Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-27T22:00:35.342Z Has data issue: false hasContentIssue false

1 - Morphology and classification of the Marchantiophyta

Published online by Cambridge University Press:  06 July 2010

Bernard Goffinet
Affiliation:
University of Connecticut
A. Jonathan Shaw
Affiliation:
Duke University, North Carolina
Get access

Summary

Introduction

Liverworts are a diverse phylum of small, herbaceous, terrestrial plants, estimated to comprise about 5000 species in 391 genera. They occupy an assortment of habitats, including disturbed soil along stream banks, road cuts and trails, as well as rocks, logs and trees in natural landscapes. They occur on all continents, including Antarctica, but are most diversified in the montane rain forests of the southern hemisphere. Many species are quite tolerant of repeated cycles of drying and wetting (Clausen 1964, Wood 2007), a feature that has allowed them also to exploit epiphytic substrates, including leaves and branches of the forest canopy. Like mosses and hornworts, they have a heteromorphic life cycle with a sporophyte that is comparatively short-lived and nutritionally dependent on the free-living, usually perennial gametophyte. However, they differ from both of these groups in numerous cytological, biochemical, and anatomical features as detailed by Crandall-Stotler (1984). Significant diagnostic characters of the phylum include the following: they tend to have a flattened appearance, even when leafy, because their leaves are always arranged in rows, never in spiral phyllotaxis; rhizoids are unicellular, thin-walled, and usually hyaline; both leafy and thalloid forms frequently develop endosymbiotic associations with fungi; sporophytes mature completely enclosed by gametophytic tissue and are incapable of self-sustaining photosynthesis; sporophyte setae are parenchymatous and elongate by cell expansion, rather than cell division; and capsules lack the stomates, cuticle, and columella that are common in mosses and hornworts.

Type
Chapter
Information
Bryophyte Biology , pp. 1 - 54
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Apostolakos, P. & Galatis, B. (1998). Microtubules and gametophyte morphogenesis in the liverwort Marchantia paleacea Bert. In Bryology for the Twenty-first Century, ed. Bates, J. W., Ashton, N. W. & Duckett, J. G., pp. 205–21. Leeds: Maney and British Bryological Society.Google Scholar
Bartholomew-Began, S. E. (1991). A morphogenetic re-evaluation of Haplomitrium Nees (Hepatophyta). Bryophytorum Bibliotheca, 41, 1–297.Google Scholar
Bischler, H. (1998). Systematics and evolution of the genera of the Marchantiales. Bryophytorum Bibliotheca, 51, 1–201.Google Scholar
Blomquist, H. L. (1929). The relation of capillary cavities in the Jungermanniaceae to water absorption and storage. Ecology, 10, 556–7.CrossRefGoogle Scholar
Bopp, M. & Capesius, I. (1998). A molecular approach to bryophyte systematics. In Bryology for the Twenty-first Century, ed. Bates, J. W., Ashton, N. W. & Duckett, J. G., pp. 79–88. Leeds: Maney and British Bryological Society.Google Scholar
Bopp, M. & Feger, F. (1960[1961]). Das Grundschema der Blattentwicklung bei Lebermoosen. Revue Bryologique et Lichénologique, 29, 256–73.Google Scholar
Brown, R. C. & Lemmon, B. E. (1987). Involvement of callose in determination of exine patterning in three hepatics of the subclass Jungermanniidae. Memoirs of the New York Botanical Garden, 45, 111–21.Google Scholar
Brown, R. C. & Lemmon, B. E. (1988). Cytokinesis occurs at boundaries of domains delimited by nuclear-based microtubules in sporocytes of Conocephalum conicum (Bryophyta). Cell Motility and the Cytoskeleton, 11, 139–46.CrossRefGoogle Scholar
Brown, R. C. & Lemmon, B. E. (1990). Sporogenesis in bryophytes. In Microspores, Evolution and Ontogeny, ed. Blackmore, S. & Knox, R. B., pp. 55–94. London: Academic Press.CrossRefGoogle Scholar
Brown, R. C. & Lemmon, B. E. (2006). Polar organizers and girdling bands of microtubules are associated with γ-tubulin and act in establishment of meiotic quadripolarity in the hepatic Aneura pinguis (Bryophyta). Protoplasma, 227, 77–85.CrossRefGoogle Scholar
Brown, R. C., Lemmon, B. E. & Renzaglia, K. S. (1986). Sporocytic control of spore wall pattern in liverworts. American Journal of Botany, 73, 593–6.CrossRefGoogle Scholar
Buch, H. (1911). Über die Brutorgane der Lebermoose. Helsinfors: Kaiserliche Alexanders-Universität in Finland.Google Scholar
Buch, H. (1930). Über die Entstehung der verschiedenen Blattflächenstellungen bei den Lebermoosen. Annales Bryologici, 3, 25–40.Google Scholar
Buchloh, G. (1951). Symmetrie und Verzweigung der Lebermoose. Ein Beitrag zur Kenntnis ihrer Wuchsformen. Sitzungsberichte der Heidelberger Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse, 1951, 211–79.Google Scholar
Campbell, D. H. (1913). The morphology and systematic position of Calycularia radiculosa (Steph.). In Leland Stanford Junior University. 1913. Dudley Memorial Volume. Stanford, pp. 43–61. [Leland Stanford Junior University Publications, University Series, 11.]
Campbell, E. O. (1954). The structure and development of Monoclea forsteri Hook. Transactions of the Royal Society of New Zealand, 82, 237–48.Google Scholar
Capesius, I. & Bopp, M. (1997). New classification of liverworts based on molecular and morphological data. Plant Systematics and Evolution, 207, 87–97.CrossRefGoogle Scholar
Chalaud, G. (1928). Le cycle évolutif de Fossombronia pusilla Dum. Paris: Librairie Générale de l'Enseignement.Google Scholar
Clausen, E. (1964). The tolerance of hepatics to desiccation and temperature. Bryologist, 67, 411–17.CrossRefGoogle Scholar
Clee, D. A. (1937). Leaf arrangement in relation to water conduction in the foliose Hepaticae. Annals of Botany (London), n.s., 1, 325–8.CrossRefGoogle Scholar
Cook, M. E. & Graham, L. E. (1998). Structural similarities between surface layers of selected Charophycean algae and bryophytes and the cuticles of vascular plants. International Journal of Plant Sciences, 159, 780–7.CrossRefGoogle Scholar
Crandall, B. J. (1969). Morphology and development of branches in the leafy Hepaticae. Beihefte zur Nova Hedwigia, 30, 1–261.Google Scholar
Crandall-Stotler, B. (1972). Morphogenetic patterns of branch formation in the leafy Hepaticae – a résumé. Bryologist, 75, 381–403.CrossRefGoogle Scholar
Crandall-Stotler, B. (1976). The apical cell and early development of Pleurozia purpurea Lindb. Lindbergia, 3, 197–208.Google Scholar
Crandall-Stotler, B. (1981). Morphology/anatomy of hepatics and anthocerotes. Advances in Bryology, 1, 315–98.Google Scholar
Crandall-Stotler, B. (1984). Musci, hepatics and anthocerotes – an essay on analogues. In New Manual of Bryology, vol. 2, ed. Schuster, R. M., pp. 1093–129. Nichinan: Hattori Botanical Laboratory.Google Scholar
Crandall-Stotler, B. & Guerke, W. R. (1980). Developmental anatomy of Jubula Dum. (Hepaticae). Bryologist, 83, 179–201.CrossRefGoogle Scholar
Crandall-Stotler, B. & Stotler, R. (2000). Morphology and classification of the Marchantiophyta. In Bryophyte Biology, ed. Shaw, A. J. & Goffinet, B., pp. 21–70. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Crandall-Stotler, B., Furuki, T. & Iwatsuki, Z. (1994). The developmental anatomy of Mizutania riccardioides Furuki & Iwatsuki, an exotic liverwort from southeast Asia. Journal of the Hattori Botanical Laboratory, 75, 243–55.Google Scholar
Crandall-Stotler, B. J., Stotler, R. E. & Ford, C. H. (2002). Contributions toward a monograph of Petalophyllum (Marchantiophyta). Novon, 12, 334–7.CrossRefGoogle Scholar
Crandall-Stotler, B. J., Forrest, L. L. & Stotler, R. E. (2005). Evolutionary trends in the simple thalloid liverworts (Marchantiophyta, Jungermanniopsida subclass Metzgeriidae). Taxon, 54, 299–316.CrossRefGoogle Scholar
Crandall-Stotler, B. J., Stotler, R. E. & Long, D. G. (2008). Phylogeny and classification of the Marchantiophyta. Edinburgh Journal of Botany, 65, in press.Google Scholar
Davis, C. (2004). A molecular phylogeny of leafy liverworts (Jungermanniidae, Marchantiophyta). Monographs in Systematic Botany from the Missouri Botanical Garden, 98, 61–86.Google Scholar
Roo, R. T., Hedderson, T. A. & Söderström, L. (2007). Molecular insights into the phylogeny of the leafy liverwort family Lophoziaceae Cavers. Taxon 56, 301–14.Google Scholar
Douin, R. (1912). Le sporophyte chez les hépatiques. Revue Générale de Botanique, 24, 5–27 [of reprint].Google Scholar
Doyle, W. T. (1962). The morphology and affinities of the liverwort Geothallus. University of California Publications in Botany, 33, 185–267.Google Scholar
Duckett, J. G. & Ligrone, R. (1995). The formation of catenate foliar gemmae and the origin of the oil bodies in the liverwort Odontoschisma denudatum (Mart.) Dum. (Jungermanniales): a light and electron microscope study. Annals of Botany, 76, 406–19.CrossRefGoogle Scholar
Duckett, J. G. & Soni, S. L. (1972). Scanning electron microscope studies on the leaves of Hepaticae. I. Ptilidiaceae, Lepidoziaceae, Calypogeiaceae, Jungermanniaceae, and Marsupellaceae. Bryologist, 75, 536–49.CrossRefGoogle Scholar
Duckett, J. G., Renzaglia, K. S. & Pell, K. (1991). A light and electron microscope study of rhizoid-ascomycete associations and flagelliform axes in British hepatics with observations on the effects of the fungi on host morphology. New Phytologist, 118, 233–57.CrossRefGoogle Scholar
Evans, A. W. (1912). Branching in the leafy Hepaticae. Annals of Botany (London), 26, 1–37.CrossRefGoogle Scholar
Evans, A. W. (1918). The air chambers of Grimaldia fragrans. Bulletin of the Torrey Botanical Club, 45, 235–51.CrossRefGoogle Scholar
Evans, A. W. (1939). The classification of the Hepaticae. Botanical Review, 5, 49–96.CrossRefGoogle Scholar
Flegel, M. & Becker, H. (2000). Characterization of the contents of oil bodies from the liverwort Radula complanata. Plant Biology, 2, 208–10.CrossRefGoogle Scholar
Forrest, L. L., Davis, E. C., Long, D. G., Crandall-Stotler, B. J., Clark, A. & Hollingsworth, M. L. (2006). Unraveling the evolutionary history of the liverworts (Marchantiophyta): multiple taxa, genomes and analysis. Bryologist, 109, 303–34.CrossRefGoogle Scholar
Frey, W. & Stech, M. (2005). A morpho-molecular classification of the liverworts (Hepaticophytina, Bryophyta). Nova Hedwigia, 81, 55–78.CrossRefGoogle Scholar
Fulford, M. H. (1956). The young stages of the leafy Hepaticae: a résumé. Phytomorphology, 6, 199–235.Google Scholar
Galatis, B., Apostolakos, P. & Katsaros, C. (1978). Ultrastructural studies on the oil bodies of Marchantia paleacea Bert. I. Early stages of oil-body cell differentiation: origination of the oil body. Canadian Journal of Botany, 56, 2252–67.CrossRefGoogle Scholar
Goebel, K. (1893). Archegoniatenstudien. V. Die Blattbildung der Lebermoose und ihre biologische Bedeutung. Flora, 77, 423–59.Google Scholar
Goebel, K. (1895). Über Function und Anlegung der Lebermoos-Elateren. Flora, 80, 1–37.Google Scholar
Goebel, K. (1912). Archegoniatenstudien. XV. Die Homologie der Antheridien- und der Archegonienhüllen bei den Lebermoosen. Flora, 105, 53–70.Google Scholar
Goebel, K. (1930). Organographie der Pflanzen, 3rd edn. Jena: G. Fischer.Google Scholar
Gradstein, S. R., Cleef, A. M. & Fulford, M. H. (1977). Studies on Colombian cryptogams IIA. Hepaticae – oil body structure and ecological distribution of selected species of tropical Andean Jungermanniales. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series C, 80, 377–420.Google Scholar
Grolle, R. (1964). Eine neue Echinocolea auf Celebes. Botanical Magazine, 77, 333–5.CrossRefGoogle Scholar
Groth-Malonek, M., Pruchner, D., Grewe, F. & Knoop, V. (2005). Ancestors of trans-splicing mitochondrial introns support serial sister group relationships of hornworts and mosses with vascular plants. Molecular Biology and Evolution, 22, 117–25.CrossRefGoogle ScholarPubMed
Hallet, J.-N. (1978). Le cycle cellulaire de l'apicale muscinale: données nouvelles et caractères originaux. Bryophytorum Bibliotheca, 13, 1–20.Google Scholar
Hébant, C. (1977). The conducting tissues of bryophytes. Bryophytorum Bibliotheca, 10, 1–157.Google Scholar
Heinrichs, J., Gradstein, S. R., Wilson, R. & Schneider, H. (2005). Towards a natural classification of liverworts (Marchantiophyta) based on the chloroplast gene rbcL. Cryptogamie, Bryologie, 26, 131–50.Google Scholar
Heinrichs, J., Lindner, M., Groth, H.et al. (2006). Goodbye or welcome Gondwana? – insights into the phylogenetic biogeography of the leafy liverwort Plagiochila with a description of Proskauera, gen. nov. (Plagiochilaceae, Jungermanniales). Plant Systematics and Evolution, 258, 227–50.CrossRefGoogle Scholar
Heinrichs, J., Hentschel, J., Wilson, R., Feldberg, K. & Schneider, H. (2007). Evolution of leafy liverworts (Jungermannniidae, Marchantiophyta): estimating divergence times from chloroplast DNA sequences using penalized likelihood with integrated fossil evidence. Taxon, 56, 31–44.Google Scholar
Hendry, T. A., Yang, Y., Davis, E. C.et al. (2007). Evaluating phylogenetic positions of four liverworts from New Zealand, Neogrollea notabilis, Jackiella curvata, Goebelobryum unguiculatum, and Herzogianthus vaginatus, using three chloroplast genes. Bryologist, 110, 738–51.CrossRefGoogle Scholar
Hentschel, J., Wilson, R., Burghardt, M.et al. (2006). Reinstatement of Lophocoleaceae (Jungermanniopsida) based on chloroplast gene rbcL data: exploring the importance of female involucres for the systematics of Jungermanniales. Plant Systematics and Evolution, 258, 211–26.CrossRefGoogle Scholar
He-Nygrén, X., Ahonen, I., Juslén, A., Glenny, D. & Piippo, S. (2004). Phylogeny of liverworts – beyond a leaf and a thallus. Monographs in Systematic Botany from the Missouri Botanical Garden, 98, 87–118.Google Scholar
He-Nygrén, X., Juslén, A., Ahonen, I., Glenny, D. & Piippo, S. (2006). Illuminating the evolutionary history of liverworts (Marchantiophyta) – towards a natural classification. Cladistics, 22, 1–31.CrossRefGoogle Scholar
Heselwood, M. M. & Brown, E. A. (2007). A molecular phylogeny of the liverwort family Lepidoziaceae Limpr. in Australasia. Plant Systematics and Evolution, 265, 193–219.CrossRefGoogle Scholar
Hess, S., Frahm, J.-P. & Theisen, I. (2005). Evidence of zoophagy in a second liverwort species, Pleurozia purpurea. Bryologist, 108, 212–18.CrossRefGoogle Scholar
Hofmeister, W. (1851). Vergleichende Untersuchungen der Keimung, Entfaltung und Fruchtbildung höherer Kryptogamen. Leipzig: Friedrich Hofmeister.Google Scholar
Hollensen, R. H. (1973). A new type of branching in Blepharostoma trichophyllum (L.) Dum. Journal of the Hattori Botanical Laboratory, 37, 205–9.Google Scholar
Howe, M. A. (1894). Chapters in the early history of hepaticology – I. Erythea, 2, 130–5.Google Scholar
Hutchinson, A. H. (1915). Gametophyte of Pellia epiphylla. Botanical Gazette, 60, 134–43.CrossRefGoogle Scholar
Ingold, C. T. (1939). Spore Discharge in Land Plants. Oxford: Clarendon Press.Google Scholar
Kelley, C. B. & Doyle, W. T. (1975). Differentiation of intracapsular cells in the sporophyte of Sphaerocarpos donnellii. American Journal of Botany, 62, 547–59.CrossRefGoogle Scholar
Knapp, E. (1930). Untersuchungen über die Hüllorgane um Archegonien und Sporogonien der akrogynen Jungermanniaceen. Botanische Abhandlungen, 16, 1–168.Google Scholar
Kobiyama, Y. (2003). Comparative development and ultrastructure of the specialized parenchyma cells and/or hydrolyzed cells in select liverworts and hornworts. Unpublished Ph.D. dissertation, Southern Illinois University, Carbondale, Illinois.
Leitgeb, H. (1871a). Beiträge zur Entwicklungsgeschichte der Pflanzenorgane. IV. Wachstumsgeschichte von Radula complanata. Sitzungsberichte der Kaiserlichen Academie der Wissenschaften. Wein. Mathematisch-naturwissenschaftliche Classe, 63, 13–60.Google Scholar
Leitgeb, H. (1871b). Über die Verzweignug der Lebermoose. Botanische Zeitung, Berlin, 29, 557–65.Google Scholar
Leitgeb, H. (1872). Über die endogene Sprossbildung bei Lebermoosen. Botanische Zeitung, Berlin, 30, 33–41.Google Scholar
Leitgeb, H. (1874–1881). Untersuchungen über die Lebermoose. I–VI; I. Blasia pusilla, 1874; II. Die Foliosen Jungermannieen, 1875; III Die Frondosen Jungermannieen, 1877; IV. Die Riccieen, 1879; V. Die Anthoceroteen, 1879; VI. Die Marchantieen, 1881. Vols. I–III, Jena: O. Deistung's Buchhandlung; vols. IV–VI, Graz: Leuschner & Lubensky.
Ligrone, R. & Duckett, J. G. (1996). Development of water-conducting cells in the antipodal liverwort Symphyogyna brasiliensis (Metzgeriales). New Phytologist, 132, 603–15.CrossRefGoogle Scholar
Ligrone, R., Duckett, J. G. & Renzaglia, K. S. (1993). The gametophyte-sporophyte junction in land plants. Advances in Botanical Research, 19, 232–317.Google Scholar
Liu, Y., Jia, Y., Wang, W.et al. (2008). Phylogenetic relationships of two endemic genera Trichocoleopsis and Neotrichocolea (Hepaticae) from east Asia. Annals of the Missouri Botanical Garden, 95, in press.CrossRefGoogle Scholar
Long, D. G. (2006a). Revision of the genus Asterella P. Beauv. in Eurasia. Bryophytorum Bibliotheca, 63, 1–299.Google Scholar
Long, D. G. (2006b). New higher taxa of complex thalloid liverworts (Marchantiophyta – Marchantiopsida). Edinburgh Journal of Botany, 63, 257–62.CrossRefGoogle Scholar
Longton, R. E. & Schuster, R. M. (1983). Reproductive biology. In New Manual of Bryology, vol. 1, ed. Schuster, R. M., pp. 386–462. Nichinan: Hattori Botanical Laboratory.Google Scholar
Magill, R. E. (ed.). (1990). Glossarium Polyglottum Bryologiae. Monographs in Systematic Botany from the Missouri Botanical Garden, 33, 1–297.
Mishler, B. D. & Churchill, S. P. (1984). A cladistic approach to the phylogeny of the “bryophytes.”Brittonia, 36, 406–24.CrossRefGoogle Scholar
Mishler, B. D. & DeLuna, E. (1991). The use of ontogenetic data in phylogenetic analyses of mosses. Advances in Bryology, 4, 121–67.Google Scholar
Müller, K. (1939). Untersuchungen über die Ölkörper der Lebermoose. Berichte der Deutschen Botanischen Gesellschaft, 57, 325–70.Google Scholar
Müller, K. (1948). Morphologische und anatomische Untersuchungen an Antheridien beblätter Jungermannien. Botaniska Notiser, 1948, 71–80.Google Scholar
Müller, K. (1954[1952]). Marchantiineae. In Die Lebermoose Europas, Dr. L. Rabenhorst's Kryptogamen-Flora von Deutschland, Österreich und der Schweiz, 3rd edn, vol. 6, pp. 320–409. Leipzig: Eduard Kummer.Google Scholar
Murray, R. V. & Crandall-Stotler, B. J. (2005). SEM survey of hydrolyzed strand cell diversity in the simple thalloid liverworts (Jungermanniopsida, subclass Metzgeriidae). Botany 2005 Abstracts. Scientific Meeting [American Bryological and Lichenological Society], August 13–17, 2005, Austin, Texas, p. 33 [abstract].
Nehira, K. (1983). Spore germination, protonema development and sporeling development. In New Manual of Bryology, vol. 1, ed. Schuster, R. M., pp. 343–85. Nichinan: Hattori Botanical Laboratory.Google Scholar
Oostendorp, C. (1987). The bryophytes of the Palaeozoic and the Mesozoic. Bryophytorum Bibliotheca, 34, 1–112.Google Scholar
Parihar, N. S. (1961). An Introduction to Embryophyta, vol. I, Bryophyta, 3rd edn. Allahabad: Central Book Depot.Google Scholar
Pfeffer, W. (1874). Die Ölkörper der Lebermoose. Flora, 57, 2–6, 17–27, 33–43.Google Scholar
Pihakaski, K. (1972). Histochemical studies on the oil bodies of two liverworts, Pellia epiphylla and Bazzania trilobata. Acta Botanica Fennica, 9, 65–76.Google Scholar
Proctor, M. C. F. (1979[1980]). Structure and eco-physiological adaptation in bryophytes. In Bryophyte Systematics, ed. Clarke, G. C. S. & Duckett, J. G., pp. 479–509. London: Academic Press.Google Scholar
Qiu, Y.-L., Li, L., Wang, B.et al. (2006). The deepest divergences in land plants inferred from phylogenomic evidence. Proceedings of the National Academy of Sciences, U.S.A., 103, 15511–16.CrossRefGoogle ScholarPubMed
Renzaglia, K. S. (1982). A comparative developmental investigation of the gametophyte generation in the Metzgeriales (Hepatophyta). Bryophytorum Bibliotheca, 24, 1–253.Google Scholar
Renzaglia, K. S., Brown, R. C., Lemmon, B. E., Duckett, J. G. & Ligrone, R. (1994). Occurrence and phylogenetic significance of monoplastidic meiosis in liverworts. Canadian Journal of Botany, 72, 65–72.CrossRefGoogle Scholar
Renzaglia, K. S., Schuette, S., Duff, R. J.et al. (2007). Bryophyte phylogeny: advancing the molecular and morphological frontiers. Bryologist 110, 179–213.CrossRefGoogle Scholar
Schill, D. B., Long, D. G., Moeller, M. & Squirrell, J. (2004). Phylogenetic relationships between Lophoziaceae and Scapaniaceae based on chloroplast sequences. Monographs in Systematic Botany from the Missouri Botanical Garden, 98, 141–9.Google Scholar
Schuster, R. M. (1966). The Hepaticae and Anthocerotae of North America, East of the Hundredth Meridian, vol. I. New York: Columbia University Press.Google Scholar
Schuster, R. M. (1984a). Comparative anatomy and morphology of the Hepaticae. In New Manual of Bryology, vol. 2, ed. Schuster, R. M., pp. 760–891. Nichinan: Hattori Botanical Laboratory.Google Scholar
Schuster, R. M. (1984b). Evolution, phylogeny and classification of the Hepaticae. In New Manual of Bryology, vol. 2, ed. Schuster, R. M., pp. 892–1070. Nichinan: Hattori Botanical Laboratory.Google Scholar
Schuster, R. M. (1992a). The oil-bodies of the Hepaticae. I. Introduction. Journal of the Hattori Botanical Laboratory, 72, 151–62.Google Scholar
Schuster, R. M. (1992b). The Hepaticae and Anthocerotae of North America, East of the Hundredth Meridian, vol. V. Chicago, IL: Field Museum of Natural History.Google Scholar
Schuster, R. M. (1992c). The Hepaticae and Anthocerotae of North America, East of the Hundredth Meridian, vol. VI. Chicago, IL: Field Museum of Natural History.Google Scholar
Shimamura, M., Mineyuki, Y. & Deguchi, H. (2003). A review of the occurrence of monoplastic meiosis in liverworts. Journal of the Hattori Botanical Laboratory, 94, 179–86.Google Scholar
Shimamura, M., Brown, R. C., Lemmon, B. E.et al. (2004). γ-Tubulin in basal land plants: characterization, localization and implication in the evolution of acentriolar microtubule organizing centers. Plant Cell, 16, 45–59.CrossRefGoogle ScholarPubMed
Stotler, R. E. (1969 [1970]). The genus Frullania subgenus Frullania in Latin America. Nova Hedwigia 18, 397–555.Google Scholar
Stotler, R. & Crandall-Stotler, B. (1977). A checklist of the liverworts and hornworts of North America. Bryologist, 80, 405–28.CrossRefGoogle Scholar
Suire, C. (2000). A comparative transmission electron microscopic study on the formation of oil-bodies in liverworts. Journal of the Hattori Botanical Laboratory, 89, 209–32.Google Scholar
Suire, C., Bouvier, F., Backhaus, R.et al. (2000). Cellular localization of isoprenoid biosynthetic enzymes in Marchantia polymorpha. Uncovering a new role of oil bodies. Plant Physiology, 124, 971–8.CrossRefGoogle ScholarPubMed
Thiers, B. M. (1982). Branching in the Lejeuneaceae I: A comparison of branch development in Aphanolejeunea and Cololejeunea. Bryologist, 85, 104–9.CrossRefGoogle Scholar
Thomas, R. T. & Doyle, W. T. (1976). Changes in the carbohydrate constituents of elongating Lophocolea heterophylla setae (Hepaticae). American Journal of Botany, 63, 1054–9.CrossRefGoogle Scholar
Thomas, R. J., Stanton, D. S. & Grusak, N. A. (1979). Radioactive tracer study of sporophyte nutrition in hepatics. American Journal of Botany, 66, 398–403.CrossRefGoogle Scholar
Verdoorn, F. (1930). Die Frullaniaceae der Indomalesischen Inseln (De Frullaniaceis VII). Annales Bryologici, suppl., 1, 1–187.Google Scholar
Konrat, M. J. & Braggins, J. E. (2001). A taxonomic assessment of the initial branching appendages in the liverwort genus Frullania Raddi. Nova Hedwigia, 72, 283–310.Google Scholar
Wellman, C. H., Osterloff, P. & Mohluddin, U. (2003). Fragments of the earliest land plants. Nature, 425, 282–5.CrossRefGoogle ScholarPubMed
Wilson, R., Gradstein, S. R., Schneider, H. & Heinrichs, J. (2007). Unraveling the phylogeny of Lejeuneaceae (Jungermanniopsida): evidence of four main lineages. Molecular Phylogenetics and Evolution, 43, 270–82.CrossRefGoogle Scholar
Wood, A. J. (2007). The nature and distribution of vegetative desiccation-tolerance in hornworts, liverworts and mosses. Bryologist, 110, 163–77.CrossRefGoogle Scholar
Yatsentyuk, S. P., Konstantinova, N. A., Ignatov, M. S., Hyvönen, J. & Troitsky, A. V. (2004). On phylogeny of Lophoziaceae and related families (Hepaticae: Jungermanniales) based on trnL-trnF intron-spacer sequences of chloroplast DNA. Monographs in Systematic Botany from the Missouri Botanical Garden, 98, 150–65.Google Scholar
Zwickel, W. (1932). Studien über die Ocellen der Lebermoose. Beihefte zum Botanischen Centralblatt, 49, 569–648.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×