We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Endozoochory, the dispersal of seeds through the animal gut passage, plays a significant role in vegetation dynamics. The success of endozoochorous seed dispersal depends on each stage of the process: ingestion by animals, gut passage, and post-dispersal events after defecation. After the deposition of seeds through feces, the effects of feces on the initial stages of seedling establishment, including seed germination and seedling growth, can significantly impact overall survival. The pattern of fecal effects on plant species depends on the animal species. In this study, we investigated the effects of feces presence on seed germination and early seedling growth using feces of the Korean water deer (Hydropotes inermis argyropus). We conducted a germination experiment on 12 plant species belonging to 10 plant families, which are known to germinate in the feces of Korean water deer. The study compared the seed germination rate and seedling length after germination between seeds sown with and without feces of the Korean water deer. In general, we found that the presence of deer feces per se had no significant effects on seed germination and early growth stages. However, additional research on post-dispersal events such as long-term growth, fecal type, and germination conditions is needed to fully understand the costs and benefits of endozoochory.
Klotho is a protein that plays different functions in female fertility. We have previously reported that klotho protein supplementation during in vitro maturation improves porcine embryo development, while klotho knockout for somatic cell cloning completely blocks full-term pregnancy in vivo. However, the effects of the microinjection of klotho protein or klotho knockdown dual vector in porcine embryos at different time points and the specific molecular mechanisms remain largely unknown. In this study, we injected the preassembled cas9 + sgRNA dual vector, for klotho knockdown, into the cytoplasm of the germinal vesicle stage of oocytes and into porcine embryos after 6-h parthenogenetic activation. Similarly, the klotho protein was inserted into the cytoplasm of germinal vesicle stage oocytes and porcine embryos after 6-h parthenogenetic activation. Compared with the controls, the microinjection of klotho dual vector markedly decreased the blastocyst formation rates in germinal vesicle stage oocytes and activated embryos. However, the efficiency of blastocyst formation when klotho protein was inserted before in vitro maturation was significantly higher than that after klotho protein insertion into parthenogenetically activated embryos. These results indicated that klotho knockdown may impair embryo development into blastocyst irrespective of injection timing. In addition, klotho protein injection timing in pig embryos may be an important factor for regulating embryo development.
In this observational study conducted in 2022, 12.3% of patients who shared a room with a patient positive for severe acute respiratory coronavirus virus 2 (SARS-CoV-2) also had a positive polymerase chain reaction (PCR) test, either at initial screening or during a 5-day quarantine. Therefore, screening and quarantine are still necessary within hospitals for close-contact inpatients during the SARS-CoV-2 omicron-variant dominant period.
This study investigated the effect of the flavonoid-based compound isorhamnetin (ISO) on maturation and developmental competence in oxidative stress-exposed porcine oocytes in vitro. Treatment with 2 μM ISO (2 ISO) increases the developmental rate of oxidative stress-exposed porcine oocytes during in vitro maturation (IVM). The glutathione level and mRNA expression of antioxidant-related genes (NFE2L2 and SOD2) were increased in the 2 ISO-treated group, whereas the reactive oxygen species level was decreased. Treatment with 2 ISO increased mRNA expression of a cumulus cell expansion-related gene (SHAS2) and improved chromosomal alignment. mRNA expression of maternal genes (CCNB1, MOS, BMP15 and GDF9) and mitogen activated protein kinase (MAPK) activity were increased in the 2 ISO-treated group. The total cell number per blastocyst and percentage of apoptotic cells were increased and decreased in the 2 ISO-treated group, respectively. Treatment with 2 ISO increased mRNA expression of development-related genes (SOX2, NANOG, and POU5F1) and anti-apoptotic genes (BCL2L1 and BIRC5) and decreased that of pro-apoptotic genes (CASP3 and FAS). These results demonstrate that 2 ISO improves the quality of porcine oocytes by protecting them against oxidative stress during IVM and enhances subsequent embryo development in vitro. Therefore, we propose that ISO is a useful supplement for IVM of porcine oocytes.
Our previous studies have already revealed that β-cryptoxanthin (BCX), hesperetin (HES), and icariin (ICA) antioxidants are effective for in vitro maturation (IVM) of porcine oocytes. In this study, we investigated which of BCX, HES, or ICA was more effective for IVM of porcine oocytes. The antioxidant properties were assessed with aged porcine oocytes and embryos by comparing 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH), reducing power, and H2O2 scavenging activity assays. The chemical assay results demonstrated that BCX had a greater DPPH scavenging activity and reducing power than HES and ICA, compared with controls. However, the H2O2 scavenging activity of the antioxidants was similar when tested at the optimal concentrations of 1 μM BCX (BCX-1), 100 μM HES (HES-100), and 5 μM ICA (ICA-5). The biological assay results showed that BCX-1 treatment was more effective in inducing a significant reduction in reactive oxygen species (ROS), improving glutathione levels, and increasing the expression of antioxidant genes. In addition, BCX-1 inhibited apoptosis by increasing the expression of anti-apoptotic genes and decreasing pro-apoptotic genes in porcine parthenogenetic blastocysts. BCX-1 also significantly increased the blastocyst formation rate compared with the ageing control group, HES-100 and ICA-5. This study demonstrates that damage from ROS produced during oocyte ageing can be prevented by supplementing antioxidants into the IVM medium, and BCX may be a potential candidate to improve assisted reproductive technologies.
Nosocomial transmission of COVID-19 among immunocompromised hosts can have a serious impact on COVID-19 severity, underlying disease progression and SARS-CoV-2 transmission to other patients and healthcare workers within hospitals. We experienced a nosocomial outbreak of COVID-19 in the setting of a daycare unit for paediatric and young adult cancer patients. Between 9 and 18 November 2020, 473 individuals (181 patients, 247 caregivers/siblings and 45 staff members) were exposed to the index case, who was a nursing staff. Among them, three patients and four caregivers were infected. Two 5-year-old cancer patients with COVID-19 were not severely ill, but a 25-year-old cancer patient showed prolonged shedding of SARS-CoV-2 RNA for at least 12 weeks, which probably infected his mother at home approximately 7–8 weeks after the initial diagnosis. Except for this case, no secondary transmission was observed from the confirmed cases in either the hospital or the community. To conclude, in the day care setting of immunocompromised children and young adults, the rate of in-hospital transmission of SARS-CoV-2 was 1.6% when applying the stringent policy of infection prevention and control, including universal mask application and rapid and extensive contact investigation. Severely immunocompromised children/young adults with COVID-19 would have to be carefully managed after the mandatory isolation period while keeping the possibility of prolonged shedding of live virus in mind.
Large herbivores can disperse seeds over long distances through endozoochory. The Korean water deer (Hydropotes inermis argyropus), an internationally vulnerable species but locally considered a vermin, is a potential endozoochorous seed dispersal vector. In this study, feeding experiments were conducted to test the efficiency of seed dispersal through gut ingestion by the Korean water deer, its temporal pattern and the effect of gut passage on seed recovery and germination rate. Eight plant species, including species that formerly germinated from its faeces, were used to feed three Korean water deer. Once the deer had consumed all the provided seeds, their faeces were collected after 24, 48, 72 and 96 h. The collected faeces were air-dried, and the number of seeds retrieved from the faeces was counted every 24 h (0–24, 24–48, 48–72 and 72–96 h). Among the eight plant species, six species were retrieved with intact seeds. Panicum bisulcatum had the highest recovery rate of 33.7%, followed by Amaranthus mangostanus (24.5%) and Chenopodium album (14.4%). Most of the seeds were recovered within the 24–48 h time interval. Germination tests were conducted on the ingested and uningested seeds for the four species which had a sufficient recovery rate. The effects of gut passage on seed germination differed according to plant species. The germination rate substantially decreased after gut passage. The results suggest that the Korean water deer can disperse seeds, potentially over long distances albeit at a high cost of low seed recovery and germination rate.
Mental illness among survivors of coronavirus disease 2019 (COVID-2019) during the post-illness period is an emerging and important health issue.
Aims
We aimed to investigate the prevalence of mental illness and the associated factors for its development among COVID-2019 survivors.
Method
From 1 January to 4 June 2020, data were extracted from the National Health Insurance Service COVID-19 database in South Korea. Patients with COVID-19 were defined as those whose test results indicated that they had contracted the infection, regardless of disease severity. COVID-19 survivors were defined as those who recovered from the infection. The primary end-point was the development of mental illness, which was evaluated between 1 January and 1 December 2020.
Results
A total 260 883 individuals were included in this study, and 2.36% (6148) were COVID-19 survivors. The COVID-19 survivors showed higher prevalence of mental illness than the control group (12.0% in the COVID-19 survivors v. 7.7% in the control group; odds ratio (OR) = 2.40, 95% CI 2.21–2.61, P < 0.001). Additionally, compared with the control group, the no specific treatment for COVID-19 group (OR = 2.23, 95% CI 2.03–2.45, P < 0.001) and specific treatment for COVID-19 group (OR = 3.27, 95% CI 2.77–3.87, P < 0.001) showed higher prevalence of mental illness among survivors.
Conclusions
In South Korea, COVID-19 survivors had a higher risk of developing mental illness compared with the rest of the populations. Moreover, this trend was more evident in COVID-19 survivors who experienced specific treatment in the hospital.
To propose a new anthropometric index that can be employed to better predict percent body fat (PBF) among young adults and to compare with current anthropometric indices.
Design:
Cross-sectional.
Setting:
All measurements were taken in a controlled laboratory setting in Seoul (South Korea), between 1 December 2015 and 30 June 2016.
Participants:
Eighty-seven young adults (18–35 years) who underwent dual-energy x-ray absorptiometry (DXA) were used for analysis. Multiple regression analyses were conducted to develop a body fat index (BFI) using simple demographic and anthropometric information. Correlations of DXA measured PBF (DXA_PBF) with previously developed anthropometric indices and the BFI were analysed. Receiver operating characteristic curve analyses were conducted to compare the ability of anthropometric indices to identify obese individuals.
Results:
BFI showed a strong correlation with DXA_PBF (r = 0·84), which was higher than the correlations of DXA_PBF with the traditional (waist circumference, r = 0·49; waist to height ratio, r = 0·68; BMI, r = 0·36) and alternate anthropometric indices (a body shape index, r = 0·47; body roundness index, r = 0·68; body adiposity index, r = 0·70). Moreover, the BFI showed higher accuracy at identifying obese individuals (area under the curve (AUC) = 0·91), compared with the other anthropometric indices (AUC = 0·71–0·86).
Conclusions:
The BFI can accurately predict DXA_PBF in young adults, using simple demographic and anthropometric information that are commonly available in research and clinical settings. However, larger representative studies are required to build on our findings.
The experiments reported in this research paper aimed to determine the effect of supplementing different forms of L-methionine (L-Met) and acetate on protein synthesis in immortalized bovine mammary epithelial cell line (MAC-T cells). Treatments were Control, L-Met, conjugated L-Met and acetate (CMA), and non-conjugated L-Met and Acetate (NMA). Protein synthesis mechanism was determined by omics method. NMA group had the highest protein content in the media and CSN2 mRNA expression levels (P < 0.05). The number of upregulated and downregulated proteins observed were 39 and 77 in L-Met group, 62 and 80 in CMA group and 50 and 81 in NMA group from 448 proteins, respectively (P < 0.05). L-Met, NMA and CMA treatments stimulated pathways related to protein and energy metabolism (P < 0.05). Metabolomic analysis also revealed that L-Met, CMA and NMA treatments resulted in increases of several metabolites (P < 0.05). In conclusion, NMA treatment increased protein concentration and expression level of CSN2 mRNA in MAC-T cells compared to control as well as L-Met and CMA treatments through increased expression of milk protein synthesis-related genes and production of the proteins and metabolites involved in energy and protein synthesis pathways.
Allicin (AL) regulates the cellular redox, proliferation, viability, and cell cycle of different cells against extracellular-derived stress. This study investigated the effects of allicin treatment on porcine oocyte maturation and developmental competence. Porcine oocytes were cultured in medium supplemented with 0 (control), 0.01, 0.1, 1, 10 or 100 μM AL, respectively, during in vitro maturation (IVM). The rate of polar body emission was higher in the 0.1 AL-treated group (74.5% ± 2.3%) than in the control (68.0% ± 2.6%) (P < 0.1). After parthenogenetic activation, the rates of cleavage and blastocyst formation were significantly higher in the 0.1 AL-treated group than in the control (P < 0.05). The reactive oxygen species level at metaphase II did not significantly differ among all groups. In matured oocytes, the expression of both BAK and CASP3, and BIRC5 was significantly lower and higher, respectively, in the 0.1 AL-treated group than in the control. Similarly, the expression of BMP15 and CCNB1, and the activity of phospho-p44/42 mitogen-activated protein kinase (MAPK), significantly increased. These results indicate that supplementation of oocyte maturation medium with allicin during IVM improves the maturation of oocytes and the subsequent developmental competence of porcine oocytes.
Perimesencephalic subarachnoid hemorrhage (PSH) is a relatively benign clinical entity with a low risk of recurrent bleeding. The precise etiology of PSH has not yet been determined. We report here three cases of PSH with clinical and radiological features that support a venous system as a cause.
Case Presentation:
The first patient, a 72-year-old woman, had PSH and venous hemorrhagic infarct in the left thalamus on non-contrast CT. Subsequent cerebral angiography revealed widespread thrombosis in the cerebral venous system, a potential cause for reflux overflow hemorrhage. The second patient, a 55-year-old man with an established diagnosis of neuro-Behçet's disease, a well-known cause for cerebral venulitis, presented with PSH one year later. The third patient, a 39-year-old female, with incomplete Behçet's disease was admitted with PSH.
Discussion:
Current concepts on the anatomic origin and the possible pathophysiologic mechanism leading to PSH are discussed. The underlying pathological conditions in the venous system in our cases provide theoretical clues to the anatomic origin of PSH in general.
Assessment of frontal lobe impairment in amyotrophic lateral sclerosis (ALS) is a matter of great importance, since it often causes ALS patients to decrease medication and nursing compliance, thus shortening their survival time.
Methods:
The frontal assessment battery (FAB) is a short and rapid method for assessing frontal executive functions. We investigated the applicability of the FAB as a screening method for assessing cognitive impairments in 61 ALS patients. Depending on the results of the FAB, we classified patients into two subgroups: FAB-normal and FAB-abnormal. We then performed additional evaluations of cognitive function using the Korean version of the mini-mental state examination (K-MMSE), a verbal fluency test (COWAT), and a neuropsychiatric inventory (NPI). Results of these tests were compared between the two groups using Mann-Whitney U-tests, and Spearman correlation analyses were used to investigate the relationships between FAB score and disease duration and severity.
Results:
Of the 61 sporadic ALS patients included in this study, 14 were classified as FAB-abnormal and 47 were classified as FAB-normal. The FAB-normal and FAB-abnormal patients performed significantly differently in all domains of the COWAT. There was no difference in behavioral disturbance, as assessed by the NPI, between the two groups. The FAB scores were found to significantly correlate with both disease duration and severity.
Conclusions:
The FAB shows promise as a method of screening for frontal lobe dysfunction in ALS, as it is not only quick and easy, but also reliable. Additional studies should examine how FAB performance changes as ALS progresses.
The incidence of restless legs syndrome (RLS) is presumed to be higher among people with schizophrenia who take antipsychotic medication, most of which blocks the dopamine D2 receptor. The purpose of this study was to determine whether the G-protein β3 subunit (GNB3) C825T polymorphism is associated with antipsychotic-induced RLS in schizophrenia.
Methods:
We examined 178 Korean patients with schizophrenia. All of the subjects were evaluated using the diagnostic criteria of the International Restless Legs Syndrome Study Group and the International Restless Legs Scale. Genotyping was performed for the C825T polymorphism in the GNB3 gene.
Results:
The genotype distribution did not differ significantly between antipsychotic-induced RLS patients and patients who had no-RLS symptoms (χ2 = 4.30, p = 0.116). The genotypes of the C825T single-nucleotide polymorphism (SNP) were classified into two groups: C+ (CC and CT genotypes) and C– (TT genotype). The presence of the C allele (C+) was associated with an increased likelihood of RLS (χ2 = 4.14, p = 0.042; odds ratio = 2.56, 95% confidence interval = 1.02–6.47).
Conclusions:
These results suggest that the GNB3 C825T SNP is associated with RLS in schizophrenia. However, confirming this association requires future larger scale studies in which the effects of medication are strictly controlled.
A K-band microstrip delay line based on parasitic reduced left-handed transmission line (LHTL) with interdigital capacitors and shunt inductors is demonstrated with the aid of printed circuit board technology. The proposed delay line has ground slots under the interdigital capacitors to reduce the parasitic capacitance. The time delay of the proposed LHTLs is approximately 2.6 times larger than that of the conventional LHTLs. The input return loss of the proposed LHTL at 24 GHz is −16.9 dB and less than −10 dB from 20.5 to 26.1 GHz.
Vitamin D insufficiency is known to be related to cardiometabolic disorders; however, the associations among serum 25-hydroxyvitamin D (25(OH)D) concentration and metabolic syndrome and cardiometabolic risk factors in children and adolescents have not yet been clearly delineated. For this reason, we investigated the relationship among serum 25(OH)D concentration and metabolic syndrome and cardiometabolic risk factors among Korean adolescents.
Design
We performed a cross-sectional analysis and used hierarchical multivariate logistic regression analysis models to adjust for confounding variables.
Setting
We used the data gathered during the 2008–2009 Korea National Health and Nutrition Examination Survey (KNHANES).
Subjects
Our subjects included 1504 Korean adolescents aged 12–18 years who participated in the KNHANES.
Results
Vitamin D insufficiency, defined as 25(OH)D concentration <50 nmol/l, was found in 75·3 % of Korean adolescents and was associated with an increased risk of the prevalence of metabolic syndrome. Waist circumference and BMI were the most closely correlated cardiometabolic components of metabolic syndrome according to serum 25(OH)D status, but no significant relationship was found between serum 25(OH)D concentration and insulin resistance or for the risks for high blood pressure, hyperglycaemia, reduced HDL-cholesterol or hypertriacylglycerolaemia, with or without adjustment for confounding variables.
Conclusions
Low serum 25(OH)D concentration appears to be associated with several cardiometabolic risk factors and an increased risk of the prevalence of metabolic syndrome in Korean adolescents.
Anthropogenic land use within watersheds has substantial effects on aquatic habitats and biological communities. From September 2006 to December 2008, we investigated the effects of land use on benthic macroinvertebrate communities by comparing Song Stream and Odae Stream, two adjacent mountain streams in Korea whose watersheds have different land use patterns. Song Stream is significantly disturbed by agricultural activities in the watershed, whereas Odae Stream is relatively undisturbed and is surrounded by a well-conserved forest area. Song Stream had significantly higher levels of all nutrients and sediment-related factors due to the adjacent agricultural area. As a result, Song Stream had markedly lower species community indices, such as taxa richness and abundance. In Song Stream, macroinvertebrate scrapers and predators were most adversely affected, whereas collector-gatherers became a dominant group. Based on correlation and multivariate analyses, total dissolved solids had the strongest negative relationship with macroinvertebrate assemblages, followed by electrical conductivity, total nitrogen, and pH. The proportion of cobble in stream substrate was positively related to the richness and abundance of macroinvertebrates. Our results indicate that disturbances caused by agricultural land use, particularly sand deposition, had significant adverse effects on macroinvertebrate habitats and on the biotic integrity of benthic macroinvertebrate communities.
We have fabricated the nano-floating gate memory with the TiSi2 and WSi2 nanocrystals embedded in the dielectrics. The TiSi2 and WSi2 nanocrystals were created by using sputtering and rapidly thermal annealing system, and then their morphologies were investigated by transmission electron microscopy. These nanocrystals have a spherical shape with an average diameter of 2-5 nm. The electrical properties of the nano-floating gate memory with TiSi2 and WSi2 nanocrystals were characterized by capacitance-voltage (C-V) hysteresis curve, memory speed and retention. The flat-band voltage shifts of the TiSi2 and WSi2 nanocrystals capacitors obtained appeared up to 4.23 V and 4.37 V, respectively. Their flat-band voltage shifts were maintained up to 1.6 V and 1 V after 1 hr.
To enhance Pt utilization in the fuel-cell electrode by microscopically controlling the distribution of liquid electrolytes around Pt catalysts, the amphiphilic surfactant tergitol phosphate was synthesized and introduced into the fuel-cell electrode. The chemical structure of the surfactant was determined by 1H-nuclear magnetic resonance, and its adsorption property on Pt–C catalyst was ascertained by Fourier transform infrared analysis. The electrode into which the amphiphilic surfactants were incorporated showed improved performance, and especially the amphiphilic surfactant with polyethylene oxide, NPE10-OPO(OH)2, produced higher cell performance.