Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-28T19:57:48.463Z Has data issue: false hasContentIssue false

12 - Conservation biology of bryophytes

Published online by Cambridge University Press:  06 July 2010

Bernard Goffinet
Affiliation:
University of Connecticut
A. Jonathan Shaw
Affiliation:
Duke University, North Carolina
Get access

Summary

Introduction

Conservation biology is a fairly new, multidisciplinary science that has developed to deal with the crisis confronting biological diversity (Primack 1993). As a crisis discipline, conservation biology arose in response to an increasingly formulated political demand to face the dramatic loss of biodiversity and the need to take steps to anticipate, prevent, and reverse the trend (Heywood & Iriondo 2003). Subsequent ratification of the Convention on Biological Diversity at the United Nation conference held in Rio in 1992 by most of the world's governments has placed the subject of biodiversity firmly on the political agenda.

The past few years have witnessed a major evolution in our understanding of conservation. The increasing need for performing tools has rendered conservation biology a truly multidisciplinary science, feeding on a variety of other areas, including ecology, demography, population biology, population genetics, biogeography, landscape ecology, environmental management, and economics (Heywood & Iriondo 2003). Conservation interest has also been progressively enlarged to include a broad array of taxa that used to be completely overlooked. Cryptogams were, for example, the focus of only about 4% of published papers between 2000 and 2005 in leading conservation journals (Hylander & Jonsson 2007). The situation has been most recently changing and there has been an increasing awareness of the necessity to include cryptogams in general, and bryophytes in particular, in conservation programs (Hylander & Jonsson 2007).

Type
Chapter
Information
Bryophyte Biology , pp. 487 - 534
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acebey, A., Gradstein, S. R. & Kromer, T. (2003). Species richness and habitat diversification of bryophytes in submontane rain forest and fallows of Bolivia. Journal of Tropical Ecology, 19, 9–18.CrossRefGoogle Scholar
Ah-Peng, C. & Bardat, J. (2005). Check list of the bryophytes of Réunion Island (France). Tropical Bryology, 26, 89–118.Google Scholar
Andelman, S. J. & Fagan, W. F. (2000). Umbrellas and flagships: efficient conservation surrogates or expensive mistakes?Proceedings of the National Academy of Sciences, U.S.A., 97, 5954–9.CrossRefGoogle ScholarPubMed
Andersson, M. S. & Gradstein, S. R. (2005). Impact of management intensity on non-vascular epiphyte diversity in cacao plantations in western Ecuador. Biodiversity and Conservation, 14, 1101–20.CrossRefGoogle Scholar
Asplund, D. (1996). Energy use of peat. In Global Peat Resources, ed. Lappalainen, E., pp. 319–25. Jyväskylä: International Peat Society.Google Scholar
Barker, G. M. (2002). Phylogenetic diversity: a quantitative framework for measurement of priority and achievement in biodiversity conservation. Biological Journal of the Linnean Society, 76, 165–94.CrossRefGoogle Scholar
Bates, J. W. (1989). Growth of Leucobryum glaucum cushions in a Berkshire oakwood. Journal of Bryology, 15, 785–91.CrossRefGoogle Scholar
Bates, J. W. (1995a). A bryophyte flora of Berkshire. Journal of Bryology, 18, 503–620.CrossRefGoogle Scholar
Bates, J. W. (1995b). Numerical analysis of bryophyte-environment relationships in a lowland English flora. Fragmenta Floristica et Geobotanica, 40, 471–90.Google Scholar
Bates, J. W., Thompson, K. & Grime, J. P. (2005). Effects of simulated long-term climatic change on the bryophytes of a limestone grassland community. Global Change Biology, 11, 757–69.CrossRefGoogle Scholar
Berendse, F., Breemen, N., Rydin, H.et al. (2001). Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Global Change Biology, 7, 591–8.CrossRefGoogle Scholar
Berg, A., Gärdenfors, U., Hallingbäck, T. & Noren, M. (2002). Habitat preferences of red-listed fungi and bryophytes in woodland key habitats in southern Sweden – analyses of data from a national survey. Biodiversity and Conservation, 11, 1479–503.CrossRefGoogle Scholar
Bergamini, A. & Pauli, D. (2001). Effects of increased nutrient supply on bryophytes in montane calcareous fens. Journal of Bryology, 23, 331–9.CrossRefGoogle Scholar
Bergamini, A., Peintiger, M., Schmid, B. & Urmi, E. (2001). Effects of management and altitude on bryophyte species diversity and composition in montane calcareous fens. Flora, 196, 180–93.CrossRefGoogle Scholar
Berglund, H. & Jonsson, B. G. (2001). Predictability of plant and fungal species richness of old-growth boreal forest islands. Journal of Vegetation Science, 12, 857–66.CrossRefGoogle Scholar
Bisang, I. (1998). The occurrence of hornwort populations (Anthocerotales, Anthocerotopsida) in the Swiss Plateau: the role of management, weather conditions and soil characteristics. Lindbergia, 23, 94–104.Google Scholar
Bisang, I. & Hedenäs, L. (2000). How do we select bryophyte species for conservation, and how should we conserve them?Lindbergia, 25, 62–77.Google Scholar
Boudreault, C., Gauthier, S. & Bergeron, Y. (2000). Epiphytic lichens and bryophytes on Populus tremuloides along a chronosequence in the southwestern boreal forest of Quebec, Canada. Bryologist, 103, 725–38.CrossRefGoogle Scholar
Botting, R. S. & Fredeen, A. L. (2006). Contrasting terrestrial lichen, liverwort, and moss diversity between old-growth and young second-growth forest on two soil textures in central British Columbia. Canadian Journal of Botany, 84, 120–32.CrossRefGoogle Scholar
Boutin, B. & Jobin, B. (1998). Intensity of agricultural practices and effects of adjacent habitats. Ecological Applications, 8, 544–57.CrossRefGoogle Scholar
Brown, D. H. (1992). Impact of agriculture on bryophytes and lichens. In Bryophytes and Lichens in a Changing Environment, ed. Bates, J. W. & Farmer, A. M., pp. 259–83. Oxford: Clarendon Press.Google Scholar
Burch, J. (2003). Some mosses survive cryopreservation without prior pretreatment. Bryologist, 106, 270–7.CrossRefGoogle Scholar
Church, J. M., Hodgetts, N. G., Preston, C. D. & Stewart, N. F. (2001). British Red Data Books 2. Mosses and Liverworts. Peterborough: Joint Nature Conservation Committee.Google Scholar
Churchill, S. P. (1998). Catalog of Amazonian mosses. Journal of the Hattori Botanical Laboratory, 85, 191–238.Google Scholar
Churchill, S. P., Griffin, D. & Lewis, M. (1995). Moss diversity of the Tropical Andes. In Biodiversity and Conservation of Neotropical Forests, ed. Churchill, S. P., Balslev, H., Forero, E. & Luteyn, J. L., pp. 335–46. New York: New York Botanical Garden.Google Scholar
Cleavitt, N. (2002). Stress tolerance of rare and common species in relation to their occupied environments and asexual dispersal potential. Journal of Ecology, 90, 785–95.CrossRefGoogle Scholar
Cleavitt, N. (2005). Patterns, hypotheses and processes in the biology of rare bryophytes. Bryologist, 108, 554–66.CrossRefGoogle Scholar
Cobb, A. R., Nadkarni, N. M., Ramsey, G. A. & Svoboda, A. J. (2001). Recolonization of bigleaf maple branches by epiphytic bryophytes following experimental disturbance. Canadian Journal of Botany, 79, 1–8.CrossRefGoogle Scholar
Cooper-Ellis, S. (1998). Bryophytes in old-growth forests of western Massachusetts. Journal of the Torrey Botanical Society, 125, 117–32.CrossRefGoogle Scholar
Da Costa, D. P., Imbassahy, C. A. & da Silva, V. P. (2005). Diversity and importance of the bryophyte taxa in the conservation of the ecosystems of the Rio de Janeiro state. Rodriguésia, 56, 13–49.Google Scholar
Diniz, J. A. F. (2004). Phylogenetic diversity and conservation priorities under distinct models of phenotypic evolution. Conservation Biology, 18, 698–704.Google Scholar
Dorrepaal, E., Aerts, R., Cornelissen, J. H. C., Callaghan, T. V. & Logtestijn, R. S. P. (2003). Summer warming and increased winter snow cover affect Sphagnum fuscum growth, structure and production in a sub-arctic bog. Global Change Biology 10, 93–104.CrossRefGoogle Scholar
Downes, B. J., Entwisle, T. J. & Reich, P. (2003). Effects of flow regulation on disturbance frequencies and in-channel bryophytes and macroalgae in some upland streams. River Research and Applications, 19, 27–42.CrossRefGoogle Scholar
Draper, D., Rossello-Graell, A., Garcia, C., Tauleigne-Gomes, C. & Sergio, C. (2003). Application of GIS in plant conservation programmes in Portugal. Biological Conservation, 113, 337–49.CrossRefGoogle Scholar
Drehwald, U. (2005). Biomonitoring of disturbance in Neotropical rainforests using bryophytes as indicators. Journal of the Hattori Botanical Laboratory, 97, 117–26.Google Scholar
Duckett, J. G., Burch, J., Fletcher, P. W.et al. (2004). In vitro cultivation of bryophytes: a review of practicalities, problems, progress and promise. Journal of Bryology, 26, 3–20.Google Scholar
During, H. J. (1990). The bryophytes of calcareous grasslands. In Calcareous Grasslands:Ecology and Management, ed. Hillier, S. H., Walton, D. W. H. & Wells, D. A., pp. 35–40. Huntingdon: Bluntisham.Google Scholar
During, H. J. (1992). Ecological classification of bryophytes and lichens. In Bryophytes and Lichens in a Changing Environment, ed. Bates, J. W. & Farmer, A. M., pp. 1–31. Oxford: Clarendon Press.Google Scholar
During, H. J. & Tooren, B. F. (2002). Effecten van veranderingen in beheer op de moslaag van de Kunderberg. Natuurhistorisch Maandblad, 91, 217–21.Google Scholar
Dynesius, M. & Hylander, K. (2007). Resilience of bryophyte communities to clear-cutting of boreal stream-side forests. Biological Conservation, 135, 423–34.CrossRefGoogle Scholar
Englund, G., Jonsson, B. G. & Malmqvist, B. (1997). Effects of flow regulation on bryophytes in north Swedish rivers. Biological Conservation, 79, 79–86.CrossRefGoogle Scholar
Eskelinen, A. & Oksanen, J. (2006). Changes in the abundance, composition and species richness of mountain vegetation in relation to summer grazing by reindeer. Journal of Vegetation Science, 17, 245–54.CrossRefGoogle Scholar
Esseen, P.-A., Ehnström, B., Ericson, L. & Sjöberg, K. (1992). Boreal forests – the focal habitats of Fennoscandia. In Ecological Principles of Nature Conservation. Applications in Temperate and Boreal Environments, ed. Hansson, L., pp. 252–325. London: Elsevier.CrossRefGoogle Scholar
Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1–10.CrossRefGoogle Scholar
Fenton, N. J. & Frego, K. A. (2005). Bryophyte (moss and liverwort) conservation under remnant canopy in managed forests. Biological Conservation, 122, 417–30.CrossRefGoogle Scholar
Flatberg, K. I., Blom, H. H., Hassel, K. & Økland, R. H. (2006). Moser – Anthocerophyta, Marchantiophyta, Bryophyta. In Norsk Rodliste 2006, 2006 Norwegian Red List, ed. Kålås, J. A., Viken, A. & Bakken, T.Norway: Artsdatabanken.Google Scholar
Frahm, J.-P. & Klaus, D. (2001). Bryophytes as indicators of recent climate fluctuations in Central Europe. Lindbergia, 26, 97–104.Google Scholar
Frego, K. A. & Carleton, T. J. (1995). Microsite conditions and spatial pattern in a boreal bryophyte community. Canadian Journal of Botany, 73, 544–51.CrossRefGoogle Scholar
Frisvoll, A. A. & Prestø, T. (1997). Spruce forest bryophytes in central Norway and their relationship to environmental factors including modern forestry. Ecography, 20, 3–18.CrossRefGoogle Scholar
Funk, D. J. & Omland, K. E. (2003). Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology and Evolution, 34, 397–423.CrossRefGoogle Scholar
Gärdenfors, U. (2000). Population viability analysis in the classification of threatened species: problems and potentials. Ecological Bulletins, 48, 181–90.Google Scholar
Gärdenfors, U. (ed.) (2005). The 2006 Red List of Swedish Species. Uppsala: SLU.
Gignac, L. D., Nicholson, B. J. & Bayleyc, S. E. (1998). The utilization of bryophytes in bioclimatic modeling: predicted northward migration of peatlands in the Mackenzie river basin, Canada, as a result of global warming. Bryologist, 101, 572–87.CrossRefGoogle Scholar
Glenny, D. & Fife, A. (2005). New Zealand's threatened bryophyte flora. Australasian Bryological Newsletter, 51, 6–10.Google Scholar
Gradstein, S. R. (1992a). The vanishing tropical rain forest as an environment for bryophytes and lichens. In Bryophytes and Lichens in a Changing Environment, ed. Bates, J. W. & Farmer, A. R., pp. 232–56. Oxford: Oxford University Press.Google Scholar
Gradstein, S. R. (1992b). Threatened bryophytes of the neotropical rain forest: a status report. Tropical Bryology, 6, 83–93.Google Scholar
Gradstein, S. R. (1995). Diversity of Hepaticae and Anthocerotae in montane forests of the tropical Andes. In Biodiversity and Conservation of Neotropical Montane Forests, ed. Churchill, S. P., Balslev, H., Forero, E. & Luteyn, J. L., pp. 321–34. New York: New York Botanical Garden.Google Scholar
Gradstein, S. R. (2006). The lowland cloud forest of French Guiana – a liverwort hotspot. Cryptogamie Bryologie, 27, 141–52.Google Scholar
Gradstein, S. R., Churchill, S. P. & Salazar Allen, N. (2001). A guide to the bryophytes of Tropical America. Memoirs of the New York Botanical Garden, 86, 1–577.Google Scholar
Gradstein, S. R., Reiner-Drehwald, M. E. & Muth, H. (2003). Über die Identität der neuen Aquarienpflanze, Pellia endiviifolia. Aqua Planta, 3, 88–95.Google Scholar
Grime, J. P., Rincon, E. R. & Wickerson, B. E. (1990). Bryophytes and plant strategy theory. Botanical Journal of the Linnean Society, 104, 175–86.CrossRefGoogle Scholar
Groves, C. R., Jensen, D. B., Valutis, L. R.et al. (2002). Planning for biodiversity conservation: putting conservation science into practice. BioScience, 52, 499–512.CrossRefGoogle Scholar
Gunnarsson, U. & Söderström, L. (2007). Can artificial introduction of diaspore fragments work as a conservation tool for maintaining populations of the rare peatmoss Sphagnum angermanicum?Biological Conservation, 135, 450–8.CrossRefGoogle Scholar
Gunnarsson, U., Hassel, K. & Söderström, L. (2005). Genetic structure of the endangered peatmoss Sphagnum angermanicum in Sweden – a result of historic or contemporary processes?Bryologist, 108, 194–202.CrossRefGoogle Scholar
Hallingbäck, T. (2003). Including bryophytes in international conventions – a success story from Europe. Journal of the Hattori Botanical Laboratory, 9, 201–14.Google Scholar
Hallingbäck, T. (2007). Working with Swedish cryptogam conservation. Biological Conservation, 135, 334–40.CrossRefGoogle Scholar
Hallingbäck, T., Hodgetts, N., Raeyemakers, G.et al. (1998). Guidelines for application of the revised IUCN threat categories to bryophytes. Lindbergia, 23, 6–12.Google Scholar
Hannerz, M. & Hånell, B. (1997). Effects on the flora in Norway spruce forests following clearcutting and shelterwood cutting. Forest Ecology and Management, 90, 29–49.CrossRefGoogle Scholar
Hartmann, F. A., Wilson, R., Gradstein, S. R., Schneider, H. & Heinrichs, J. (2006). Testing hypotheses on species delimitations and disjunctions in the liverwort Bryopteris (Jungermanniopsida : Lejeuneaceae). International Journal of Plant Sciences, 167, 1205–14.CrossRefGoogle Scholar
Hazell, P. & Gustafsson, L. (1999). Retention of tree at final harvest – evaluation of a conservation technique using epiphytic bryophyte and lichen transplants. Biological Conservation, 90, 133–42.CrossRefGoogle Scholar
Hazell, P., Kellner, O., Rydin, H. & Gustafsson, L. (1998). Presence and abundance of four epiphytic bryophytes in relation to density of aspen (Populus tremula) and other stand characteristics. Forest Ecology and Management, 107, 147–58.CrossRefGoogle Scholar
Hedenäs, H., Bolyukh, V. O. & Jonsson, B. G. (2003). Spatial distribution of epiphytes on Populus tremula in relation to dispersal mode. Journal of Vegetation Science, 14, 233–42.Google Scholar
Hedenäs, L., Bisang, I., Tehler, A., et al. (2002). A herbarium-based method for estimates of temporal frequency changes: mosses in Sweden. Biological Conservation, 105, 321–31.CrossRefGoogle Scholar
Heilmann-Clausen, J., Aude, E. & Christensen, M. (2005). Cryptogam communities on decaying deciduous wood – does tree species diversity matter?Biodiversity and Conservation, 14, 2061–78.CrossRefGoogle Scholar
Heino, J., Virtanen, R., Vuori, K.-M.et al. (2005). Spring bryophytes in forested landscapes: land use effects on bryophyte species richness, community structure and persistence. Biological Conservation, 124, 539–45.CrossRefGoogle Scholar
Heinrichs, J., Lindner, M., Gradstein, S. R.et al. (2005). Origin and subdivision of Plagiochila (Jungermanniidae: Plagiochilaceae) in tropical Africa based on evidence from nuclear and chloroplast DNA sequences and morphology. Taxon, 54, 317–33.CrossRefGoogle Scholar
Heylen, O., Hermy, M. & Schrevens, E. (2005). Determinants of cryptogamic diversity in a river valley (Flanders). Biological Conservation, 126, 371–82.CrossRefGoogle Scholar
Heywood, V. H. & Iriondo, J. M. (2003). Plant conservation: old problems, new perspectives. Biological Conservation, 113, 325.CrossRefGoogle Scholar
Hinrichsen, D. (1981). Peat power: Back to bogs. Ambio, 10, 240–2.Google Scholar
Hodgetts, N. G. (1996). The Conservation of Lower Plants in Woodland. Peterborough: Joint Nature Conservation Committee.Google Scholar
Holz, I. & Gradstein, S. R. (2005). Cryptogamic epiphytes in primary and recovering upper montane oak forests of Costa Rica – species richness, community composition and ecology. Plant Ecology, 178, 547–60.CrossRefGoogle Scholar
Humphrey, J. W., Davey, S., Peace, A. J., Ferris, R. & Harding, K. (2002). Lichens and bryophyte communities of planted and semi-natural forests in Britain: the influence of site type, stand structure and deadwood. Biological Conservation, 107, 165–80.CrossRefGoogle Scholar
Huntley, B. (1999). Species distribution and environmental change. In Ecosystem Management. Questions for Science and Society, ed. Maltby, E., Hodgate, M., Acreman, M. & Weir, A., pp. 115–29. Egham: Royal Holloway Institute for Environmental Research, University of London.Google Scholar
Hylander, K. (2005). Aspect modifies the magnitude of edge effects on bryophyte growth in boreal forests. Journal of Applied Ecology, 42, 518–25.CrossRefGoogle Scholar
Hylander, K. & Dynesius, M. (2006). Causes of the large variation in bryophytes species richness and composition among boreal streamside forests. Journal of Vegetation Science, 17, 333–46.CrossRefGoogle Scholar
Hylander, K. & Jonsson, B. G. (2007). The conservation ecology of cryptogams. Biological Conservation, 135, 311–14.CrossRefGoogle Scholar
Hylander, K., Jonsson, B. G. & Nilsson, C. (2002). Evaluating buffer strips along boreal streams using bryophytes as indicators. Ecological Applications, 12, 797–806.CrossRefGoogle Scholar
Hylander, K., Dynesius, M., Jonsson, B. G. & Nilsson, C. (2005). Substrate form determines the fate of bryophytes in riparian buffer strips. Ecological Applications, 15, 674–88.CrossRefGoogle Scholar
Hyvönen, J., Koponen, T. & Norris, D. H. (1987). Human influence on the moss flora of tropical rain forest in Papua New Guinea. Symposia Biologia Hungarica, 35, 621–9.Google Scholar
Ingerpuu, N. (1998). Sammaltaimed, Bryophyta. In Eesti Punane Raamat, ed. Lillelecht, V., pp. 37–49. Tartu: Eesti Teaduste Akadeemia Looduskaitse. (www.botany.ut.ee/bryology/)Google Scholar
,IUCN (2001). http://iucn.org/themes/ssc/redlists/RLcats2001booklet.html.
,IUCN (2003). http://www.iucn.org/themes/ssc/redlists/background_EN.htm.
Iwatsuki, Z., Kanda, H. & Furuki, T. (2000). Threatened Wildlife of Japan Red Data Book, 2nd edn, vol. 9, Bryophytes, Algae, Lichens and Fungi. Tokyo: Japan Wildlife Research Center.Google Scholar
Jägerbrand, A. K., Lindblad, K. E. M., Björk, R. B., Alatalo, J. M. & Molau, U. (2006). Bryophyte and lichen diversity under simulated environmental change compared with observed variation in unmanipulated alpine tundra. Biodiversity and Conservation, 15, 4453–75.CrossRefGoogle Scholar
Jobin, B., Boutin, C. & DesGrandes, J. L. (1996). Habitats fauniques du milieu rural québécois: une analyse floristique. Canadian Journal of Botany, 74, 323–36.CrossRefGoogle Scholar
Jordan, C. F. (1995). Conservation. New York: Wiley.Google Scholar
Kantvilas, G. & Jarman, S. J. (2004). Lichens and bryophytes on Eucalyptus obliqua in Tasmania: management implications in production forests. Biological Conservation, 117, 359–73.CrossRefGoogle Scholar
Kautz, T. & Gradstein, S. R. (2001). On the ecology and conservation of Spruceanthus theobromae (Lejeuneaceae, Hepaticae) from western Ecuador. Bryologist, 104, 607–12.CrossRefGoogle Scholar
Klama, H. (2006). Red list of the liverworts and hornworts in Poland. In Red List of Plants and Fungi in Poland, ed. Mirek, Z., Zarzycki, K., Wojewoda, K. & Szelag, W., pp. 21–33. Krakow: Polish Academy of Sciences.Google Scholar
Klanderud, K. & Totland, O. (2005). Simulated climate change altered dominance hierarchies and diversity of an alpine biodiversity hotspot. Ecology, 86, 2047–54.CrossRefGoogle Scholar
Klein, J.-P. & Vanderpoorten, A. (1997). Bryophytic vegetation in riparian forests: their use in the ecological assessment of the connectivity between the Rhine and its floodplain. Global Ecology and Biogeography, 6, 257–65.CrossRefGoogle Scholar
Kooijman, A. M. (1992). The decrease of rich fen bryophytes in the Netherlands. Biological Conservation, 59, 139–43.CrossRefGoogle Scholar
Kooijman, A. M., Beltman, B. & Westhoff, V. (1994). Extinction and reintroduction of the bryophyte Scorpidium scorpioides in a rich-fen spring site in The Netherlands. Biological Conservation, 69, 87–96.CrossRefGoogle Scholar
Koponen, T. (1990). Bryophyte flora of Western Melanesia. Tropical Bryology, 2, 149–60.Google Scholar
Krajewski, C. (1994). Phylogenetic measures of biodiversity. A comparison and critique. Biological Conservation, 69, 33–9.CrossRefGoogle Scholar
Kubinská, A., Janovicová, K. & Soltés, R. (2001). Cerveny zoznam machorastov Slovenska. [Red list of bryophytes of Slovakia (December 2001)]. Ochrana Prírody 20, suppl., 2001, 31–47.Google Scholar
Kucera, J. & Vana, J. (2005). Seznam a cervený seznam mechorostn Ceské republiky (2005). Príroda, 23, 1–104.Google Scholar
Laaka-Lindberg, S., Hedderson, T. A. & Longton, R. E. (2000). Rarity and reproductive characters in the British hepatic flora. Lindbergia, 25, 78–84.Google Scholar
Lambeck, R. J. (1997). Focal species: a multi-species umbrella for nature conservation. Conservation Biology, 11, 849–56.CrossRefGoogle Scholar
Leon, Y. & Ussher, M. S. (2005). Educational program directed towards the preservation of Venezuelan Andean bryophytes. Journal of the Hattori Botanical Laboratory, 97, 227–31.Google Scholar
Lindenmayer, D. B., Margules, C. R. & Botkin, D. (2000). Indicators of forest sustainability biodiversity: the selection of forest indicator species. Conservation Biology, 14, 941–50.CrossRefGoogle Scholar
Lindenmayer, D. B., Manning, A. D., Smith, P. L.et al. (2002). The focal-species approach and landscape restoration: a critique. Conservation Biology, 16, 338–45.CrossRefGoogle Scholar
Löbel, S., Snäll, T. & Rydin, H. (2006). Species richness patterns and metapopulation processes – evidence from epiphyte communities in boreo-nemoral forests. Ecography, 29, 169–82.CrossRefGoogle Scholar
Löhmus, A., Löhmus, P. & Vellak, K. (2007). Substratum diversity explains landscape-scale co-variation in the species richness of bryophytes and lichens. Biological Conservation, 135, 405–14.CrossRefGoogle Scholar
Longton, R. E. (1992). The role of bryophytes and lichens in terrestrial ecosystems. In Bryophytes and Lichens in a Changing Environment, ed. Bates, J. W. & Farmer, A. M., pp. 32–76. Oxford: Clarendon Press.Google Scholar
Longton, R. E. & Hedderson, T. A. (2000). What are rare species and why conserve them?Lindbergia, 25, 53–61.Google Scholar
Mälson, K. & Rydin, H. (2007). The regeneration capabilities of bryophytes for rich fen restoration. Biological Conservation, 135, 435–42.CrossRefGoogle Scholar
Margules, C. R. & Pressey, L. (2000). Systematic conservation planning. Nature, 405, 243–53.CrossRefGoogle ScholarPubMed
Marrero-Gomez, M. V., Banares-Baudet, A. & Carque-Alamo, E. (2003). Plant resource conservation planning in protected natural areas: an example from the Canary Islands, Spain. Biological Conservation, 113, 399–410.CrossRefGoogle Scholar
McAlister, S. (1995). Species interactions and substrate specificity among log-inhabiting bryophyte species. Ecology, 76, 2184–95.CrossRefGoogle Scholar
McCune, B., Rosentreter, R., Ponzetti, J. M. & Shaw, D. C. (2000). Epiphyte habitats in an old conifer forest in Western Washington, USA. Bryologist, 103, 417–27.CrossRefGoogle Scholar
McDaniel, S. F. & Shaw, A. J. (2005). Selective sweeps and intercontinental migration in the cosmopolitan moss Ceratodon purpureus (Hedw). Brid. Molecular Ecology, 14, 1121–32.CrossRefGoogle ScholarPubMed
McGee, G. G. & Kimmerer, R. W. (2002). Forest age and management effects on epiphytic bryophyte communities in Adirondack northern hardwood forests, New York, USA. Canadian Journal of Forest Resources, 32, 1562–76.Google Scholar
McIntosh, T. & Miles, W. (2005). Comments on rare and interesting bryophytes in garry oak ecosystems, British Columbia, Canada. Journal of the Hattori Botanical Laboratory, 97, 263–9.Google Scholar
Miller, N. G. & McDaniel, S. F. (2004). Bryophyte dispersal inferred from colonization of an introduced substratum on Whiteface Mounatin, New York. American Journal of Botany, 91, 1173–82.CrossRefGoogle ScholarPubMed
Moen, J. & Jonsson, B. G. (2003). Edge effects on liverworts and lichens in forest patches in a mosaic of boreal forest and wetland. Conservation Biology, 17, 380–8.CrossRefGoogle Scholar
Moser, D., Zechmeister, H. G., Plutzar, C.et al. (2002). Landscape patch shape complexity as an effective measure for plant species richness in rural landscapes. Landscape Ecology, 17, 657–69.CrossRefGoogle Scholar
Muir, P. S., Norman, K. N. & Sikes, K. G. (2006). Quantity and value of commercial moss harvest from forests of the Pacific Northwest and Appalachian regions of the U.S. Bryologist, 109, 197–214.CrossRefGoogle Scholar
Muñoz, J., Felicísimo, A. M., Cabezas, F., Burgaz, A. R. & Martinez, I. (2004). Wind as a long-distance dispersal vehicle in the southern hemisphere. Science, 304, 1144–7.CrossRefGoogle ScholarPubMed
Muotka, T. & Virtanen, R. (1995). The stream as a habitat templet for bryophytes – species distributions along gradients in disturbance and substratum heterogeneity. Freshwater Biology, 33, 141–60.CrossRefGoogle Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. B. A. & Kents, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–8.CrossRefGoogle ScholarPubMed
Newmaster, S. G. & Bell, F. W. (2002). The effects of silvicultural disturbances on cryptogam diversity in the boreal-mixedwood forest. Canadian Journal of Forest Research, 32, 38–51.Google Scholar
Nordén, B., Paltto, H., Götmark, F. & Wallin, K. (2007). Indicators of biodiversity, what do they indicate? Lessons for conservation of cryptogams in oak-rich forest. Biological Conservation, 135, 369–79.CrossRefGoogle Scholar
Norton, T. W. (1996). Conservation of biological diversity in temperate and boreal forest ecosystems. Forest Ecology and Management, 85, 1–7.CrossRefGoogle Scholar
Ohlson, M., Söderström, L., Hörnberg, G., Zackrisson, O. & Hermansson, J. (1997). Habitat qualities versus long-term continuity as determinants of biodiversity in boreal old-growth swamp forests. Biological Conservation, 81, 221–31.CrossRefGoogle Scholar
Okland, R. H. & Bakkestuen, V. (2004). Fine-scale spatial patterns in populations of the clonal moss Hylocomium splendens partly reflect structuring processes in the boreal forest floor. Oikos, 106, 565–75.CrossRefGoogle Scholar
Oostermeijer, J. G. B., Eijck, M. W., Leeuwen, N. C. & Nijs, J. C. M. (1995). Analysis of the relationship between allozyme heterozygosity and fitness in the rare Gentiana pneumonanthe L. Journal of Evolutionary Biology, 8, 739–57.CrossRefGoogle Scholar
Oostermeijer, J. G. B., Luijten, S. H. & Nijs, J. C. M. (2003). Integrating demographic and genetic approaches in plant conservation. Biological Conservation, 113, 389–98.CrossRefGoogle Scholar
Orme, C. D. L., Davies, R. G., Burgess, M.et al. (2005). Global hotspots of species richness are not congruent with endemism or threat. Nature, 436, 1016–19.CrossRefGoogle ScholarPubMed
Pärtel, M., Helm, A., Ingerpuu, N., Reier, Ü. & Tuvi, E.-V. (2004). Conservation of Northern European plant diversity: the correspondence with soil pH. Biological Conservation, 120, 525–31.CrossRefGoogle Scholar
Pearce, I. S. K. & Waal, R. (2002). Effects of nitrogen deposition on growth and survival of montane Racomitrium lanuginosum heath. Biological Conservation, 104, 83–9.CrossRefGoogle Scholar
Peck, J. E. (2006a). Regrowth of understory epiphytic bryophytes 10 years after simulated commercial moss harvest. Canadian Journal of Forest Research, 36, 1749–57.CrossRefGoogle Scholar
Peck, J. E. (2006b). Towards sustainable commercial moss harvest in the Pacific Northwest of North America. Biological Conservation, 128, 289–97.CrossRefGoogle Scholar
Peck, J. E. & Christy, J. A. (2006). Putting the stewardship concept into practice: commercial moss harvest in northwestern Oregon, USA. Forest Ecology and Management, 225, 225–33.Google Scholar
Peck, J. E. & Muir, P. S. (2001). Harvestable epiphytic bryophytes and their accumulation in central western Oregon. Bryologist, 104, 181–90.CrossRefGoogle Scholar
Pedersen, B., Hanslin, H. M. & Bakken, S. (2001). Testing for positive density-dependent performance in four bryophyte species. Ecology, 82, 70–88.CrossRefGoogle Scholar
Perfecto, I. & Vandermeer, J. (2002). The quality of agroecological matrix in a tropical montane landscape: ants in coffee plantations in southern Mexico. Conservation Biology, 16, 174–82.CrossRefGoogle Scholar
Pharo, E. J. & Blanks, P. A. M. (2000). Managing a neglected component of biodiversity: a study of bryophyte diversity in production forests of Tasmania's northeast. Australian Forestry, 63, 128–35.CrossRefGoogle Scholar
Pharo, E. J. & Zartman, C. E. (2007). Bryophytes in a changing landscape: the hierarchical effect of habitat fragmentation on ecological and evolutionary processes. Biological Conservation, 135, 315–25.CrossRefGoogle Scholar
Pharo, E. J., Beattie, A. J. & Pressey, R. L. (2000). Effectiveness of using vascular plants to select reserves for bryophytes and lichens. Biological Conservation, 96, 371–8.CrossRefGoogle Scholar
Pharo, E. J., Lindenmayer, D. B. & Taws, N. (2004). The effects of large-scale fragmentation on bryophytes in temperate forests. Journal of Applied Ecology, 41, 910–21.CrossRefGoogle Scholar
Pharo, E. J., Kirkpatrick, J. B., Gilfedder, L., Mendel, L. & Turner, P. A. M. (2005). Predicting bryophyte diversity in grassland and eucalypt-dominated remnants in subhumid Tasmania. Journal of Biogeography, 32, 2015–24.CrossRefGoogle Scholar
Porley, R. D. (2001). Bryophytes of arable fields: current state of knowledge and conservation. Bulletin of the British Bryological Society, 77, 51–62.Google Scholar
Primack, R. B. (1993). Essentials of Conservation Biology. Sunderland, MA: Sinauer Associates.Google Scholar
Rambo, T. R. (2001). Decaying logs and habitat heterogeneity: implications for bryophyte diversity in western Oregon forests. Northwest Science, 75, 270–9.Google Scholar
Ricklefs, R. E. (1987). Community diversity: relative roles of local and regional processes. Science, 235, 167–71.CrossRefGoogle ScholarPubMed
Rochefort, L. & Lode, E. (2006). Restoration of degraded boreal peatlands. In Boreal Peatland Ecosystems, ed. Wieder, R. K. & Vitt, D. H., pp. 381–422. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Rose, F. (1992). Temperate forest management: its effect on bryophyte and lichen floras and habitats. In Bryophytes and Lichens in a Changing Environment, ed. Bates, J. W. & Farmer, A. M., pp. 211–33. Oxford: Clarendon Press.Google Scholar
Ross-Davis, A. L. & Frego, K. A. (2002). Comparison of plantations and naturally regenerated clearcuts in the Acadian forest: forest floor bryophyte community and habitat features. Canadian Journal of Botany, 80, 21–33.CrossRefGoogle Scholar
Rothero, G. P., Duckett, J. G. & Pressel, S. (2006). Active conservation: augmenting the only British population of Bryum schleicheri var. latifolium via in vitro cultivation. Field Bryology, 90, 12–16.Google Scholar
Rydin, H. (1997). Competition between Sphagnum species under controlled conditions. Bryologist, 100, 302–7.CrossRefGoogle Scholar
Rydin, H. & Jeglum, J. K. (2006). The Biology of Peatlands. Oxford: Oxford University Press.CrossRefGoogle Scholar
Sabovljevic, M., Cvetic, T. & Stevanovic, V. (2003). Bryophyte red list of Serbia and Montenegro. Biodiversity and Conservation, 13, 1781–90.CrossRefGoogle Scholar
Sauberer, N., Zulka, K. P., Abensperg-Traun, M.et al. (2004). Surrogate taxa for biodiversity in agricultural landscapes of eastern Austria. Biological Conservation, 117, 181–90.CrossRefGoogle Scholar
Schmitzberger, I., Wrbka, T., Steurer, B.et al. (2005). How farming styles influence biodiversity maintenance in Austrian agricultural landscapes. Agriculture, Ecosystems and Environment, 108, 274–90.CrossRefGoogle Scholar
Schnyder, N., Bergamini, A., Hofmann, H.et al. (2004). Rote Liste der gefährdeten Moose der Schweiz. BUWAL, FUB & NISM. BUWAL-Reihe: Vollzug Umwelt.Google Scholar
Schofield, W. B. (1984). Bryogeography of the Pacific coast of North America. Journal of the Hattori Botanical Laboratory, 55, 35–43.Google Scholar
Schulze, C. H., Waltert, M., Kessler, P. J. A.et al. (2004). Biodiversity indicator groups of tropical land-use systems: comparing plants, birds, and insects. Ecological Applications, 14, 1321–33.CrossRefGoogle Scholar
Sérgio, C., Casas, C., Brugués, M. & Cros, R. M. (1994). Lista Vermelha dos Briófitos da Peninsula Ibérica. Lisboa: ICN (http://einstein.uab.es/mbrugues/HOME.htm).Google Scholar
Sérgio, C., Araujo, M. & Draper, D. (2000). Portuguese bryophyte diversity and priority areas for conservation. Lindbergia, 25, 116–23.Google Scholar
Sérgio, C., Draper, D. & Garcia, C. (2005). Modelling the distribution of Cryptothallus mirabilis Malmb. (Aneuraceae, Hepaticopsida) in the Iberian Peninsula. Journal of the Hattori Botanical Laboratory, 97, 309–16.Google Scholar
Sérgio, C., Figeuira, R., Draper, D., Menezes, R. & Sousa, A. J. (2007). Modelling bryophyte distribution based on ecological information for extent of occurrence assessment. Biological Conservation, 135, 341–51.CrossRefGoogle Scholar
Shaw, A. J. (2001). Biogeographic patterns and cryptic speciation in bryophytes. Journal of Biogeography, 28, 253–61.CrossRefGoogle Scholar
Shaw, A. J. & Cox, C. J. (2005). Variation in ‘biodiversity value’ of peatmoss species in Sphagnum section Acutifolia (Sphagnaceae). American Journal of Botany, 92, 1774–83.CrossRefGoogle Scholar
Shaw, A. J., Werner, O. & Ros, R. M. (2003). Intercontinental Mediterranean disjunct mosses: morphological and molecular patterns. American Journal of Botany, 90, 540–50.CrossRefGoogle ScholarPubMed
Shaw, A. J., Cox, C. J. & Goffinet, B. (2005). Global patterns of moss diversity: taxonomic and molecular inferences. Taxon, 54, 337–52.CrossRefGoogle Scholar
Siebel, H. N., Bijlsma, R. J. & Bal, D. (2006). Toelichting op de Rode Lijst Mossen. Rapport Directie Kennis, Ministerie van Landbouw, Natuur en Voedselkwaliteit nr. 2006/ 034 (available at www.blwg.nl/).
Snäll, T., Ribeiro, P. J. & Rydin, H. (2003). Spatial occurrence and colonizations in patch-tracking metapopulations of epiphytic bryophytes: local conditions vs dispersal. Oikos, 103, 566–78.CrossRefGoogle Scholar
Snäll, T., Fogelqvist, J., Bibeiro, P. J. & Lascoux, L. (2004a). Spatial genetic structure in two congeneric epiphytes with different dispersal strategies analysed by three different methods. Molecular Ecology, 13, 2109–19.CrossRefGoogle ScholarPubMed
Snäll, T., Hagstrom, A., Rudolphi, J. & Rydin, H. (2004b). Distribution pattern of the epiphyte Neckera pennata on three spatial scales – importance of past landscape structure, connectivity and local conditions. Ecography, 27, 757–66.CrossRefGoogle Scholar
Snäll, T., Ehrlen, J. & Rydin, H. (2005). Colonization-extinction dynamics of an epiphyte metapopulation in a dynamic landscape. Ecology, 86, 106–15.CrossRefGoogle Scholar
Söderström, L. (2002). Red listing of species with different life history strategies. Portugaliae Acta Biologica, 20, 49–55.Google Scholar
Söderström, L. & During, H. J. (2005). Bryophyte rarity viewed from the perspectives of life history strategy and metapopulation dynamics. Journal of Bryology, 27, 261–8.CrossRefGoogle Scholar
Söderström, L., Séneca, A. & Santos, M. (2007). Rarity patterns in the northern hemisphere members of the Lophoziaceae/Scapaniaceae complex (Hepaticae, Bryophyta). Biological Conservation, 135, 352–9.CrossRefGoogle Scholar
Soulé, M. E. & Sanjayan, M. A. (1998). Conservation targets: do they help?Science, 279, 2060–1.Google ScholarPubMed
Staples, G. W., Imada, C. T., Hoe, W. J. & Smith, C. W. (2004). A revised checklist of Hawaiian mosses. Tropical Bryology, 25, 1–69.Google Scholar
Streimann, H. (2000). Australasia, a regional overview. In Mosses, Liverworts, and Hornwort: Status Survey and Conservation Action Plan for Bryophytes, ed. Hallingbäck, T. & Hodgetts, N., pp. 22–7. Gland and Cambridge: IUCN.Google Scholar
Thiébaut, G., Vanderpoorten, A., Guérold, F., Boudot, J.-P. & Muller, S. (1998). Bryological patterns and streamwater acidification in the Vosges Mountains (N.E. France): an analysis tool for the survey of acidification processes. Chemosphere, 36, 1275–89.CrossRefGoogle Scholar
Twenhöven, F. L. (1992). Competition between two Sphagnum species under different deposition levels. Journal of Bryology, 17, 71–80.CrossRefGoogle Scholar
Ulvinen, T., Syrjänen, K. & Anttila, S. (2002). Bryophytes of Finland: distribution, ecology and red list status. The Finnish Environment, 560, 1–354.Google Scholar
Urmi, E. (1992). Floristic mapping as a base for the conservation of bryophyte species. Biological Conservation, 59, 185–90.CrossRefGoogle Scholar
Urmi, E. & Schnyder, N. (2000). Bias in taxon frequency estimates with special reference to rare bryophytes in Switzerland. Lindbergia, 25, 89–100.Google Scholar
Vance, N. & Kirkland, M. (1997). Bryophytes associated with Acer circinatum: recovery and growth following harvest. In Conservation and Management of Native Plants and Fungi, ed. Kaye, T., Liston, A., Love, R., Luoma, D., Meinke, R. & Wilson, M., pp. 267–71. Corvallis, OR: Native Plant Society of Oregon.Google Scholar
Pluijm, A. (2001). Orthotrichum acuminatum H. Philib., a Mediterranan moss new to The Netherlands. Lindbergia, 26, 111–14.Google Scholar
Vanderpoorten, A. (1999). Aquatic bryophytes for a spatio-temporal monitoring of the water pollution of the rivers Meuse and Sambre (Belgium). Environmental Pollution, 104, 401–10.CrossRefGoogle Scholar
Vanderpoorten, A. & Engels, P. (2002). The effects of environmental variation on bryophytes at a regional scale. Ecography, 25, 513–22.CrossRefGoogle Scholar
Vanderpoorten, A. & Engels, P. (2003). Patterns of bryophyte diversity and rarity at a regional scale. Biodiversity and Conservation, 12, 545–53.CrossRefGoogle Scholar
Vanderpoorten, A. & Goffinet, B. (2006). Mapping uncertainty and phylogenetic uncertainty in ancestral character state reconstruction: an example in the moss genus Brachytheciastrum. Systematic Biology, 55, 957–71.CrossRefGoogle ScholarPubMed
Vanderpoorten, A. & Klein, J. P. (1999). A comparative study of the hydrophyte flora from the Alpine Rhine to the Middle Rhine. Application to the conservation of the Upper Rhine aquatic ecosystems. Biological Conservation, 87, 163–72.CrossRefGoogle Scholar
Vanderpoorten, A., Sotiaux, A. & Engels, P. (2004a). Trends in diversity and abundance of obligate epiphytic bryophytes in a highly managed landscape. Ecography, 27, 567–76.CrossRefGoogle Scholar
Vanderpoorten, A., Delescaille, L. & Jacquemart, A.-L. (2004b). The bryophyte layer in a calcareous grassland after a decade of contrasting mowing regimes. Biological Conservation, 117, 11–18.CrossRefGoogle Scholar
Vanderpoorten, A., Sotiaux, A. & Engels, P. (2005). A GIS-based survey for the conservation of bryophytes at the landscape scale. Biological Conservation, 121, 189–94.CrossRefGoogle Scholar
Vanderpoorten, A., Sotiaux, A. & Engels, P. (2006). A GIS-based model of the distribution of the rare liverwort Aneura maxima at the landscape scale for an improved assessment of its conservation status. Biodiversity and Conservation, 15, 829–38.CrossRefGoogle Scholar
Tooren, B. F., Odé, B., During, H. J. & Bobbink, R. (1990). Regeneration of species richness in the bryophyte layer of Dutch chalk grasslands. Lindbergia, 16, 153–60.Google Scholar
Tooren, B. F., Odé, B. & Bobbink, R. (1991). Management of Dutch chalk grasslands and the species richness of the cryptogam layer. Acta Botanica Neerlandica, 40, 379–80.Google Scholar
Zanten, B. O. (1978). Experimental studies on transoceanic long-range dispersal of moss spores in the southern hemisphere. Journal of the Hattori Botanical Laboratory, 44, 455–82.Google Scholar
Zanten, B. O. & Gradstein, S. R. (1988). Experimental dispersal geography of neotropical liverworts. Nova Hedwigia Beihefte, 90, 41–94.Google Scholar
Virtanen, R. & Oksanen, J. (2007). The effects of habitat connectivity on cryptogam richness in boulder metacommunity. Biological Conservation, 135, 415–22.CrossRefGoogle Scholar
Vitt, D. H. & Belland, R. (1997). Attributes of rarity among Alberta mosses: patterns and predictions of species diversity. Bryologist, 100, 1–12.CrossRefGoogle Scholar
Vitt, D. H., Halsey, L. A., Bray, J. & Kinser, A. (2003). Patterns of bryophyte richness in a complex of boreal landscape: identifying key habitats at McClelland Lake Wetland. Bryologist, 106, 372–82.CrossRefGoogle Scholar
Werner, J. (2003). Red list of the bryophytes of Luxembourg – conservation measures and perspectives. Ferrantia, 35, 1–71. (www.mnhn.lu/colsci/weje/check.htm.)Google Scholar
Werner, O., Rams, S. & Ros, R. M. (2005). Genetic diversity of Pohlia bolanderi (Mniaceae), a rare and threatened moss in Sierra Nevada (Spain), estimated by ISSR molecular markers. Nova Hedwigia, 81, 413–19.CrossRefGoogle Scholar
Whinam, J. & Buxton, R. (1997). Sphagnum peatlands of Australia: an assessment of harvesting sustainability. Biological Conservation, 82, 21–9.CrossRefGoogle Scholar
Wiklund, K. & Rydin, H. (2004a). Ecophysiological constraints on spore establishment in bryophytes. Functional Ecology, 18, 907–13.CrossRefGoogle Scholar
Wiklund, K. & Rydin, H. (2004b). Colony expansion of Neckera pennata: Modelled growth rate and effect of microhabitat, competition, and precipitation. Bryologist, 107, 293–301.CrossRefGoogle Scholar
Wyatt, R. (1992). Conservation of rare and endangered bryophytes: input from population genetics. Biological Conservation, 59, 99–107.CrossRefGoogle Scholar
Wyatt, R. & Stoneburner, A. (1980). Distribution and phenetic affinities of Donrichardsia, an endemic moss from the Edwards Plateau of Texas. Bryologist, 83, 512–20.CrossRefGoogle Scholar
Yamada, K. & Iwatsuki, Z. (2006). Catalog of the hepatics of Japan. Journal of the Hattori Botanical Laboratory, 99, 1–106.Google Scholar
Yates, C. J., Norton, D. A. & Hobbs, R. J. (2000). Grazing effects on plant cover, soil and microclimate in fragmented woodlands in south-western Australia: implications for restoration. Austral Ecology, 25, 36–47.CrossRefGoogle Scholar
Zamfir, M. & Goldberg, D. E. (2000). The effect of initial density on interactions between bryophytes at individual and community levels. Journal of Ecology, 88, 243–55.CrossRefGoogle Scholar
Zartman, C. E. (2003). Habitat fragmentation impacts on epiphyllous bryophyte communities in the forests of central Amazonia. Ecology, 84, 948–54.CrossRefGoogle Scholar
Zartman, C. E. & Nascimento, H. E. M. (2006). Are habitat-tracking metacommunities dispersal-limited? Inferences from abundance-occupancy patterns of epiphylls in Amazonian forest fragments. Biological Conservation, 127, 46–54.Google Scholar
Zartman, C. E. & Shaw, A. J. (2006). Metapopulation extinction thresholds in rain forest remnants. American Naturalist, 167, 177–89.CrossRefGoogle ScholarPubMed
Zechmeister, H. & Moser, D. (2001). The influence of agricultural land-use intensity on bryophyte species richness. Biodiversity and Conservation, 10, 1609–25.CrossRefGoogle Scholar
Zechmeister, H., Tribsch, A., Moser, D. & Wrbka, T. (2002). Distribution of endangered bryophytes in Austrian agricultural landscapes. Biological Conservation, 103, 173–82.CrossRefGoogle Scholar
Zechmeister, H. G., Schmitzberger, I., Steurerb, B., Peterseila, J. & Wrbka, T. (2003). The influence of land-use practices and economics on plant species richness in meadows. Biological Conservation, 114, 165–77.CrossRefGoogle Scholar
Zechmeister, H. G., Moser, D. & Milasowszky, N. (2007). Spatial distribution patterns of Rhynchostegium megapolitanum at the landscape scale – an expansive species?Applied Vegetation Science, 10, 111–20.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×