We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Mediation analysis constitutes an important part of treatment study to identify the mechanisms by which an intervention achieves its effect. Structural equation model (SEM) is a popular framework for modeling such causal relationship. However, current methods impose various restrictions on the study designs and data distributions, limiting the utility of the information they provide in real study applications. In particular, in longitudinal studies missing data is commonly addressed under the assumption of missing at random (MAR), where current methods are unable to handle such missing data if parametric assumptions are violated.
In this paper, we propose a new, robust approach to address the limitations of current SEM within the context of longitudinal mediation analysis by utilizing a class of functional response models (FRM). Being distribution-free, the FRM-based approach does not impose any parametric assumption on data distributions. In addition, by extending the inverse probability weighted (IPW) estimates to the current context, the FRM-based SEM provides valid inference for longitudinal mediation analysis under the two most popular missing data mechanisms; missing completely at random (MCAR) and missing at random (MAR). We illustrate the approach with both real and simulated data.
Interlaminar delamination damage is a common and typical defect in the context of structural damage in carbon fiber-reinforced resin matrix composites. The technology to identify such damage is crucial for improving the safety and reliability of structures. In this paper, we fabricated carbon fiber-reinforced composite laminates with different degrees of delamination damage, conducted static load experiments on them and used femtosecond fiber Bragg grating sensors (fsFBG) to determine their structural state to investigate the effects of delamination damage on their performance. We constructed a model to identify damage based on the deep residual shrinkage network, and used experimental data to enable it to identify varying degrees of delamination damage to carbon fiber-reinforced composites with an accuracy of 97.98%.
In the present study, we investigated the influence of different mid-stage N compensation timings on agronomic and physiological traits associated with grain yield and quality in field experiments. Two japonica rice cultivars with a good tasting quality (Nangeng 9108 and Nangeng 5055) were examined under eight N compensation timings (N1–N6: one-time N compensation at 7-2 weeks before heading; N7: split N compensation at 5 and 3 weeks before heading; N8: split N compensation at 4 and 2 weeks before heading) and a control with no N compensation. The highest yield was obtained with N7, followed by N3. The yield advantage is mainly attributable to the improved population structure (higher productive tiller rate with a stable number of effective panicles), higher total number of spikelets per unit area (large panicles with more grains per panicle), larger leaf area index in the late period and higher photosynthetic production capacity (more dry matter accumulation and transportation in the middle and late periods). Delaying N compensation timing improved the processing and nutritional quality of rice, but decreased the quality of appearance and cooking/eating traits. Our results suggest that, from the perspective of achieving relative coordination between high yield and high quality of japonica rice, the optimal N compensation should be divided equally at 5 and 3 weeks before heading. However, if simplifying the number of operations and the pursuit of eating quality were considered, one-time N compensation should be conducted at 5 weeks before heading.
This study aimed to investigate the association of nasal nitric oxide and olfactory function.
Method
A cross-sectional study was performed in 117 adults, including 91 patients with chronic rhinosinusitis and 26 healthy controls. Scores on the 22-item Sino-Nasal Outcomes Test, Lund-Mackay scale and Lund-Kennedy scale were recorded to assess severity of disease. All participants were screened for common inhaled and food allergens. Nasal nitric oxide and fractional exhaled nitric oxide testing, acoustic rhinometry and anterior rhinomanometry testing were performed to measure nasal function. The validated Sniffin’ Sticks test battery was used to assess olfactory function.
Results
Higher nasal nitric oxide was an independent protective factor for odour discrimination and odour threshold in participants with chronic rhinosinusitis after adjusting for age, gender, drinking, smoking, 22-item Sino-Nasal Outcomes Test, Lund-Mackay score, Lund-Kennedy score, immunoglobulin E and the second minimal cross-sectional area by acoustic rhinometry. Nasal nitric oxide also showed high discrimination in predicting impaired odour discrimination. In addition, nasal nitric oxide was lower in older participants, those with higher Lund-Mackay or Lund-Kennedy scores and higher with elevated total serum immunoglobulin E concentrations above a threshold of 0.35 kU/l.
Conclusion
Higher nasal nitric oxide is associated with better odour discrimination in chronic rhinosinusitis and is modulated by age, degree of allergy and severity of chronic rhinosinusitis.
The coronavirus disease 2019 (COVID-19) pandemic represents an unprecedented threat to mental health. Herein, we assessed the impact of COVID-19 on subthreshold depressive symptoms and identified potential mitigating factors.
Methods
Participants were from Depression Cohort in China (ChiCTR registry number 1900022145). Adults (n = 1722) with subthreshold depressive symptoms were enrolled between March and October 2019 in a 6-month, community-based interventional study that aimed to prevent clinical depression using psychoeducation. A total of 1506 participants completed the study in Shenzhen, China: 726 participants, who completed the study between March 2019 and January 2020 (i.e. before COVID-19), comprised the ‘wave 1’ group; 780 participants, who were enrolled before COVID-19 and completed the 6-month endpoint assessment during COVID-19, comprised ‘wave 2’. Symptoms of depression, anxiety and insomnia were assessed at baseline and endpoint (i.e. 6-month follow-up) using the Patient Health Questionnaire-9 (PHQ-9), Generalised Anxiety Disorder-7 (GAD-7) and Insomnia Severity Index (ISI), respectively. Measures of resilience and regular exercise were assessed at baseline. We compared the mental health outcomes between wave 1 and wave 2 groups. We additionally investigated how mental health outcomes changed across disparate stages of the COVID-19 pandemic in China, i.e. peak (7–13 February), post-peak (14–27 February), remission plateau (28 February−present).
Results
COVID-19 increased the risk for three mental outcomes: (1) depression (odds ratio [OR] = 1.30, 95% confidence interval [CI]: 1.04–1.62); (2) anxiety (OR = 1.47, 95% CI: 1.16–1.88) and (3) insomnia (OR = 1.37, 95% CI: 1.07–1.77). The highest proportion of probable depression and anxiety was observed post-peak, with 52.9% and 41.4%, respectively. Greater baseline resilience scores had a protective effect on the three main outcomes (depression: OR = 0.26, 95% CI: 0.19–0.37; anxiety: OR = 1.22, 95% CI: 0.14–0.33 and insomnia: OR = 0.18, 95% CI: 0.11–0.28). Furthermore, regular physical activity mitigated the risk for depression (OR = 0.79, 95% CI: 0.79–0.99).
Conclusions
The COVID-19 pandemic exerted a highly significant and negative impact on symptoms of depression, anxiety and insomnia. Mental health outcomes fluctuated as a function of the duration of the pandemic and were alleviated to some extent with the observed decline in community-based transmission. Augmenting resiliency and regular exercise provide an opportunity to mitigate the risk for mental health symptoms during this severe public health crisis.
Fluid motion has two well-known fundamental processes: the vector transverse process characterized by vorticity, and the scalar longitudinal process consisting of a sound mode and an entropy mode, characterized by dilatation and thermodynamic variables. The existing theories for the sound mode involve the multi-variable issue and its associated difficulty of source identification. In this paper, we define the source of sound inside the fluid by the objective causality inherent in dynamic equations relevant to a longitudinal process, which naturally favours the material time-rate operator $D/Dt$ rather than the local time-rate operator $\unicode[STIX]{x2202}/\unicode[STIX]{x2202}t$, and describes the sound mode by inhomogeneous advective wave equations. The sources of sound physical production inside the fluid are then examined at two levels. For the conventional formulation in terms of thermodynamic variables at the first level, we show that the universal kinematic source can be condensed to a scalar invariant of the surface deformation tensor. Further, in the formulation in terms of dilatation at the second level, we find that the sound mode in viscous and heat-conducting flow has sources from rich nonlinear couplings of vorticity, entropy and surface deformation, which cannot be disclosed at the first level. Preliminary numerical demonstration of the theoretical findings is made for two typical compressible flows, i.e. the interaction of two corotating Gaussian vortices and the unsteady type IV shock/shock interaction. The results obtained in this study provide a new theoretical basis for, and physical insight into, understanding various nonlinear longitudinal processes and the interactions therein.
The relative effect of the atypical antipsychotic drugs and conventional agents on neurocognition in patients with early-stage schizophrenia has not been comprehensively determined.
Aims
The present study aimed to assess the cognitive effects of atypical and conventional antipsychotic drugs on neurocognition under naturalistic treatment conditions.
Objectives
In a 12 months open-label, multicenter study, 698 patients with early-stage schizophrenia (< 5 years) were monotherapy with chlorpromazine, sulpiride, clozapine, risperidone, olanzapine, quetiapine or aripiprazole. Wechsler Memory Scale--Revised Visual Reproduction Test, Wechsler Adult Intelligence Scale Revised Digit Symbol Test and Digit-span Task Test, Trail Making Tests Part A and Part B, and Wisconsin Card Sorting Test were administered at baseline and 12 months follow-up evaluation. The primary outcome was change in a cognitive composite score after 12 months of treatment.
Results
Compared with scores at baseline, the composite cognitive test scores and individual test scores had significant improvement for all seven treatment groups at 12-month follow-up evaluation (all p-values ≤ 0.013). However, olanzapine and quetiapine provided greater improvement than that provided by chlorpromazine and sulpiride in the composite score, processing speed and executive function (all p-values ≤ 0.045).
Conclusions
Both conventional and atypical antipsychotic medication long-term maintenance treatment can benefit congitive function in patients with early-stage schizophrenia, but olanzapine and quetiapine may be superior to chlorpromazine and sulpiride in improving some areas of neurocognitive function.
There are strong links between circadian disturbance and some of the most characteristic symptoms of clinical major depressive disorder (MDD). However there are no published studies of changes in expression of clock genes or of other neuropeptides related to circadian-rhythm regulation, which may influence recurrent susceptibility after treatment with antidepressant in MDD.
Methods
Blood samples were collected from twelve healthy controls and twelve male major depressive patients pre- and post- treated with escitalopram for eight weeks at 4-hour intervals for 24 hours. Outcome measures were the relative expression of mRNA of clock genes (hPERIOD1, hPERIOD2, hPERIOD3, hCRY1, hBMAL1, hNPAS2 and hGSK-3beta) and the levels of serum melatonin, Vasoactive Intestinal Peptide (VIP), cortisol, Adrenocorticotropic Hormone (ACTH), Insulin-like Growth Factor-1(IGF-1) and growth hormone (GH) in twelve healthy controls and twelve pre- and post- treated MDD patients.
Results
Compared with healthy controls, MDD patients showed disruptions in diurnal rhythms of expression of hPERIOD1, hPERIOD2, hCRY1, hBMAL1, hNPAS2 and hGSK-3beta, along with disruptions in diurnal rhythms of release of melatonin, VIP, cortisol, ACTH, IGF-1, and GH. Several of these disruptions (hPER1, hCRY1, melatonin, VIP, cortisol, ACTH, and IGF-1) persisted after eight weeks escitalopram treatment, as did elevation of 24-hour levels of VIP and decreases in 24-hour levels of cortisol and ACTH.
Conclusion
These persisted neurobiological changes may play a role in MDD symptoms that are thought to contribute to recurrence vulnerability and in maintenance therapy for a long term.
The aim of this study was to develop and externally validate a simple-to-use nomogram for predicting the survival of hospitalised human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) patients (hospitalised person living with HIV/AIDS (PLWHAs)). Hospitalised PLWHAs (n = 3724) between January 2012 and December 2014 were enrolled in the training cohort. HIV-infected inpatients (n = 1987) admitted in 2015 were included as the external-validation cohort. The least absolute shrinkage and selection operator method was used to perform data dimension reduction and select the optimal predictors. The nomogram incorporated 11 independent predictors, including occupation, antiretroviral therapy, pneumonia, tuberculosis, Talaromyces marneffei, hypertension, septicemia, anaemia, respiratory failure, hypoproteinemia and electrolyte disturbances. The Likelihood χ2 statistic of the model was 516.30 (P = 0.000). Integrated Brier Score was 0.076 and Brier scores of the nomogram at the 10-day and 20-day time points were 0.046 and 0.071, respectively. The area under the curves for receiver operating characteristic were 0.819 and 0.828, and precision-recall curves were 0.242 and 0.378 at two time points. Calibration plots and decision curve analysis in the two sets showed good performance and a high net benefit of nomogram. In conclusion, the nomogram developed in the current study has relatively high calibration and is clinically useful. It provides a convenient and useful tool for timely clinical decision-making and the risk management of hospitalised PLWHAs.
Seasonal influenza virus epidemics have a major impact on healthcare systems. Data on population susceptibility to emerging influenza virus strains during the interepidemic period can guide planning for resource allocation of an upcoming influenza season. This study sought to assess the population susceptibility to representative emerging influenza virus strains collected during the interepidemic period. The microneutralisation antibody titers (MN titers) of a human serum panel against representative emerging influenza strains collected during the interepidemic period before the 2018/2019 winter influenza season (H1N1-inter and H3N2-inter) were compared with those against influenza strains representative of previous epidemics (H1N1-pre and H3N2-pre). A multifaceted approach, incorporating both genetic and antigenic data, was used in selecting these representative influenza virus strains for the MN assay. A significantly higher proportion of individuals had a ⩾four-fold reduction in MN titers between H1N1-inter and H1N1-pre than that between H3N2-inter and H3N2-pre (28.5% (127/445) vs. 4.9% (22/445), P < 0.001). The geometric mean titer (GMT) of H1N1-inter was significantly lower than that of H1N1-pre (381 (95% CI 339–428) vs. 713 (95% CI 641–792), P < 0.001), while there was no significant difference in the GMT between H3N2-inter and H3N2-pre. Since A(H1N1) predominated the 2018–2019 winter influenza epidemic, our results corroborated the epidemic subtype.
This study aimed to investigate endoscopic revision septoplasty with semi-penetrating straight and circular incisions in patients for whom septoplasty was unsuccessful.
Method
Patients in this study (n = 14) had a deviation of the nasal septum after septoplasty. Pre-operative and post-operative assessments were performed using a visual analogue scale and nasal endoscope. Semi-penetrating straight and circular incisions in front of the caudal septum and at the margin of the nasal septal cartilage–bone defect, respectively, were made. The mucoperichondrium and mucoperiosteum were bilaterally dissected until interlinkage with the cartilage–bone defect was achieved. Mucous membranes within the circular incision as well as the right mucoperichondrium and mucoperiosteal flaps were protected by pushing them to the right. This exposed the osteocartilaginous framework and allowed correction of the residual deviation. The patients were followed up for 30–71 months.
Results
For nasal obstruction and headaches, a significant improvement was noted in post-operative compared to pre-operative visual analogue scale scores. No patients had septal deviations, saddle nose, false hump nose or contracture of the nasal columella.
Conclusion
The technique allowed exposure of the septal osteocartilaginous framework and a broad operational vision, which enabled successful correction of various deformities of the nasal septum.
To compare the epidemiologic features (e.g. settings and transmission mode) and patient clinical characteristics associated with outbreaks of different norovirus (Nov) strains, we retrospectively analysed data of Nov outbreaks occurring in Guangzhou, China from 2012 to 2018. The results suggested that outbreaks of Nov GII.2, GII.17 and GII.4 Sydney exhibited different outbreak settings, transmission modes and symptoms. GII.2 outbreaks mainly occurred in kindergartens, elementary and high schools and were transmitted mainly through person-to-person contact. By contrast, GII.4 Sydney outbreaks frequently occurred in colleges and were primarily associated with foodborne transmission. Cases from GII.2 and GII.17 outbreaks reported vomiting more frequently than those from outbreaks associated with GII.4 Sydney.
A viscous damping model is proposed based on a simplified equation of fluid motion in a moonpool or the narrow gap formed by two fixed boxes. The model takes into account the damping induced by both flow separation and wall friction through two damping coefficients, namely, the local and friction loss coefficients. The local loss coefficient is determined through specifically designed physical model tests in this work, and the friction loss coefficient is estimated through an empirical formula found in the literature. The viscous damping model is implemented in the dynamic free-surface boundary condition in the gap of a modified potential flow model. The modified potential flow model is then applied to simulate the wave-induced fluid responses in a narrow gap formed by two fixed boxes and in a moonpool for which experimental data are available. The modified potential flow model with the proposed viscous damping model works well in capturing both the resonant amplitude and frequency under a wide range of damping conditions.
Latrophilin (LPH) is known as an adhesion G-protein-coupled receptor which involved in multiple physiological processes in organisms. Previous studies showed that lph not only involved the susceptibility to anticholinesterase insecticides but also affected fecundity in Tribolium castaneum. However, its regulatory mechanisms in these biological processes are still not clear. Here, we identified two potential downstream carboxylesterase (cce) genes of Tclph, esterase4 and esterase6, and further characterized their interactions with Tclph. After treatment of T. castaneum larvae with carbofuran or dichlorvos insecticides, the transcript levels of Tcest4 and Tcest6 were significantly induced from 12 to 72 h. RNAi against Tcest4 or Tcest6 led to the higher mortality compared with the controls after the insecticides treatment, suggesting that these two genes play a vital role in detoxification of insecticides in T. castaneum. Furthermore, with insecticides exposure to Tclph knockdown beetles, the expression of Tcest4 was upregulated but Tcest6 was downregulated, indicating that beetles existed a compensatory response against the insecticides. Additionally, RNAi of Tcest6 resulted in 43% reductions in female egg laying and completely inhibited egg hatching, which showed the similar phenotype as that of Tclph knockdown. These results indicated that Tclph affected fecundity by positively regulating Tcest6 expression. Our findings will provide a new insight into the molecular mechanisms of Tclph involved in physiological functions in T. castaneum.
Dietary supplementation with the organic chromium (Cr) has been shown to positively affect the immune function of poultry. However, to our knowledge, no experiment has been done to directly compare the impacts of Cr chloride and chromium picolinate (CrPic) on the immune responses of broilers vaccinated with Avian Influenza (AI) virus vaccine. Therefore, the present experiment was conducted to investigate the effects of supplemental Cr sources (Cr chloride and CrPic) and levels on the growth performance and immune responses of broilers vaccinated with AI virus vaccine so as to provide an effective nutritional strategy for improving immune function of broilers. A total of 432 1-day (d)-old male broiler chicks were used in a 1 plus 2×4 design. Chickens were given either a diet without Cr supplementation (control) or diets supplemented with 0.4, 0.8, 1.6, or 3.2 mg Cr/kg as either Cr chloride or CrPic for 42 d. Compared to the control, dietary Cr supplementation had no effect (P>0.05) on average daily gain, average daily feed intake and gain : feed of broilers during the starter and grower phases, but increased (P<0.05) the relative weights of bursa of fabricius on d 21 and thymus, spleen, or bursa of fabricius on d 42, serum antibody titers against AI virus on d 21, 28, 35 and 42, blood T-lymphocyte transformation rate on d 28 and 42, blood T-lymphocyte percentage on d 42, and serum interleukin-2 contents on d 28. Broilers fed the diets supplemented with the inorganic Cr chloride had higher (P<0.05) weights of thymus, spleen and bursa of fabricius than those fed the diets supplemented with the CrPic on d 42. In addition, broilers fed the diets supplemented with the CrPic had higher (P<0.05) antibody titers against AI virus than those fed the diets supplemented with the inorganic Cr chloride on d 21 and 35. These results indicate that dietary Cr supplementation improved immune responses of broilers vaccinated with AI virus, and the inorganic Cr chloride was more effective than the CrPic in increasing the relative weights of lymphoid organs, however, the CrPic was more effective than the inorganic Cr chloride in enhancing the serum antibody titer against AI virus.
We numerically study the impact of a compound drop on a hydrophobic substrate using a ternary-fluid diffuse-interface method, aiming to understand how the presence of the inner droplet affects the spreading dynamics and maximal spreading of the compound drop. First, it is interesting to see that the numerical results for an impacting pure drop agree well with the universal rescaling of maximal spreading ratio proposed by Lee et al. (J. Fluid Mech., vol. 786, 2016, R4). Second, two flow regimes have been identified for an impacting compound drop: namely jammed spreading and joint rim formation. The maximal spreading ratio of the compound drop is found to depend on the volume fraction of the inner droplet $\unicode[STIX]{x1D6FC}$, the surface tension ratio $\unicode[STIX]{x1D6FE}$, the Weber number and the flow regime. Moreover, we propose a universal rescaling of maximal spreading ratio for compound drops, by integrating the one for pure drops with a corrected Weber number that takes $\unicode[STIX]{x1D6FC}$, $\unicode[STIX]{x1D6FE}$ and the flow regime into account. The predictions of the universal rescaling are in good agreement with the numerical results for impacting compound drops.
The influence of Zn on the adsorption and desorption of Cry1Ab toxin from Bacillus thuringiensis (Bt) on palygorskite and montmorillonite was studied. The adsorption of the toxin gradually increased with increasing Zn concentration from 0 to 1.0 mmol L–1, and then decreased with further increase in Zn concentration. The adsorption isotherms of the toxin in the absence and presence of Zn were well described by the Langmuir equation (R2 > 0.9810–0.9991). The separation factor (RL) decreased with increase of Zn concentration, suggesting that the irreversibility of the adsorption increases. The XRD results showed that the treatment by Tris buffer or Zn(NO3)2 solution caused an expansion of the interlayer space of montmorillonite but did not affect palygorskite. The IR spectra suggest that Zn was likely to be combined with amino groups on the surface of the toxin. The presence of Zn during the adsorption of the toxin decreased desorption, suggesting that the residual risk of toxin would be exacerbated if soil is polluted by zinc.
Zircon commonly occurs as one of important accessory HFSE-bearing minerals in A-type granite. A detailed electron microprobe study was carried out on zircon from the Laoshan complex, Eastern China, which is composed of I- and A-type granites. Zircon from the I-type rocks is relatively poor in trace elements (HfO2<2 wt.%, UO2, ThO2 and Y2O3 <1 wt.%), but that from the A-type rocks is richer in Hf, U, Th and Y. Hafnian zircon with a HfO2 content of up to 12.37 wt.% was found in the arfvedsonite granite, which is considered the most evolved facies in the A-type suite. Enrichment in Hf is generally observed at the rims of zircon crystals relative to the cores. The Hf enrichment in zircon, and the association of exotic REE- and HFSE-bearing minerals are linked to hydrothermal activity, suggesting that during the last stage of crystallization of the A-type magma, fluids enriched in REE, HFSE, F−, CO32− and PO43− were released.
We have carried out TEM observations of agates of geode origin and Beltane opals. Optically observable individual fibres in agates are composed of many fine fibres which consist of quartz crystallites of 8 to 100 nm in length stacked together parallel to <110> or <100> with c-axes perpendicular to the fibre elongation. The optically observable systematic striations in agate are found to consist of cyclic alternation of layers due to variation in grain size and porosity. Large quartz crystals, protruding into the spaces of geodes, represent the last stage of formation of these bands, and are merely a continuation of the banding sequence. Nanometre scale textures of cristobalite fibres were revealed in Beltane opals. The cristobalite crystallites have the size of 3 to 20 nm in length and are also stacked together. Our TEM results suggest that embryonic particles were formed in their corresponding growth environments and agglutinated to form fibres.
Pheromones play an important role in mediating interspecific interactions in insects. In an insect community, pheromones can reveal information about the senders, which could be used by other members of the food web (competitor, natural enemies, etc.) to their own advantage. The aggregation pheromones of two closely related thrips species, Frankliniella occidentalis and Frankliniella intonsa, have been identified with the same major compounds, (R)-lavandulyl acetate and neryl (S)-2-methylbutanoate, but in different ratios. However, the roles of the aggregation pheromones in the interspecific interactions between these two closely related species are unknown. Here, we investigated the roles of major aggregation pheromone compounds in interspecific interactions between F. occidentalis and F. intonsa for both long and short ranges. The results showed that, at tested doses, neither aggregation pheromone-induced long range cross-attraction nor short range cross-mating was detected between F. occidentalis and F. intonsa. Field-trapping trials showed that the species-specificity in aggregation pheromones was regulated by the ratio of two major compounds. However, species-specific blends of the two major compounds had no effect on short-range interactions between these two species. Our data from the thrips species provide support for the ‘aggregation model of coexistence’, explaining the species-specific pheromone-mediated coexistence of closely related species. Thus, species-specific pheromones could be one of the factors affecting population dynamics and community structure in closely related insects with similar niches.