctic Peninsula (AP) were performed to quantitatively estimate the topographical effect on the selected strong wind event. The experiment employing original AP topography successfully represented the observed features in the strong wind event, both in terms of peak wind speed (by ~94%; ~19.7 m/s) and abrupt transitions of wind speed. In contrast, the experiment with a flattened terrain height significantly underestimated the peak wind speeds (by ~51%; ~10.4 m/s) of the observations. An absence of AP topography failed to simulate both a strong discontinuity of sea-level pressure fields around the east coast of the AP and a strong south-easterly wind over the AP. As a result, the observed downslope windstorm, driven by a flow overriding a barrier, was not formed at the western side of the AP, resulting in no further enhancement of the wind at KSJ. This result demonstrates that the topography of the AP played a critical role in driving the strong wind event at KSJ on 7 January 2013, accounting for ~50% of the total wind speed.
Yarn-type supercapacitors should have high energy density in small given spaces, and the one attempt among many is to comprise the electrodes asymmetrically. However, the low capacitance of conventional materials causes the widened operating voltage useless. In this study, we have utilized a novel material MXene with carbon nanotubes (CNTs) to make highly loaded MXene/CNT yarn electrodes, which exhibited a remarkable areal capacitance. With MnO2/CNT biscrolled cathode and PVA/LiCl gel electrolyte, the plied asymmetric yarn supercapacitor had energy density of 100 µWh/cm2. The yarn supercapacitor could operate under mechanical deformations without performance degradation.
It has not been well established whether dietary folate intake reduces the risk of diabetes development. We aimed to clarify the prospective association between dietary folate intake and type 2 diabetes (T2D) risk among 7333 Korean adults aged 40 years or older who were included in the Multi-Rural Communities Cohort. Dietary folate intake was estimated from all 106 food items listed on a FFQ, not including folate intake from supplements. Two different measurements of dietary folate intake were used: the baseline consumption and the average consumption from baseline until just before the end of follow-up. The association between folate intake and T2D risk was determined through a modified Poisson regression model with a robust error estimator controlling for potential confounders. For 29 745 person years, 319 cases of diabetes were ascertained. In multivariable analyses, dietary folate intake was inversely associated with risk of T2D for women, not for men. For women, the incidence rate ratio of diabetes in the third tertile compared with the first tertile was 0·57 (95 % CI 0·38–0·87, Pfor trend=0·0085) in the baseline consumption model and 0·64 (95 % CI 0·43–0·95, Pfor trend=0·0244) in the average consumption model. These inverse associations was found in both normal fasting blood glucose group and impaired fasting glucose group among women. Among non-users of multinutrients and vitamin supplements, the significant inverse association remained. Thus, higher dietary intake of folate is prospectively associated with lower risk of diabetes for women.
The diagnostic relevance of subjective memory complaints (SMCs) in mild cognitive impairment (MCI) remains to be unresolved. The aim of this study is to determine clinical correlates of SMCs in MCI. Furthermore, we examined whether there are the differences due to different aspects of complaints (i.e. prospective memory (PM) versus retrospective memory (RM) complaints).
Methods:
We examined the cross-sectional associations between SMCs and depressive symptoms, instrumental activities of daily living (IADL), and cognitive measures in sixty-six individuals with MCI (mean age: 65.7 ± 8.01 years). The criteria for MCI included SMCs, objective cognitive impairment, normal general cognitive function, largely intact functional activities, and absence of dementia. SMCs were assessed using the Prospective and Retrospective Memory Questionnaire (PRMQ), which contains 16 items describing everyday memory failure of both PM and RM.
Results:
SMC severity (i.e. PRMQ total score) was associated with stronger depressive symptoms and worse IADL performance. SMCs were not related to cognitive measures. For PM and RM subscores, both depressive symptoms and IADL were related to the PRMQ-PM and -RM scores. The main contributors to these PM and RM scores were depressive symptoms and IADL impairment, respectively.
Conclusions:
This study suggests that SMCs are more associated with depressive symptoms and IADL problems than with cognitive performance in individuals with MCI. Furthermore, while PM and RM complaints are related to both depressive symptoms and IADL, the differences between these main contributors suggest that RM complaints based on IADL could be more associated with the organically driven pathological features of MCI.
We report on the formation of highly flexible and transparent TiO2/Ag/ITO multilayer films deposited on polyethylene terephthalate substrates. The optical and electrical properties of the multilayer films were investigated as a function of oxide thickness. The transmission window gradually shifted toward lower energies with increasing oxide thickness. The TiO2 (40 nm)/Ag (18 nm)/ITO (40 nm) films gave the transmittance of 93.1% at 560 nm. The relationship between transmittance and oxide thickness was simulated using the scattering matrix method to understand high transmittance. As the oxide thickness increased from 20 to 50 nm, the carrier concentration gradually decreased from 1.08 × 1022 to 6.66 × 1021 cm−3, while the sheet resistance varied from 5.8 to 6.1 Ω/sq. Haacke's figure of merit reached a maximum at 40 nm and then decreased with increasing oxide thickness. The change in resistance for the 60 nm-thick ITO single film rapidly increased with increasing bending cycles, while that of the TiO2/Ag/ITO (40 nm/18 nm/40 nm) film remained virtually unchanged during the bending test.
few studies have addressed the association between the characteristics of ischemic lesions detected by diffusion-weighted imaging (dWi) and the clinical outcome in patients with hyperacute posterior circulation ischemic stroke. this study demonstrates a relationship between the findings assessed by dWi and the outcome in patients with hyperacute posterior circulation ischemic stroke.
Methods:
We reviewed data from 118 patients who had posterior circulation ischemic stroke within six hours from the onset of their symptoms. the clinical outcome included early neurological deterioration (end) and a favorable outcome at three months after the onset of symptoms. using dWi, the lesion volume and the number and location of injured anatomical regions were analyzed to evaluate whether the results correlated with the clinical outcome measures.
Results:
the number of injured anatomical regions assessed by dWi was associated with the initial and delayed neurological status. Both the total volume and the number of injured anatomical regions associated with end and a favorable outcome. analysis of the location of the injured regions determined that only a pontine lesion independently associated with end. interestingly, four out of five patients who underwent decompressive craniectomy exhibited a large infarction volume but minor symptoms.
Conclusions:
in patients with hyperacute posterior circulation ischemic strokes, the lesions assessed by dWi were associated with the clinical outcome, regardless of the initial neurological status. dWi is an effective initial imaging tool for assessing the extent of lesions and clinical outcomes in patients with hyperacute posterior circulation ischemic stroke.
This study examined changes in health-related quality of life (HRQoL) and quality of care (QoC) as perceived by terminally ill cancer patients and a stratified set of HRQoL or QoC factors that are most likely to influence survival at the end of life (EoL).
Method:
We administered questionnaires to 619 consecutive patients immediately after they were diagnosed with terminal cancer by physicians at 11 university hospitals and at the National Cancer Center in Korea. Subjects were followed up over 161.2 person-years until their deaths. We measured HRQoL using the core 30-item European Organization for Research and Treatment of Cancer Quality of Life Questionnaire, and QoC using the Quality Care Questionnaire–End of Life (QCQ–EoL). We evaluated changes in HRQoL and QoC issues during the first three months after enrollment, performing sensitivity analysis by using data generated via four methods (complete case analysis, available case analysis, the last observation carried forward, and multiple imputation).
Results:
Emotional and cognitive functioning decreased significantly over time, while dyspnea, constipation, and pain increased significantly. Dignity-conserving care, care by healthcare professionals, family relationships, and QCQ–EoL total score decreased significantly. Global QoL, appetite loss, and Eastern Cooperative Oncology Group Performance Status (ECOG–PS) scores were significantly associated with survival.
Significance of results:
Future standardization of palliative care should be focused on assessment of these deteriorated types of quality. Accurate estimates of the length of life remaining for terminally ill cancer patients by such EoL-enhancing factors as global QoL, appetite loss, and ECOG–PS are needed to help patients experience a dignified and comfortable death.
Blackberry is a fruiting berry species with very high nutrient contents. With the recent increasing consumer demand for blackberries, new sources of germplasm and breeding techniques are required to improve blackberry production. This study was carried out to evaluate the genetic diversity (GD) and relationship among 55 blackberry (Rubus fruticosus) mutants derived from γ-ray treatment (52 lines) and N-methyl-N′-nitrosourea (MNU) treatment (three lines) using an inter-simple sequence repeat marker. A total of 18 bands were amplified with an average of 3.6 bands per primer. Among them, eight bands were identified to be polymorphic with a rate of 44.4%. In addition, the GD information content values were highest in the 60 Gy treatment population and the GD values were higher in the γ-ray treatment populations than in the MNU treatment population. According to a cluster analysis, all the mutant lines can be classified into five categories, and the genetic distance was greatest between the 80 Gy-irradiated population and other populations. These results indicate that mutant lines have high GD and can be effectively utilized for improving blackberry breeding.
Mutation breeding techniques have been used to induce new genetic variations and improve agronomic traits in soybean. In Korea, the Korea Atomic Energy Research Institute (KAERI) has unique radiation facilities to induce plant mutations and has been conducting soybean mutation breeding programmes since the mid-1960s. Until now, the KAERI has developed five soybean mutant cultivars exhibiting early maturity, high yield and seed-coat colour change. In this paper, we review these five mutant cultivars in terms of how to successfully induce unique agronomic characteristics through mutation breeding programmes. A number of induced mutants exhibiting null lipoxygenase enzymes, altered protein patterns or Kunitz trypsin inhibitor activity could serve as genetic resources for the genetic analysis of target genes, and one mutant population has been developed for a reverse genetic study.
Liquorice is one of the botanicals used frequently as a traditional medicine in the West and in the East. Platelet-derived growth factor (PDGF)-BB is involved in the development of CVD by inducing abnormal proliferation and migration of vascular smooth muscle cells. In our preliminary study, dehydroglyasperin C (DGC), an active compound of liquorice, showed strong antioxidant activity. Since phytochemicals with antioxidant activities showed beneficial effects on chronic inflammatory diseases, the present study aimed to investigate the effects of DGC on PDGF-induced proliferation and migration of human aortic smooth muscle cells (HASMC). Treatment of HASMC with DGC for 24 h significantly decreased PDGF-induced cell number and DNA synthesis in a dose-dependent manner without any cytotoxicity, as demonstrated by the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide test and thymidine incorporation. Upon cell cycle analysis, DGC blocked the PDGF-induced progression through the G0/G1 to S phase of the cell cycle, and down-regulated the expression of cyclin-dependent kinase (CDK); 2, cyclin E, CDK4 and cyclin D1. Furthermore, DGC significantly attenuated PDGF-stimulated phosphorylation of PDGF receptor-β, phospholipase C-γ1, AKT and extracellular-regulated kinase 1/2, and DGC inhibited cell migration and the dissociation of actin filaments by PDGF. In a rat vascular balloon injury model, DGC suppressed an excessive reduction in luminal diameters and neointimal formation compared with the control group. These results demonstrate the mechanistic basis for the prevention of CVD and the potential therapeutic properties of DGC.
The electroluminescent characteristics of blue organic light-emitting diodes(BOLEDs) were fabricated with single emitting layer using host-dopant system and doped charge carrier transport layers. The structure of the high efficiency BOLED device was; NPB(600Å)/NPB:BCzVBi-7%(100Å)/ADN:BCzVBi-7%(300Å)/BAlq:BCzVBi-7%(100Å)/BAlq(200Å)/Liq(20Å)/Al(1200Å) to optimize probability of exciton generation by doping BCzVBi in emitting layer and hole/electron transport layers(HTL/ETL) as well. Luminance and luminous efficiency of BOLED doped BCzVBi in EML and HTL/ETL improved from 10090 cd/m2 at 9.5V and 6.44 cd/A at 4.0V to 13190 cd/m2 at 9.5V and 7.64 cd/A at 4.0V about 30% and 18%, respectively, with CIE coordinates of (0.14, 0.17) comparing to BOLED doped BCzVBi in EML only
In this study, we fabricated blue OLEDs with quantum well structure (QWS) using four different blue emissive materials such as DPVBi, ADN and DPASN, and BAlq as QWS material. Conventional QWS blue OLEDs used to be composed of emissive layer and charge blocking layer with lower HOMO-LUMO energy level, but we designed triple emitting layer for more significant hole-electron recombination in EML and a wider region of exciton generation as forming QWS spontaneously. The structure of triple emitting layered blue OLED is ITO / NPB(700 Å) / X(100 Å) / BAlq(100 Å) /X (100 Å) / Bphen(300 Å) / Liq(20 Å) / Al(1200 Å) (X= DPVBi, ADN, DPASN). HOMO-LUMO energy levels of DPVBi, ADN, DPASN and BAlq were 2.8-5.9, 2.6-5.6, 2.3-5.2 and 2.9-5.9 eV, respectively. The maximum luminous efficiency was 5.32 cd/A at 3.5 V in a blue OLED with DPASN / BAlq / DPASN QWS.
Platinum (Pt) nanoparticles were synthesized on tin dioxide (SnO2) nanowires by applying γ-ray radiolysis. The growth behavior of Pt nanoparticles was systematically investigated as a function of precursor concentration, illumination intensity and exposure time of the γ-rays. We found that these processing parameters greatly influenced the growth behavior of Pt nanoparticles in terms of size and formation density. Vapor-phase-grown SnO2 nanowires were uniformly covered with Pt nanoparticles by the radiolysis process. The Pt nanoparticle-functionalized SnO2 nanowires were tested as sensors for detecting reductive gases including carbon monoxide, toluene, and benzene. The results indicate that the γ-ray radiolysis is an efficient way of functionalizing the surface of oxide nanowires with catalytic Pt nanoparticles.
We report the microstructures and dielectric properties of Ca1-xSrxCu3Ti4O12 (C1-xSxCTO, 0≤x≤1) ceramics sintered at the various sintering temperatures ranging from 1000 to 1060˚C in air. The linear increase in lattice parameter in C1-xSxCTO (0≤x≤1) ceramics is observable for the full range of substitution. However, the second phases of SrTiO3 and CuO start to occur from the composition of x=0.8, implying that a stoichiometric SrCu3Ti4O12 (SCTO) compound may not exist. While the C0.6S0.4CTO and C0.4S0.6CTiO samples exhibit relatively lower dielectric constant (εr) of ∼40,000 below 1 kHz, the CaCu3Ti4O12 (CCTO) and SCTO show the extremely high εr values of ~120,000 and ∼180,000, respectively. Complex impedance (Z*) and modulus (M*) spectroscopy revealed that the capacitance (C) and resistivity (ρ) values of grain boundary in all samples are much higher than those of grains.
Glyceollins, one family of phytoalexins, are de novo synthesised from daidzein in the soyabean upon exposure to some types of fungus. The efficiency of glyceollin production appears to be influenced by soyabean variety, fungal species, and the degree of physical damage to the soyabean. The compounds have been shown to have strong antioxidant and anti-inflammatory activities, and to inhibit the proliferation and migration of human aortic smooth muscle cells, suggesting their potential to prevent atherosclerosis. It has also been reported that glyceollins have inhibited the growth of prostate and breast cancer cells in xenograft animal models, which is probably due to their anti-oestrogenic activity. In essence, glyceollins deserve further animal and clinical studies to confirm their health benefits.