Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-28T18:18:55.843Z Has data issue: false hasContentIssue false

10 - Population and community ecology of bryophytes

Published online by Cambridge University Press:  06 July 2010

Bernard Goffinet
Affiliation:
University of Connecticut
A. Jonathan Shaw
Affiliation:
Duke University, North Carolina
Get access

Summary

Introduction

Modern textbooks in general ecology contain very few, if any, bryophyte examples of patterns and processes such as population and metapopulation dynamics, dispersal, competition, herbivory, and species richness variation. A question then arises: can we freely adapt theories developed from studies of vascular plants or even animals and apply them to bryophytes? In this chapter I give examples of population and community-level processes based on bryophyte studies, and discuss how life history, morphology and physiology of bryophytes can help us to understand population dynamics, community diversity, and species composition.

Bryophytes are important in terms of species richness and cover in many habitats, and also for ecosystem functions. Most obvious is the role of Sphagnum as peat former. A calculation based on an average peat depth of 2 m indicates that the amount of carbon in northern hemisphere peatlands is 320 Gt, about 44% of the amount held in the atmosphere as carbon dioxide (Rydin & Jeglum 2006; see Chapter 9, this volume). Another example is the finding that nitrogen-fixation by the cyanobacterium Nostoc associated with Pleurozium schreberi contributes substantially to the nutrient budget of boreal forests (DeLuca et al. 2002). An illustration of the community importance of bryophytes is their contribution to biodiversity in many ecosystems at northern latitudes. As an example, Sweden hosts c. 0.8% of the world's vascular plant species, and 7.5% of the bryophytes (Table 10.1).

Type
Chapter
Information
Bryophyte Biology , pp. 393 - 444
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, L. I. & Hytteborn, H. (1991). Bryophytes and decaying wood – a comparison between managed and natural forest. Holarctic Ecology, 14, 121–30.Google Scholar
Aude, E. & Ejrnaes, R. (2005). Bryophyte colonisation in experimental microcosms: the role of nutrients, defoliation and vascular vegetation. Oikos, 109, 323–30.CrossRefGoogle Scholar
Bates, J. W. (1988). The effect of shoot spacing on the growth and branch development of the moss Rhytidiadelphus triquetrus. New Phytologist, 109, 499–504.CrossRefGoogle Scholar
Bayley, S. E., Vitt, D. H., Newbury, R. W.et al. (1987). Experimental acidification of a Sphagnum-dominated peatland: first year results. Canadian Journal of Fisheries and Aquatic Sciences, 44 (Suppl. 1), 194–205.CrossRefGoogle Scholar
Begon, M., Townsend, C. R. & Harper, J. L. (2006). Ecology. From Individuals to Ecosystems, 4th edn. Oxford: Blackwell Science.Google Scholar
Bengtsson, J., Fagerström, T. & Rydin, H. (1994). Competition and coexistence in plant communities. Trends in Ecology and Evolution, 9, 246–50.CrossRefGoogle ScholarPubMed
Bergamini, A., Pauli, D., Peintinger, M. & Schmid, B. (2001). Relationships between productivity, number of shoots and number of species in bryophytes and vascular plants. Journal of Ecology, 89, 920–9.CrossRefGoogle Scholar
Berglund, H. & Jonsson, B. G. (2001). Predictability of plant and fungal species richness of old-growth boreal forest islands. Journal of Vegetation Science, 12, 857–66.CrossRefGoogle Scholar
Bisang, I. (1996). Quantitative analysis of the diaspore banks of bryophytes and ferns in cultivated fields in Switzerland. Lindbergia, 21, 9–20.Google Scholar
Bisang, I., Ehrlén, J. & Hedenäs, L. (2004). Mate limited reproductive success in two dioicous mosses. Oikos, 104, 291–8.CrossRefGoogle Scholar
Breil, D. A. & Moyle, S. M. (1976). Bryophytes used in construction of bird nests. Bryologist, 79, 95–8.CrossRefGoogle Scholar
Caswell, H. (2001). Matrix Population Models: Construction, Analyses, and Interpretation, 2nd edn. Sunderland, MA: Sinauer.Google Scholar
Chapman, S. B. & Rose, R. J. (1991). Changes in the vegetation at Coom Rigg Moss National Nature Reserve within the period 1958–86. Journal of Applied Ecology, 28, 140–53.CrossRefGoogle Scholar
Cleavitt, N. L. (2001). Disentangling moss species limitations: the role of physiologically based substrate specificity for six species occurring on substrates with varying pH and percent organic matter. Bryologist, 104, 59–68.CrossRefGoogle Scholar
Cleavitt, N. L. (2004). Controls on the distribution of Mnium arizonicum along an elevation gradient in the Front Ranges of the Rocky Mountains, Alberta. Journal of the Torrey Botanical Society, 131, 150–60.CrossRefGoogle Scholar
Clymo, R. S. & Duckett, J. G. (1986). Regeneration of Sphagnum. New Phytologist, 102, 589–612.CrossRefGoogle Scholar
Collins, N. J. (1976). Growth and population dynamics of the moss Polytrichum alpestre in the maritime Antarctic. Strategies of growth and population dynamics of tundra plants 2. Oikos, 27, 389–401.CrossRefGoogle Scholar
Cronberg, N. (1993). Reproductive biology of Sphagnum. Lindbergia, 17, 69–82.Google Scholar
Cronberg, N. (2002). Colonization dynamics of the clonal moss Hylocomium splendens on islands in the Baltic land uplift area: reproduction, genet distribution and genetic variation. Journal of Ecology, 90, 925–35.CrossRefGoogle Scholar
Cronberg, N. (2004). Genetic differentiation between populations of the moss Hylocomium splendens (Hedw.) Schimp. from low versus high elevation in the Scandinavian mountain range. Lindbergia, 29, 64–72.Google Scholar
Cronberg, N., Natcheva, R. & Hedlund, K. (2006a). Microarthropods mediate sperm transfer in mosses. Science, 313, 1255.CrossRefGoogle ScholarPubMed
Cronberg, N., Rydgren, K. & Økland, R. H. (2006b). Clonal structure and genet-level sex ratios suggest different roles of vegetative and sexual reproduction in the clonal moss Hylocomium splendens. Ecography, 29, 95–103.CrossRefGoogle Scholar
Crowley, P. H., Davis, H. M., Ensminger, A. L.et al. (2005). A general model of local competition for space. Ecology Letters, 8, 176–88.CrossRefGoogle Scholar
Dalen, L. & Söderström, L. (1999). Survival ability of moss diaspores in water – an experimental study. Lindbergia, 24, 49–58.Google Scholar
DeLuca, T. H., Zackrisson, O., Nilsson, A.-C. & Sellstedt, A. (2002). Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature, 419, 917–20.CrossRefGoogle ScholarPubMed
Duckett, J. G. & Clymo, R. S. (1988). Regeneration of bog liverworts. New Phytologist, 110, 119–27.CrossRefGoogle Scholar
During, H. J. (1979). Life strategies of bryophytes: a preliminary review. Lindbergia, 5, 2–18.Google Scholar
During, H. J. (1990). Clonal growth patterns among bryophytes. In Clonal Growth in Plants: Regulation and Function, ed. Groenendael, J. & Kroon, H., pp. 153–76. The Hague: SPB Academic Publishing.Google Scholar
During, H. J. (1992). Ecological classification of bryophytes and lichens. In Bryophytes and Lichens in a Changing Environment, ed. Bates, J. W. & Farmer, A. M., pp. 1–31. Oxford: Oxford University Press.Google Scholar
During, H. J. (2001). Diaspore banks. Bryologist, 104, 92–7.CrossRefGoogle Scholar
During, H. J. & Lloret, F. (2001). The species-pool hypothesis from a bryological perspective. Folia Geobotanica, 36, 63–70.CrossRefGoogle Scholar
During, H. J. & Horst, B. (1983). The diaspore bank of bryophytes and ferns in chalk grassland. Lindbergia, 9, 57–64.Google Scholar
During, H. J. & Tooren, B. F. (1988). Patterns and dynamics in the bryophyte layer of a chalk grassland. In Diversity and Pattern in Plant Communities, 1st edn, ed. During, H. J., Werger, M. J. & Willems, J. H., pp. 195–208. The Hague: SPB Academic Publishing.Google Scholar
During, H. J. & Tooren, B. F. (1990). Bryophyte interactions with other plants. Botanical Journal of the Linnean Society, 104, 79–98.CrossRefGoogle Scholar
Ehrlen, J., Bisang, I. & Hedenäs, L. (2000). Costs for sporophyte production in the moss Dicranum polysetum. Plant Ecology, 149, 207–17.CrossRefGoogle Scholar
Ellyson, W. J. T. & Sillett, S. C. (2003). Epiphyte communities on Sitka spruce in an old-growth redwood forest. Bryologist, 106, 197–211.CrossRefGoogle Scholar
Equihua, M. & Usher, M. B. (1993). Impacts of carpets of the invasive moss Campylopus introflexus on Calluna vulgaris regeneration. Journal of Ecology, 81, 359–65.CrossRefGoogle Scholar
Ericson, L. (1977). The influence of voles and lemmings on the vegetation in a coniferous forest during a 4-year period in northern Sweden. Wahlenbergia, 4, 1–114.Google Scholar
Fagerström, T. & Ågren, G. I. (1979). Theory for coexistence of species differing in regeneration properties. Oikos, 33, 1–10.CrossRefGoogle Scholar
Filzer, P. (1933). Experimentelle Beiträge zur Synökologie der Pflanzen. I. Jahrbücher für Wissenschaftliche Botanik, 79, 9–130.Google Scholar
Frego, K. A. (1996). Regeneration of four boreal bryophytes: colonization of experimental gaps by naturally occurring propagules. Canadian Journal of Botany, 74, 1937–42.CrossRefGoogle Scholar
Frego, K. A. & Carleton, T. J. (1995a). Microsite conditions and spatial pattern in a boreal bryophyte community. Canadian Journal of Botany, 73, 544–51.CrossRefGoogle Scholar
Frego, K. A. & Carleton, T. J. (1995b). Microsite tolerance of four bryophytes in a mature black spruce stand: reciprocal transplants. Bryologist, 98, 452–8.CrossRefGoogle Scholar
Gignac, L. D., Vitt, D. H. & Bayley, S. E. (1991). Bryophyte response surfaces along ecological and climatic gradients. Vegetatio, 93, 29–45.Google Scholar
Gloaguen, J. C. (1993). Spatio-temporal patterns in post-burn succession on Brittany heathlands. Journal of Vegetation Science, 4, 561–6.CrossRefGoogle Scholar
Grubb, P. J. (1977). The maintenance of species richness in plant communities: the importance of the regeneration niche. Biological Reviews, 52, 107–45.CrossRefGoogle Scholar
Gunnarsson, U. & Rydin, H. (1998). Demography and recruitment of Scots pine on raised bogs in eastern Sweden and relationships to microhabitat differentiation. Wetlands, 18, 133–41.CrossRefGoogle Scholar
Gustafsson, L. & Ahlén, I. (1996). The National Atlas of Sweden. Part 16. Geography of Plants and Animals. [Also in Swedish: Växter och djur.] Stockholm: SNA.Google Scholar
Hanski, I. (1999). Metapopulation Ecology. Oxford: Oxford University Press.Google Scholar
Hassel, K. & Söderström, L. (1999). Spore germination in the laboratory and spore establishment in the field in Pogonatum dentatum (Brid.) Brid. Lindbergia, 24, 3–10.Google Scholar
Hayward, P. M. & Clymo, R. S. (1983). The growth of Sphagnum: experiments on, and simulation of, some effects of light flux and water-table depth. Journal of Ecology, 71, 845–63.CrossRefGoogle Scholar
Hedderson, T. A. & Brassard, G. R. (1990). Microhabitat relationships of five co-occurring saxicolous mosses on cliffs and scree slopes in eastern Newfoundland. Holarctic Ecology, 13, 134–42.Google Scholar
Hedenås, H., Bolyukh, V. O. & Jonsson, B. G. (2003). Spatial distribution of epiphytes on Populus tremula in relation to dispersal mode. Journal of Vegetation Science, 14, 233–42.Google Scholar
Heegaard, E. (2000). Patch dynamics and/or the species-environmental relationship in conservation bryology. Lindbergia, 25, 85–8.Google Scholar
Heinken, T. & Zippel, E. (2004). Natural re-colonization of experimental gaps by terricolous bryophytes in Central European pine forests. Nova Hedwigia, 79, 329–51.CrossRefGoogle Scholar
Herben, T. (1994). The role of reproduction for persistence of bryophyte populations in transient and stable habitats. Journal of the Hattori Botanical Laboratory, 76, 115–26.Google Scholar
Herben, T., Rydin, H. & Söderström, L. (1991). Spore establishment probability and the persistence of the fugitive invading moss, Orthodontium lineare: a spatial simulation model. Oikos, 60, 215–21.CrossRefGoogle Scholar
Herben, T. & Söderström, L. (1992). Which habitat parameters are most important for the persistence of a bryophyte species on patchy, temporary substrates?Biological Conservation, 59, 121–6.CrossRefGoogle Scholar
Holyoak, M., Leibold, M. A. & Holt, R. D. (eds.). (2005). Metacommunities. Spatial Dynamics in Ecological Communities. Chicago, IL: University of Chicago Press.
Hytteborn, H. & Packham, J. R. (1987). Decay rate of Picea abies logs and the storm gap theory: a re-examination of Sernander plot III, Fiby urskog, central Sweden. Arboricultural Journal, 11, 299–311.CrossRefGoogle Scholar
Ingerpuu, N., Liira, J. & Pärtel, M. (2005). Vascular plants facilitated bryophytes in a grassland experiment. Plant Ecology, 180, 69–75.CrossRefGoogle Scholar
Jonsson, B. G. (1993). The bryophyte diaspore bank and its role after small-scale disturbance in a boreal forest. Journal of Vegetation Science, 4, 819–26.CrossRefGoogle Scholar
Jonsson, B. G. & Esseen, P.-A. (1990). Treefall disturbance maintains high bryophyte diversity in boreal spruce forest. Journal of Ecology, 78, 924–36.CrossRefGoogle Scholar
Jonsson, B. G. & Söderström, L. (1988). Growth and reproduction in the leafy hepatic Ptilidium pulcherrimum (G. Web.) Vainio during a 4-year period. Journal of Bryology, 15, 315–25.CrossRefGoogle Scholar
Kimmerer, R. W. (1993). Disturbance and dominance in Tetraphis pellucida: a model of disturbance frequency and reproductive mode. Bryologist, 96, 73–9.CrossRefGoogle Scholar
Kimmerer, R. W. (1994). Ecological consequences of sexual versus asexual reproduction in Dicranum flagellare and Tetraphis pellucida. Bryologist, 97, 20–5.CrossRefGoogle Scholar
Kimmerer, R. W. (2005). Patterns of dispersal and establishment of bryophytes colonizing natural and experimental treefall mounds in northern hardwood forests. Bryologist, 108, 391–401.CrossRefGoogle Scholar
Kimmerer, R. W. & Allen, T. F. H. (1982). The role of disturbance in the pattern of a riparian bryophyte community. American Midland Naturalist, 107, 370–83.CrossRefGoogle Scholar
Kimmerer, R. W. & Driscoll, M. J. L. (2000). Bryophyte species richness on insular boulder habitats: the effects of area, isolation, and microsite diversity. Bryologist, 103, 748–56.CrossRefGoogle Scholar
Kimmerer, R. W. & Young, C. C. (1996). Effect of gap size and regeneration niche on species coexistence in bryophyte communities. Bulletin of the Torrey Botanical Club, 123, 16–24.CrossRefGoogle Scholar
Kooijman, A. M. (1993). On the ecological amplitude of four mire bryophytes; a reciprocal transplant experiment. Lindbergia, 18, 19–24.Google Scholar
Kooijman, A. M. & Bakker, C. (1995). Species replacement in the bryophyte layer in mires: the role of water type, nutrient supply and interspecific interactions. Journal of Ecology, 83, 1–8.CrossRefGoogle Scholar
Kooijman, A. M. & Kanne, D. M. (1993). Effects of water chemistry, nutrient supply and interspecific interactions on the replacement of Sphagnum subnitens by S. fallax in fens. Journal of Bryology, 17, 431–8.CrossRefGoogle Scholar
Laaka-Lindberg, S., Hedderson, T. A. & Longton, R. E. (2000). Rarity and reproductive characteristics in the British hepatic flora. Lindbergia, 25, 78–84.Google Scholar
Laaka-Lindberg, S. & Heino, M. (2001). Clonal dynamics and evolution of dormancy in the leafy hepatic Lophozia silvicola. Oikos, 94, 525–32.CrossRefGoogle Scholar
Laaka-Lindberg, S., Korpelainen, H. & Pohjamo, M. (2003). Dispersal of asexual propagules in bryophytes. Journal of the Hattori Botanical Laboratory, 93, 319–30.Google Scholar
Leemans, R. (1991). Canopy gaps and establishment patterns of spruce (Picea abies (L.) Karst.) in two old-growth coniferous forests in central Sweden. Vegetatio, 93, 157–65.CrossRefGoogle Scholar
Li, Y., Glime, J. M. & Liao, C. (1992). Responses of two interacting Sphagnum species to water level. Journal of Bryology, 17, 59–70.CrossRefGoogle Scholar
Li, Y., Glime, J. M. & Drummer, T. D. (1993). Effects of phosphorus on the growth of Sphagnum magellanicum Brid. and S. papillosum Lindb. Lindbergia, 18, 25–30.Google Scholar
Li, Y. & Vitt, D. H. (1995). The dynamics of moss establishment: temporal response to a moisture gradient. Journal of Bryology, 18, 677–87.CrossRefGoogle Scholar
Lloret, F. (1991). Population dynamics of the coprophilous moss Tayloria tenuis in a Pyrenean forest. Holarctic Ecology, 14, 1–8.Google Scholar
Lloret, F. (1994). Gap colonization by mosses on a forest floor: an experimental approach. Lindbergia, 19, 122–8.Google Scholar
Löbel, S., Snäll, T. & Rydin, H. (2006a). Metapopulation processes in epiphytes inferred from patterns of regional distribution and local abundance in fragmented forest landscapes. Journal of Ecology, 94, 856–68.CrossRefGoogle Scholar
Löbel, S., Snäll, T. & Rydin, H. (2006b). Species richness patterns and metapopulation processes – evidence from epiphyte communities in boreo-nemoral forests. Ecography, 29, 169–82.CrossRefGoogle Scholar
Longton, R. E. (1988). Biology of Polar Bryophytes and Lichens, 1st edn. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Longton, R. E. (1992). Reproduction and rarity in British mosses. Biological Conservation, 59, 89–98.CrossRefGoogle Scholar
Longton, R. E. (1997). Reproductive biology and life-history strategies. Advances in Bryology, 6, 65–101.Google Scholar
Longton, R. E. & Greene, S. W. (1979). Experimental studies of growth and reproduction in the moss Pleurozium schreberi (Brid.) Mitt. Journal of Bryology, 10, 321–38.CrossRefGoogle Scholar
Longton, R. E. & Schuster, R. M. (1984). Reproductive biology. In New Manual of Bryology, ed. Schuster, R. M., pp. 386–462. Nichinan: The Hattori Botanical Laboratory.Google Scholar
Lütke Twenhöven, F. (1992). Competition between two Sphagnum species under different deposition levels. Journal of Bryology, 17, 71–80.CrossRefGoogle Scholar
Malmer, N., Svensson, B. M. & Wallén, B. (1994). Interactions between Sphagnum mosses and field layer vascular plants in the development of peat-forming systems. Folia Geobotanica et Phytotaxonomica, 29, 483–96.CrossRefGoogle Scholar
Marino, P. C. (1991a). Dispersal and coexistence of mosses (Splachnaceae) in patchy habitats. Journal of Ecology, 79, 1047–60.CrossRefGoogle Scholar
Marino, P. C. (1991b). Competition between mosses (Splachnaceae) in patchy habitats. Journal of Ecology, 79, 1031–46.CrossRefGoogle Scholar
Marino, P. C. (1991c). The influence of varying degrees of spore aggregation on the coexistence of the mosses Splachnum ampullaceum and S. luteum: a simulation study. Ecological Modelling, 58, 333–45.CrossRefGoogle Scholar
Marino, P. C. (1997). Competition, dispersal and coexistence of Splachnaceae in patchy habitats. Advances in Bryology, 6, 241–63.Google Scholar
McAlister, S. (1995). Species interactions and substrate specificity among log- inhabiting bryophyte species. Ecology, 76, 2184–95.CrossRefGoogle Scholar
McAlister, S. (1997). Cryptogam communities on fallen logs in the Duke Forest, North Carolina. Journal of Vegetation Science, 8, 115–24.CrossRefGoogle Scholar
McGee, G. G. & Kimmerer, R. W. (2002). Forest age and management effects on epiphytic bryophyte communities in Adirondack northern hardwood forests, New York, U.S.A. Canadian Journal of Forest Research, 32, 1562–76.CrossRefGoogle Scholar
McQueen, C. B. (1985). Spatial pattern and gene flow distances in Sphagnum subtile. Bryologist, 88, 333–6.CrossRefGoogle Scholar
Miles, C. J. & Longton, R. E. (1992). Deposition of moss spores in relation to distance from parent gametophytes. Journal of Bryology, 17, 355–68.CrossRefGoogle Scholar
Miller, N. G. & McDaniel, S. F. (2004). Bryophyte dispersal inferred from colonization of an introduced substratum on Whiteface Mountain, New York. American Journal of Botany, 91, 1173–82.CrossRefGoogle ScholarPubMed
Mills, S. E. & Macdonald, S. E. (2004). Predictors of moss and liverwort species diversity on microsites in conifer-dominated boreal forests. Journal of Vegetation Science, 15, 189–98.CrossRefGoogle Scholar
Morgan, J. W. (2006). Bryophyte mats inhibit germination of non-native species in burnt temperate native grassland remnants. Biological Invasions, 8, 159–68.CrossRefGoogle Scholar
Mulligan, R. C. & Gignac, L. D. (2001). Bryophyte community structure in a boreal poor fen: reciprocal transplants. Canadian Journal of Botany, 79, 404–11.CrossRefGoogle Scholar
Mulligan, R. C. & Gignac, L. D. (2002). Bryophyte community structure in a boreal poor fen II: interspecific competition among five mosses. Canadian Journal of Botany, 80, 330–9.CrossRefGoogle Scholar
Nakanishi, K. (2001). Floristic diversity of bryophyte vegetation in relation to island area. Journal of the Hattori Botanical Laboratory, 91, 301–16.Google Scholar
Nordbakken, J.-F. (1996). Fine-scale patterns of vegetation and environmental factors on an ombrotrophic mire expanse: a numerical approach. Norwegian Journal of Botany, 16, 197–209.CrossRefGoogle Scholar
Oechel, W. C. & Cleve, K. (1986). The role of bryophytes in nutrient cycling in the Taiga. In Forest Ecosystems in the Alaskan Taiga, 1st edn, ed. Cleve, K., Chapin, F. S., Flanagan, P. W., Viereck, L. A. & Dyrness, C. T., pp. 121–37. New York: Springer-Verlag.Google Scholar
Ojala, E., Mönkkönen, M. & Inkeröinen, J. (2000). Epiphytic bryophytes on European aspen Populus tremula in old-growth forests in northeastern Finland and in adjacent sites in Russia. Canadian Journal of Botany, 78, 529–36.CrossRefGoogle Scholar
Økland, R. H. (1994). Patterns of bryophyte association at different scales in a Norwegian boreal spruce forest. Journal of Vegetation Science, 5, 127–38.CrossRefGoogle Scholar
Økland, R. H. (1995). Population biology of the clonal moss Hylocomium splendens in Norwegian boreal spruce forests. I. Demography. Journal of Ecology, 83, 697–712.CrossRefGoogle Scholar
Økland, R. H. (1997). Population biology of the clonal moss Hylocomium splendens in Norwegian boreal spruce forests. III. Six-year demographic variation in two areas. Lindbergia, 22, 49–68.Google Scholar
Økland, R. H. (2000). Population biology of the clonal moss Hylocomium splendens in Norwegian boreal spruce forests. 5. Vertical dynamics of individual shoot segments. Oikos, 88, 449–69.CrossRefGoogle Scholar
Økland, R. H. & Økland, T. (1996). Population biology of the clonal moss Hylocomium splendens in Norwegian boreal spruce forests. II. Effects of density. Journal of Ecology, 84, 63–9.CrossRefGoogle Scholar
Pedersen, B., Hanslin, H. M. & Bakken, S. (2001). Testing for positive density-dependent performance in four bryophyte species. Ecology, 82, 70–88.CrossRefGoogle Scholar
Pharo, E. J., Kirkpatrick, J. B., Gilfedder, L., Mendel, L. & Turner, P. A. M. (2005). Predicting bryophyte diversity in grassland and eucalypt-dominated remnants in subhumid Tasmania. Journal of Biogeography, 32, 2015–24.CrossRefGoogle Scholar
Pharo, E. J., Lindenmayer, D. B. & Taws, N. (2004). The effects of large-scale fragmentation on bryophytes in temperate forests. Journal of Applied Ecology, 41, 910–21.CrossRefGoogle Scholar
Pohjamo, M. & Laaka-Lindberg, S. (2003). Reproductive modes in the epixylic hepatic Anastrophyllum hellerianum. Perspectives in Plant Ecology, Evolution and Systematics, 6, 159–68.CrossRefGoogle Scholar
Pohjamo, M., Laaka-Lindberg, S., Ovaskainen, O. & Korpelainen, H. (2006). Dispersal potential of spores and asexual propagules in the epixylic hepatic Anastrophyllum hellerianum. Evolutionary Ecology, 20, 415–30.CrossRefGoogle Scholar
Prins, H. H. T. (1981). Why are mosses eaten in cold environments only?Oikos, 38, 374–80.CrossRefGoogle Scholar
Pujos, J. (1994). Systèmes de croisement et fécondité chez le Sphagnum. Canadian Journal of Botany, 72, 1528–34.CrossRefGoogle Scholar
Pyysalo, H., Koponen, A. & Koponen, T. (1983). Studies on entomophily in Splachnaceae (Musci). II. Volatile compounds in the hypophysis. Annales Botanici Fennici, 20, 335–8.Google Scholar
Redbo-Torstensson, P. (1994). The demographic consequences of nitrogen fertilization of a population of sundew, Drosera rotundifolia. Acta Botanica Neerlandica, 43, 175–88.CrossRefGoogle Scholar
Rincon, E. & Grime, J. P. (1989). Plasticity and light interception by six bryophytes of contrasted ecology. Journal of Ecology, 77, 439–46.CrossRefGoogle Scholar
Rochefort, L., Quinty, F., Campeau, S., Johnson, K. & Malterer, T. J. (2003). North American approach to the restoration of Sphagnum dominated peatlands. Wetlands Ecology and Management, 11, 3–20.CrossRefGoogle Scholar
Ross-Davis, A. L. & Frego, K. A. (2004). Propagule sources of forest floor bryophytes: spatiotemporal compositional patterns. Bryologist, 107, 88–97.CrossRefGoogle Scholar
Rydgren, K. & Økland, R. H. (2001). Sporophyte production in the clonal moss Hylocomium splendens: the importance of shoot density. Journal of Bryology, 23, 91–6.CrossRefGoogle Scholar
Rydgren, K. & Økland, R. H. (2002a). Life-cycle graphs and matrix modelling of bryophyte populations. Lindbergia, 27, 81–9.Google Scholar
Rydgren, K. & Økland, R. H. (2002b). Ultimate costs of sporophyte production in the clonal moss Hylocomium splendens. Ecology, 83, 1573–9.CrossRefGoogle Scholar
Rydgren, K. & Økland, R. H. (2003). Short-term costs of sexual reproduction in the clonal moss Hylocomium splendens. Bryologist, 106, 212–20.CrossRefGoogle Scholar
Rydgren, K., Økland, R. H. & Økland, T. (1998). Population biology of the clonal moss Hylocomium splendens in Norwegian boreal spruce forests. 4. Effects of experimental fine-scale disturbance. Oikos, 82, 5–19.CrossRefGoogle Scholar
Rydgren, K., Kroon, H., Økland, R. H. & Groenendael, J. (2001). Effects of fine-scale disturbances on the demography and population dynamics of the clonal moss Hylocomium splendens. Journal of Ecology, 89, 395–405.CrossRefGoogle Scholar
Rydgren, K., Cronberg, N. & Økland, R. H. (2006). Factors influencing reproductive success in the clonal moss, Hylocomium splendens. Oecologia, 147, 445–54.CrossRefGoogle ScholarPubMed
Rydin, H. (1986). Competition and niche separation in Sphagnum. Canadian Journal of Botany, 64, 1817–24.CrossRefGoogle Scholar
Rydin, H. (1993a). Mechanisms of interactions among Sphagnum species along water-level gradients. Advances in Bryology, 5, 153–85.Google Scholar
Rydin, H. (1993b). Interspecific competition among Sphagnum mosses on a raised bog. Oikos, 66, 413–23.CrossRefGoogle Scholar
Rydin, H. (1995). Effects of density and water level on recruitment, mortality and shoot size in Sphagnum populations. Journal of Bryology, 18, 439–53.CrossRefGoogle Scholar
Rydin, H. (1997). Competition between Sphagnum species under controlled conditions. Bryologist, 100, 302–7.CrossRefGoogle Scholar
Rydin, H. & Barber, K. E. (2001). Long-term and fine-scale co-existence of closely related species. Folia Geobotanica, 36, 53–62.CrossRefGoogle Scholar
Rydin, H. & Borgegård, S.-O. (1988). Plant species richness on islands over a century of primary succession: Lake Hjälmaren. Ecology, 69, 916–27.CrossRefGoogle Scholar
Rydin, H. & Jeglum, J. K. (2006). The Biology of Peatlands. Oxford: Oxford University Press.CrossRefGoogle Scholar
Scandrett, E. & Gimingham, C. H. (1989). Experimental investigation of bryophyte interactions on a dry heathland. Journal of Ecology, 77, 838–52.CrossRefGoogle Scholar
Shmida, A. & Ellner, S. (1984). Coexistence of plant species with similar niches. Vegetatio, 58, 29–55.Google Scholar
Sillett, S. C., McCune, B., Peck, J. E. & Rambo, T. R. (2000). Four years of epiphyte colonization in Douglas-fir forest canopies. Bryologist, 103, 661–9.CrossRefGoogle Scholar
Skotnicki, M. L., Ninham, J. A. & Selkirk, P. M. (2000). Genetic diversity, mutagenesis and dispersal of Antarctic mosses – a review of progress with molecular studies. Antarctic Science, 12, 363–73.CrossRefGoogle Scholar
Slack, N. G. (1997). Niche theory and practice: bryophyte studies. Advances in Bryology, 6, 169–204.Google Scholar
Snäll, T., RibeiroJr, P. J. & Rydin, H. (2003). Spatial occurrence and colonizations in patch-tracking metapopulations: local conditions versus dispersal. Oikos, 103, 566–78.CrossRefGoogle Scholar
Snäll, T., Fogelquist, J., RibeiroJr, P. J. & Lascoux, M. (2004a). Spatial genetic structure in two congeneric epiphytes with different dispersal strategies analysed by three different methods. Molecular Ecology, 13, 2109–19.CrossRefGoogle ScholarPubMed
Snäll, T., Hagström, A., Rudolphi, J. & Rydin, H. (2004b). Distribution pattern of the epiphyte Neckera pennata on three spatial scales – importance of past landscape structure, connectivity and local conditions. Ecography, 27, 757–66.CrossRefGoogle Scholar
Snäll, T., Ehrlén, J. & Rydin, H. (2005). Colonization-extinction dynamics of an epiphyte metapopulation in a dynamic landscape. Ecology, 86, 106–15.CrossRefGoogle Scholar
Söderström, L. (1988a). The occurrence of epixylic bryophyte and lichen species in an old natural and a managed forest stand in northeast Sweden. Biological Conservation, 45, 169–78.CrossRefGoogle Scholar
Söderström, L. (1988b). Sequence of bryophytes and lichens in relation to substrate variables of decaying coniferous wood in northern Sweden. Nordic Journal of Botany, 8, 89–97.CrossRefGoogle Scholar
Söderström, L. & During, H. J. (2005). Bryophyte rarity viewed from the perspectives of life history strategy and metapopulation dynamics. Journal of Bryology, 27, 261–8.CrossRefGoogle Scholar
Söderström, L. & Herben, T. (1997). Dynamics of bryophyte metapopulations. Advances in Bryology, 6, 205–40.Google Scholar
Söderström, L. & Jonsson, B. G. (1989). Spatial pattern and dispersal in the leafy hepatic Ptilidium pulcherrimum. Journal of Bryology, 15, 793–802.CrossRefGoogle Scholar
Soro, A., Sundberg, S. & Rydin, H. (1999). Species diversity, niche width and species associations in harvested and undisturbed bogs. Journal of Vegetation Science, 10, 549–60.CrossRefGoogle Scholar
Southwood, T. R. E. (1977). Habitat, the templet for ecological strategies?Journal of Animal Ecology, 46, 337–65.CrossRefGoogle Scholar
Stark, L. R., Mishler, B. D. & McLetchie, D. N. (2000). The cost of realized sexual reproduction: assessing patterns of reproductive allocation and sporophyte abortion in a desert moss. American Journal of Botany, 87, 1599–608.CrossRefGoogle Scholar
Steel, J. B., Wilson, J. B., Anderson, B. J., Lodge, H. E. & Tangney, R. S. (2004). Are bryophyte communities different from higher-plant communities? Abundance relations. Oikos, 104, 479–86.CrossRefGoogle Scholar
Strengbom, J., Nordin, A., Näsholm, T. & Ericson, L. (2001). Slow recovery of boreal forest ecosystem following decreased nitrogen input. Functional Ecology, 15, 451–7.CrossRefGoogle Scholar
Studlar, S. M. (1982). Succession of epiphytic bryophytes near Mountain Lake, Virginia. Bryologist, 85, 51–63.CrossRefGoogle Scholar
Sundberg, S. (2002). Sporophyte production and spore dispersal phenology in Sphagnum: the importance of summer moisture and patch characteristics. Canadian Journal of Botany, 80, 543–56.CrossRefGoogle Scholar
Sundberg, S. (2005). Larger capsules enhance short-range spore dispersal in Sphagnum, but what happens further away?Oikos, 108, 115–24.CrossRefGoogle Scholar
Sundberg, S. & Rydin, H. (2000). Experimental evidence for a persistent spore bank in Sphagnum. New Phytologist, 148, 105–16.CrossRefGoogle Scholar
Sundberg, S. & Rydin, H. (2002). Habitat requirements for establishment of Sphagnum from spores. Journal of Ecology, 90, 268–78.CrossRefGoogle Scholar
Sundberg, S., Hansson, J. & Rydin, H. (2006). Colonisation of Sphagnum on land uplift islands in the Baltic Sea: time, area, distance and life history. Journal of Biogeography, 33, 1479–91.CrossRefGoogle Scholar
Svensson, B. M. (1995). Competition between Sphagnum fuscum and Drosera rotundifolia: a case of ecosystem engineering. Oikos, 74, 205–12.CrossRefGoogle Scholar
Svensson, B. M., Rydin, H. & Carlsson, B. Å. (2005). Clonal plants in the community. In Vegetation Ecology, ed. Maarel, E., pp. 129–46. Oxford: Blackwell Science.Google Scholar
Tallis, J. H. (1959). Studies in the biology and ecology of Rhacomitrium lanuginosum Brid. II. Growth, reproduction and physiology. Journal of Ecology, 47, 325–50.CrossRefGoogle Scholar
Tamm, C. O. (1953). Growth, yield and nutrition in carpets of a forest moss (Hylocomium splendens). Meddelanden från Statens Skogsforskningsinstitut, 43, 1–140.Google Scholar
Tangney, R. S., Wilson, J. B. & Mark, A. F. (1990). Bryophyte island biogeography: a study in Lake Manapouri, New Zealand. Oikos, 59, 21–6.CrossRefGoogle Scholar
Thomas, P. A., Proctor, M. C. F. & Maltby, E. (1994). The ecology of severe moorland fire on the North York Moors: chemical and physical constraints on moss establishment from spores. Journal of Ecology, 82, 457–74.CrossRefGoogle Scholar
Thum, M. (1988). The significance of carnivory for the fitness of Drosera in its natural habitat. 1. The reactions of Drosera intermedia and D. rotundifolia to supplementary feeding. Oecologia, 75, 472–80.CrossRefGoogle Scholar
Hoeven, E. C. (1999). Reciprocal transplantation of three chalk grassland bryophytes in the field. Lindbergia, 24, 23–8.Google Scholar
Hoeven, E. C. & During, H. J. (1997). The effect of density on size frequency distributions in chalk grassland bryophyte populations. Oikos, 80, 533–9.CrossRefGoogle Scholar
Velde, M., During, H. J., Zande, L. & Bijlsma, R. (2001). The reproductive biology of Polytrichum formosum: clonal structure and paternity revealed by microsatellites. Molecular Ecology, 10, 2423–34.CrossRefGoogle ScholarPubMed
Vanderpoorten, A. & Engels, P. (2002). The effects of environmental variation on bryophytes at a regional scale. Ecography, 25, 513–22.CrossRefGoogle Scholar
Virtanen, R. & Oksanen, J. (2007). The effects of habitat connectivity on cryptogam richness in a boulder metacommunity system. Biological Conservation, 135, 415–22.CrossRefGoogle Scholar
Virtanen, R., Henttonen, H. & Laine, K. (1997). Lemming grazing and structure of a snowbed plant community – a long-term experiment at Kilpisjärvi, Finnish Lapland. Oikos, 79, 155–66.CrossRefGoogle Scholar
Vitt, D. H. & Slack, N. G. (1975). An analysis of the vegetation of Sphagnum-dominated kettle-hole bogs in relation to environmental gradients. Canadian Journal of Botany, 53, 332–59.CrossRefGoogle Scholar
Watson, M. A. (1979). Age structure and mortality within a group of closely related mosses. Ecology, 60, 988–97.CrossRefGoogle Scholar
Watson, M. A. (1980). Shifts in patterns of microhabitat occupation by six closely related species of mosses along a complex altitudinal gradient. Oecologia, 47, 46–55.CrossRefGoogle ScholarPubMed
Watson, M. A. (1981). Patterns of microhabitat occupation of six closely related species of mosses along a complex altitudinal gradient. Ecology, 62, 1067–78.CrossRefGoogle Scholar
Weibull, H. & Rydin, H. (2005). Bryophyte species richness on boulders: effects of area, habitat diversity and covering tree species. Biological Conservation, 122, 71–9.CrossRefGoogle Scholar
Wiklund, K. (2002). Substratum preference, spore output and temporal variation in sporophyte production in the epixylic moss Buxbaumia viridis. Journal of Bryology, 24, 187–95.CrossRefGoogle Scholar
Wiklund, K. & Rydin, H. (2004a). Colony expansion of Neckera pennata: Modelled growth rate and effect of microhabitat, competition, and precipitation. Bryologist, 107, 293–301.CrossRefGoogle Scholar
Wiklund, K. & Rydin, H. (2004b). Ecophysiological constraints on spore establishment in bryophytes. Functional Ecology, 18, 907–13.CrossRefGoogle Scholar
Wilson, J. B., Newman, J. E. & Tangney, R. S. (1995). Are bryophyte communities different?Journal of Bryology, 18, 689–705.CrossRefGoogle Scholar
Wyatt, R. (1977). Spatial pattern and gamete dispersal distances in Atrichum angustatum, a dioicous moss. Bryologist, 80, 284–91.CrossRefGoogle Scholar
Zamfir, M. (2000). Effects of bryophytes and lichens on seedling emergence of alvar plants: evidence from greenhouse experiments. Oikos, 88, 603–11.CrossRefGoogle Scholar
Zamfir, M. & Goldberg, D. E. (2000). The effect of initial density on interactions between bryophytes at individual and community levels. Journal of Ecology, 88, 243–55.CrossRefGoogle Scholar
Zartman, C. E. (2003). Habitat fragmentation impacts on epiphyllous bryophyte communities in central Amazonia. Ecology, 84, 948–54.CrossRefGoogle Scholar
Zartman, C. E. & Nascimento, H. E. M. (2006). Are habitat-tracking metacommunities dispersal limited? Inferences from abundance-occupancy patterns of epiphylls in Amazonian forest management. Biological Conservation, 127, 46–54.CrossRefGoogle Scholar
Zartman, C. E. & Shaw, A. J. (2006). Metapopulation extinction thresholds in rain forest remnants. American Naturalist, 167, 177–89.CrossRefGoogle ScholarPubMed
Zobel, M. (1997). The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence?Trends in Ecology and Evolution, 12, 266–9.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×