Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-28T21:00:19.614Z Has data issue: false hasContentIssue false

8 - Mineral nutrition and substratum ecology

Published online by Cambridge University Press:  06 July 2010

Bernard Goffinet
Affiliation:
University of Connecticut
A. Jonathan Shaw
Affiliation:
Duke University, North Carolina
Get access

Summary

Introduction

Bryophytes do not appear to differ fundamentally from higher plants and green algae in their basic requirements for mineral macronutrients and trace elements. However, bryophytes differ significantly from vascular plants in pathways for nutrient acquisition and these may sometimes have far-reaching consequences for the ecosystems in which they grow. Owing to their specific modes of nutrient capture, bryophytes frequently accumulate chemicals to concentrations far exceeding those in the ambient environment. This property has led to the development of moss biomonitoring methods, which have taken hold firmly in the wider scientific community since the first edition of this book appeared.

As in the earlier edition, this chapter describes the special problems that bryophytes encounter in obtaining essential mineral nutrients, and in dealing with non-essential elements and compounds. Far more is known now than in the earlier edition about nitrogen deposition and utilization by bryophytes, and hence the chapter will focus on these aspects of mineral nutrition and substrate ecology.

The substratum on which a bryophyte grows can be a source of nutrients and other chemicals that may cause stresses. I have retained the useful distinction between “substrate”, used for the substance on which an enzyme or biochemical process works (as in Section 8.3.1), and “substratum”, used for the surface supporting a plant or lichen, although the etymological grounds for this are slight. Substratum specificity and chemical specialisms are considered in some detail but aspects involving competition and population dynamics are now largely covered in Chapter 10 by Rydin.

Type
Chapter
Information
Bryophyte Biology , pp. 299 - 356
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, P. (1976). The occurrence of bryophytes on British saltmarshes. Journal of Bryology, 9, 265–74.CrossRefGoogle Scholar
Adams, D. G. (2000). Symbiotic interactions. In Ecology of Cyanobacteria: their Diversity in Time and Space, ed. Whitton, B. & Potts, M., pp. 523–61. Dordrecht: Kluwer.Google Scholar
Adams, D. G. (2002). The liverwort-cyanobacterial symbiosis. Proceedings of the Royal Irish Academy, 102B, 27–9.CrossRefGoogle Scholar
Aerts, R., Wallén, B. & Malmer, N. (1992). Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. Journal of Ecology, 80, 131–40.CrossRefGoogle Scholar
Aho, K. & Weaver, T. (2006). Measuring water relations and pH of cryptogam rock-surface environments. Bryologist, 109, 348–57.CrossRefGoogle Scholar
Aldous, A. R. (2002). Nitrogen translocation in Sphagnum mosses: effects of atmospheric deposition. New Phytologist, 156, 241–54.CrossRefGoogle Scholar
Alpert, P. (1985). Distribution quantified by microtopography in an assemblage of saxicolous mosses. Vegetatio, 64, 131–9.CrossRefGoogle Scholar
Alpert, P. (1988). Survival of a desiccation-tolerant moss, Grimmia laevigata, beyond its observed microdistributional limits. Journal of Bryology, 15, 219–27.CrossRefGoogle Scholar
Alpert, P. (1989). Translocation in the nonpolytrichaceous moss Grimmia laevigata. American Journal of Botany, 76, 1524–9.CrossRefGoogle Scholar
Aude, E. & Ejrnæs, R. (2005). Bryophyte colonisation in experimental microcosms: the role of nutrients, defoliation and vascular vegetation. Oikos, 109, 323–30.CrossRefGoogle Scholar
Badacsonyi, A., Bates, J. W. & Tuba, Z. (2000). Effects of desiccation on phosphorus and potassium acquisition by a desiccation-tolerant moss and lichen. Annals of Botany, 86, 621–7.CrossRefGoogle Scholar
Baddeley, J. A., Thompson, D. B. A. & Lee, J. A. (1994). Regional and historical variation in the nitrogen content of Racomitrium lanuginosum in Britain in relation to atmospheric nitrogen deposition. Environmental Pollution, 84, 189–96.CrossRefGoogle ScholarPubMed
Bakken, S. (1994). Growth and nitrogen dynamics of Dicranum majus under two contrasting nitrogen deposition regimes. Lindbergia, 19, 63–72.Google Scholar
Barkman, J. J. (1958). Phytosociology and Ecology of Cryptogamic Epiphytes. Assen: Van Gorcum.Google Scholar
Basile, A., Cogoni, A.E., Bassi, P.et al. (2001). Accumulation of Pb and Zn in gametophytes and sporophytes of the moss Funaria hygrometrica (Funariales). Annals of Botany, 87, 537–43.CrossRefGoogle Scholar
Basile, A., Giordano, S., Cafiero, G., Spagnuolo, V. & Castaldo-Cobianchi, R. (1994). Tissue and cell localization of experimentally-supplied lead in Funaria hygrometrica Hedw. using X-ray SEM and TEM analysis. Journal of Bryology, 18, 69–81.CrossRefGoogle Scholar
Bates, J. W. (1975). A quantitative investigation of the saxicolous bryophyte and lichen vegetation of Cape Clear Island, County Cork. Journal of Ecology, 63, 143–62.CrossRefGoogle Scholar
Bates, J. W. (1976). Cell permeability and regulation of intracellular sodium concentration in a halophytic and a glycophytic moss. New Phytologist, 77, 15–23.CrossRefGoogle Scholar
Bates, J. W. (1978). The influence of metal availability on the bryophyte and macro-lichen vegetation of four types on Skye and Rhum. Journal of Ecology, 66, 457–82.CrossRefGoogle Scholar
Bates, J. W. (1979). The relationship between physiological vitality and age in shoot segments of Pleurozium schreberi (Brid.) Mitt. Journal of Bryology, 10, 339–51.CrossRefGoogle Scholar
Bates, J. W. (1982a). Quantitative approaches in bryophyte ecology. In Bryophyte Ecology, ed. Smith, A. J. E., pp. 1–44. London: Chapman & Hall.Google Scholar
Bates, J. W. (1982b). The role of exchangeable calcium in saxicolous calcicole and calcifuge mosses. New Phytologist, 90, 239–52.CrossRefGoogle Scholar
Bates, J. W. (1987). Nutrient retention by Pseudoscleropodium purum and its relation to growth. Journal of Bryology, 14, 565–80.Google Scholar
Bates, J. W. (1989a). Retention of added K, Ca and P by Pseudoscleropodium purum growing under an oak canopy. Journal of Bryology, 15, 589–605.CrossRefGoogle Scholar
Bates, J. W. (1989b). Interception of nutrients in wet deposition by Pseudoscleropodium purum: an experimental study of uptake and retention of potassium and phosphorus. Lindbergia, 15, 93–8.Google Scholar
Bates, J. W. (1992a). Mineral nutrient acquisition and retention by bryophytes. Journal of Bryology, 17, 223–40.CrossRefGoogle Scholar
Bates, J. W. (1992b). Influence of chemical and physical factors on Quercus and Fraxinus epiphytes at Loch Sunart, western Scotland: a multivariate analysis. Journal of Ecology, 80, 163–79.CrossRefGoogle Scholar
Bates, J. W. (1993). Regional calcicoly in the moss Rhytidiadelphus triquetrus: survival and chemistry of transplants at a formerly SO2-polluted site with acid soil. Annals of Botany, 72, 449–55.CrossRefGoogle Scholar
Bates, J. W. (1994). Responses of the mosses Brachythecium rutabulum and Pseudoscleropodium purum to a mineral nutrient pulse. Functional Ecology, 8, 686–92.CrossRefGoogle Scholar
Bates, J. W. (1995). Numerical analysis of bryophyte-environment relationships in a lowland English flora. Fragmenta Floristica et Geobotanica, 40, 471–90.Google Scholar
Bates, J. W. (1997). Effects of intermittent desiccation on nutrient economy and growth of two ecologically contrasted mosses. Annals of Botany, 79, 299–309.CrossRefGoogle Scholar
Bates, J. W. (1998). Is ‘life-form’ a useful concept in bryophyte ecology?Oikos, 82, 223–37.CrossRefGoogle Scholar
Bates, J. W. & Bakken, S. (1998). Nutrient retention, desiccation and redistribution in mosses. In Bryology for the Twenty-first Century, ed. Bates, J. W., Ashton, N. W. & Duckett, J. G., pp. 293–304. Leeds: Maney and British Bryological Society.Google Scholar
Bates, J. W. & Brown, D. H. (1974). The control of cation levels in seashore and inland mosses. New Phytologist, 73, 483–95.CrossRefGoogle Scholar
Bates, J. W. & Farmer, A. M. (1990). An experimental study of calcium acquisition and its effects on the calcifuge moss Pleurozium schreberi. Annals of Botany, 65, 87–96.CrossRefGoogle Scholar
Bates, J. W., Proctor, M. C. F., Preston, C. D., Hodgetts, N. G. & Perry, A. R. (1997). Occurrence of epiphytic bryophytes in a ‘tetrad’ transect across southern Britain. 1. Geographical trends in abundance and evidence of recent change. Journal of Bryology, 19, 685–714.CrossRefGoogle Scholar
Bates, J. W., Roy, D. B. & Preston, C. D. (2004). Occurrence of epiphytic bryophytes in a ‘tetrad’ transect across southern Britain. 2. Analysis and modelling of epiphyte-environment relationships. Journal of Bryology, 26, 181–97.CrossRefGoogle Scholar
Baxter, R., Emes, M. J. & Lee, J. A. (1992). Effects of an experimentally applied increase in ammonium on growth and amino-acid metabolism of Sphagnum cuspidatum Erhr. ex Hoffm. from differently polluted areas. New Phytologist, 120, 265–74.CrossRefGoogle Scholar
Bell, F. W. & Newmaster, S. G. (2002). The effects of silvicultural disturbances on the diversity of seed-producing plants in the boreal mixedwood forest. Canadian Journal of Forestry Research, 32, 1180–91.CrossRefGoogle Scholar
Belnap, J. (2001). Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. In Biological Soil Crusts: Structure, Function and Management, ed. Belnap, J. & Lange, O. L., pp. 241–61. Berlin & Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Bengstrom, D. M. & Tweedie, C. E. (1998). A conceptual model for integration studies of epiphytes: nitrogen utilisation, a case study. Australian Journal of Botany, 46, 273–80.CrossRefGoogle Scholar
Berg, T., Røyset, O., Steinnes, E. & Vadset, M. (1995). Atmospheric trace element deposition: principal component analysis of ICP-MS data from moss samples. Environmental Pollution, 88, 67–77.CrossRefGoogle ScholarPubMed
Berg, T. & Steinnes, E. (1997). Use of mosses (Hylocomium splendens and Pleurozium schreberi) as biomonitors of heavy metal deposition: from relative to absolute deposition values. Environmental Pollution, 98, 61–71.CrossRefGoogle ScholarPubMed
Bergamini, A. & Pauli, D. (2001). Effects of increased nutrient supply on bryophytes in montane calcareous fens. Journal of Bryology, 23, 331–9.CrossRefGoogle Scholar
Bergamini, A. & Peintinger, M. (2002). Effects of light and nitrogen on morphological plasticity of the moss Calliergonella cuspidata. Oikos, 96, 355–63.CrossRefGoogle Scholar
Berrie, G. K. & Eze, J. M. O. (1975). The relationship between an epiphyllous liverwort and host leaves. Annals of Botany, 39, 955–63.CrossRefGoogle Scholar
Birks, H. J. B., Heegaard, E., Birks, H. H. & Jonsgard, B. (1998). Quantifying bryophyte-environment relationships. In Bryology for the Twenty-first Century, ed. Bates, J. W., Ashton, N. W. & Duckett, J. G., pp. 305–19. Leeds: Maney and British Bryological Society.Google Scholar
Boerner, R. E. & Forman, R. T. T. (1975). Salt spray and coastal dune mosses. Bryologist, 78, 57–63.CrossRefGoogle Scholar
Borstlap, A. C. (2002). Early diversification of plant aquaporins. Trends in Plant Science, 7, 529–30.CrossRefGoogle ScholarPubMed
Bowden, R. D. (1991). Input, outputs, and accumulation of nitrogen in an early successional moss (Polytrichum) ecosystem. Ecological Monographs, 61, 207–23.CrossRefGoogle Scholar
Bowden, W. B., Finlay, J. C. & Maloney, P. E. (1994). Long-term effects of PO4 fertilization on the distribution of bryophytes in an arctic river. Freshwater Biology, 32, 445–54.CrossRefGoogle Scholar
Brasell, H. M., Davies, S. K. & Mattay, J. P. (1986). Nitrogen fixation associated with bryophytes colonizing burnt sites in Southern Tasmania, Australia. Journal of Bryology, 14, 139–49.CrossRefGoogle Scholar
Brehm, V. K. (1971). Ein Sphagnum-Bult als Beispiel einer natürlichen Ionenaustauschersäule. Beiträge zur Biologie der Pflanzen, 47, 287–312.Google Scholar
Brown, D. H. (1982). Mineral nutrition. In Bryophyte Ecology, ed. Smith, A. J. E., pp. 383–444. London: Chapman & Hall.CrossRefGoogle Scholar
Brown, D. H. (1984). Uptake of mineral elements and their use in pollution monitoring. In The Experimental Biology of Bryophytes, ed. Dyer, A. F. & Duckett, J. G., pp. 229–55. London: Academic Press.Google Scholar
Brown, D. H. & Bates, J. W. (1990). Bryophytes and nutrient cycling. Botanical Journal of the Linnean Society, 104, 129–47.CrossRefGoogle Scholar
Brown, D. H. & Beckett, R. P. (1985). Intracellular and extracellular uptake of cadmium by the moss Rhytidiadelphus squarrosus. Annals of Botany, 55, 179–88.CrossRefGoogle Scholar
Brown, D. H. & Buck, G. W. (1978). Distribution of potassium, calcium and magnesium in the gametophyte and sporophyte generations of Funaria hygrometrica Hedw. Annals of Botany, 42, 923–9.CrossRefGoogle Scholar
Brown, D. H. & Buck, G. W. (1979). Desiccation effects and cation distribution in bryophytes. New Phytologist, 82, 115–25.CrossRefGoogle Scholar
Brown, D. H. & Sidhu, M. (1992). Heavy metal uptake, cellular location, and inhibition of moss growth. Cryptogamic Botany, 3, 82–5.Google Scholar
Brown, D. H. & Wells, J. M. (1988). Sequential elution technique for determining the cellular location of cations. In Methods in Bryology, ed. Glime, J. M., pp. 227–33. Nichinan: Hattori Botanical Laboratory.Google Scholar
Brümelis, G. & Brown, D. H. (1997). Movement of metals to new growing tissue in the moss Hylocomium splendens (Hedw.) BSG. Annals of Botany, 79, 679–86.CrossRefGoogle Scholar
Brümelis, G., Lapiņa, L. & Tabors, G. (2000). Uptake of Ca, Mg and K during growth of annual segments of the moss Hylocomium splendens in the field. Journal of Bryology, 22, 163–74.CrossRefGoogle Scholar
Burton, M. A. S. (1986). Biological Monitoring. MARC Report Number 32. London: Monitoring and Assessment Research Centre, King's College London.Google Scholar
Burton, M. A. S. (1990). Terrestrial and aquatic bryophytes as monitors of environmental contaminants in urban and industrial habitats. Botanical Journal of the Linnean Society, 104, 267–80.CrossRefGoogle Scholar
Büscher, P., Koedam, N. & Spreybroeck, D. (1990). Cation-exchange properties and adaptation to soil acidity in bryophytes. New Phytologist, 115, 177–86.CrossRefGoogle Scholar
Callaghan, T. V., Collins, N. J. & Callaghan, C. H. (1978). Photosynthesis, growth and reproduction of Hylocomium splendens and Polytrichum commune in Swedish Lapland. Oikos, 31, 73–88.CrossRefGoogle Scholar
Cameron, R. G. & Troili, D. (1982). Fly-mediated spore dispersal in Splachnum ampullaceum (Musci). Michigan Botanist, 21, 59–65.Google Scholar
Cameron, R. G. & Wyatt, R. (1989). Substrate restriction in entomophilous Splachnaceae. II. Effects of hydrogen ion concentration on establishment of gametophytes. Bryologist, 92, 397–404.CrossRefGoogle Scholar
Carroll, J. A., Johnson, D., Morecroft, M.et al. (2000). The effect of long-term nitrogen additions on the bryophyte cover of upland acidic grasslands. Journal of Bryology, 22, 83–9.CrossRefGoogle Scholar
Chapin, F. S. III, Oechel, W. C., Cleve, K. & Lawrence, W. (1987). The role of mosses in the phosphorus cycling of an Alaskan black spruce forest. Oecologia, 74, 310–15.CrossRefGoogle ScholarPubMed
Chaumont, F., Moshelion, M. & Daniels, M. J. (2005). Regulation of plant aquaporin activity. Biology of the Cell, 97, 749–64.CrossRefGoogle ScholarPubMed
Chevalier, D., Nurit, F. & Pesey, H. (1977). Orthophosphate absorption by the sporophyte of Funaria hygrometrica during maturation. Annals of Botany, 41, 527–31.CrossRefGoogle Scholar
Christmas, M. & Whitton, B. A. (1998). Phosphorus and aquatic bryophytes in the Swale-Ouse river system, north England. 1. Relationship between ambient phosphate, internal N:P ratio and surface phosphatase activity. Science of the Total Environment, 210, 389–99.CrossRefGoogle Scholar
Clark, K. L., Nadkarni, N. M. & Gholz, H. L. (1998). Growth, net production, litter decomposition, and net nitrogen accumulation by epiphytic bryophytes in a tropical montane forest. Biotropica, 30, 12–23.CrossRefGoogle Scholar
Claveri, B., Morhain, E. & Mouvet, C. (1994). A methodology for the assessment of accidental copper pollution using the aquatic moss Rhynchostegium riparioides. Chemosphere, 28, 2001–10.CrossRefGoogle Scholar
Cleavitt, N. (2001). Disentangling moss species limitations: the role of physiologically base substrate specificity for six species occurring on substrates with varying pH and percent organic matter. Bryologist, 104, 59–68.CrossRefGoogle Scholar
Clément, B. & Touffet, J. (1990). Plant strategies and secondary succession on Brittany heathlands after severe fire. Journal of Vegetation Science, 1, 195–202.CrossRefGoogle Scholar
Clymo, R. S. (1963). Ion exchange in Sphagnum and its relation to bog ecology. Annals of Botany, 27, 309–24.CrossRefGoogle Scholar
Clymo, R. S. (1967). Control of cation concentrations, and in particular of pH, in Sphagnum dominated communities. In Chemical Environment in the Aquatic Habitat, ed. Golterman, H. L. & Clymo, R. S., pp. 273–84. Amsterdam: North Holland.Google Scholar
Clymo, R. S. (1973). The growth of Sphagnum: some effects of environment. Journal of Ecology, 61, 849–69.CrossRefGoogle Scholar
Clymo, R. S. & Hayward, P. M. (1982). The ecology of Sphagnum. In Bryophyte Ecology, ed. Smith, A. J. E., pp. 229–89. London: Chapman & Hall.CrossRefGoogle Scholar
Coley, P. D., Kursar, T. A. & Machado, J.-L. (1993). Colonization of tropical rain forest leaves by epiphylls: effects of site and host plant leaf lifetime. Ecology, 74, 619–23.CrossRefGoogle Scholar
Collins, N. J. & Oechel, W. C. (1974). The pattern of growth and translocation of photosynthate in a tundra moss, Polytrichum alpinum. Canadian Journal of Botany, 52, 355–63.CrossRefGoogle Scholar
Cornelissen, J. H. C. & Steege, H. (1989). Distribution and ecology of epiphytic bryophytes and lichens in dry evergreen forest of Guyana. Journal of Tropical Ecology, 5, 131–50.CrossRefGoogle Scholar
Coxson, D. S. (1991). Nutrient release from epiphytic bryophytes in tropical montane rain forest (Guadeloupe). Canadian Journal of Botany, 69, 2122–9.CrossRefGoogle Scholar
Crundwell, A. C. (1994). Splachnum ampullaceum Hedw. In Atlas of the Bryophytes of Britain and Ireland, vol. 3, Mosses (Diplolepideae), ed. Hill, M. O., Preston, C. D. & Smith, A. J. E., p. 48. Colchester: Harley.Google Scholar
Damman, A. W. H. (1978). Distribution and movement of elements in ombrotrophic peat bogs. Oikos, 30, 480–95.CrossRefGoogle Scholar
Delépée, R., Pouliquen, H. & Bris, H. (2003). The bryophyte Fontinalis antipyretica Hedw. bioaccumulates oxytetracycline, flumequine and oxolinic acid in the freshwater environment. Science of the Total Environment, 322, 243–53.CrossRefGoogle Scholar
Dietert, M. F. (1979). Studies on the gametophyte nutrition of the cosmopolitan species Funaria hygrometrica and Weissia controversa. Bryologist, 82, 417–31.CrossRefGoogle Scholar
Duckett, J. G. & Read, D. J. (1995). Ericoid mycorrhizas and rhizoid-ascomycete associations in liverworts share the same mycobiont: isolation of the partners and resynthesis of the associations in vitro. New Phytologist, 129, 439–47.CrossRefGoogle Scholar
Duckett, J. G., Renzaglia, K. S. & Pell, K. (1991). A light and electron microscope study of rhizoid-ascomycete associations and flagelliform axes in British hepatics. New Phytologist, 118, 233–57.CrossRefGoogle Scholar
During, H. J. (1979). Life strategies of bryophytes; a preliminary review. Lindbergia, 53, 2–18.Google Scholar
During, H. J. (1992). Ecological classifications of bryophytes and lichens. In Bryophytes and Lichens in a Changing Environment, ed. Bates, J. W. & Farmer, A. M., pp. 1–31. Oxford: Clarendon Press.Google Scholar
During, H. J. (1997). Bryophyte diaspore banks. Advances in Bryology, 6, 103–34.Google Scholar
Eckstein, R. L. (2000). Nitrogen retention by Hylocomium splendens in a subarctic birch woodland. Journal of Ecology, 88, 506–15.CrossRefGoogle Scholar
Eckstein, R. L. & Karlsson, P. S. (1999). Recycling of nitrogen among segments of Hylocomium splendens as compared with Polytrichum commune – implications for clonal integration in an ectohydric bryophyte. Oikos, 86, 87–96.CrossRefGoogle Scholar
Equihua, M. & Usher, M. B. (1993). Impact of carpets of the invasive moss Campylopus introflexus on Calluna vulgaris regeneration. Journal of Ecology, 81, 359–65.CrossRefGoogle Scholar
Estébanez, B., Alfayate, C., Ballesteros, T.et al. (2002). Amorphous mineral incrustations in the moss Homalothecium sericeum. Journal of Bryology, 24, 25–32.CrossRefGoogle Scholar
Eze, J. M. O. & Berrie, G. K. (1977). Further investigations into the physiological relationships between an epiphyllous liverwort and its host leaves. Annals of Botany, 41, 351–8.CrossRefGoogle Scholar
Farmer, A. M., Bates, J. W. & Bell, J. N. B. (1991). Seasonal variations in acidic pollutant inputs and their effects on the chemistry of stemflow, bark and epiphyte tissues in three oak woodlands in N.W. Britain. New Phytologist, 118, 441–51.CrossRefGoogle Scholar
Farmer, J. G., Eades, L. J., Atkins, H. & Chamberlain, D. F. (2002). Historical trends in the lead isotopic composition of archival Sphagnum mosses from Scotland (1838–2000). Environmental Science and Technology, 36, 152–7.CrossRefGoogle Scholar
Forsum, A., Dahlman, L., Näsholm, T. & Nordin, A. (2006). Nitrogen utilization by Hylocomium splendens in a boreal forest fertilization experiment. Functional Ecology, 20, 421–6.CrossRefGoogle Scholar
Foster, D. R. (1985). Vegetation development following fire in Picea mariana (Black Spruce) – Pleurozium forests of south-eastern Labrador, Canada. Journal of Ecology, 73, 517–34.CrossRefGoogle Scholar
García-Álvaro, M. A., Martínez-Abaigar, J., Núñez-Olivera, E. & Beaucourt, N. (2000). Element concentrations and enrichment ratios in the aquatic moss Rhynchostegium riparioides along the River Iregua (La Rioja, Northern Spain). Bryologist, 103, 518–33.CrossRefGoogle Scholar
Gerdol, R., Bragazza, L. & Marchesini, R. (2002). Element concentrations in the forest moss Hylocomium splendens: variation associated with altitude, net primary production and soil chemistry. Environmental Pollution, 116, 129–35.CrossRefGoogle ScholarPubMed
Gloaguen, J. C. (1990). Post-burn succession on Brittany heathlands. Journal of Vegetation Science, 1, 147–52.CrossRefGoogle Scholar
Gombert, S., Traubenberg, C., Losno, R., Leblond, S., Collin, J. & Cossa, D. (2004). Biomonitoring of element deposition using mosses in the 2000 French survey: identifying sources and spatial trends. Journal of Atmospheric Chemistry, 49, 479–502.CrossRefGoogle Scholar
Gordon, C., Wynn, J. M. & Woodin, S. J. (2001). Impacts of increased nitrogen supply on High Arctic heath: the importance of bryophytes and phosphorus availability. New Phytologist, 149, 461–71.CrossRefGoogle Scholar
Grime, J. P. (1974). Vegetation classification by reference to strategies. Nature, 250, 26–31.CrossRefGoogle Scholar
Gunnarsson, U., Granberg, G. & Nilsson, M. (2004). Growth, production and interspecific competition in Sphagnum: effects of temperature, nitrogen and sulphur treatments on a boreal mire. New Phytologist, 163, 349–59.CrossRefGoogle Scholar
Gunnarsson, U. & Rydin, H. (2000). Nitrogen fertilization reduces Sphagnum production in bog communities. New Phytologist, 147, 527–38.CrossRefGoogle Scholar
Gupta, R. K. (1977). A study of photosynthesis and leakage of solutes in relation to the desiccation effects in bryophytes. Canadian Journal of Botany, 55, 1186–94.CrossRefGoogle Scholar
Gustafsson, L. & Eriksson, I. (1995). Factors of importance for the epiphytic vegetation of aspen Populus tremula with special emphasis on bark chemistry and soil chemistry. Journal of Applied Ecology, 32, 412–24.CrossRefGoogle Scholar
Hébant, C. (1977). The Conducting Tissues of Bryophytes. Vaduz: J. Cramer.Google Scholar
Hébrard, J.-P., Foulquier, L. & Grauby, A. (1974). Approche expérimentale sur les possibilités de transfert du 90Sr d'un substrat solide à une mousse terrestre: Grimmia orbicularis Bruch. Bulletin de la Société Botanique de France, 121, 235–50.CrossRefGoogle Scholar
Hedderson, T. A. & Longton, R. E. (1995). Patterns of life history variation in the Funariales, Polytrichales and Pottiales. Journal of Bryology, 18, 639–75.CrossRefGoogle Scholar
Heegard, E. (1997). Ecology of Andreaea in western Norway. Journal of Bryology, 19, 527–636.CrossRefGoogle Scholar
Herben, T. & Söderström, L. (1992). Which habitat parameters are most important for the persistence of a bryophyte species on patchy, temporary substrates?Biological Conservation, 59, 121–6.CrossRefGoogle Scholar
Herpin, U., Berlekamp, J., Markert, B.et al. (1996). The distribution of heavy metals in a transect of the three states the Netherlands, Germany and Poland, determined with the aid of moss monitoring. The Science of the Total Environment, 187, 185–98.CrossRefGoogle Scholar
Hietz, P., Wanek, W., Wania, R. & Nadkarni, N. (2002). Nitrogen-15 natural abundance in a montane cloud forest canopy as an indicator of nitrogen cycling and epiphyte abundance. Oecologia, 131, 350–5.CrossRefGoogle Scholar
Hill, M. O. (1988). A bryophyte flora of north Wales. Journal of Bryology, 15, 377–491.CrossRefGoogle Scholar
Hirschi, K. D. (2004). The calcium conundrum: both versatile nutrient and specific signal. Plant Physiology, 136, 2438–42.CrossRefGoogle ScholarPubMed
Hobbs, R. J. & Gimingham, C. H. (1984). Studies of fire in Scottish heathland communities. II. Post-fire vegetation development. Journal of Ecology, 72, 585–610.CrossRefGoogle Scholar
Hoffman, G. R. (1966). Observations on the mineral nutrition of Funaria hygrometrica Hedw. Bryologist, 69, 182–92.CrossRefGoogle Scholar
Hoffman, G. R. (1972). The accumulation of cesium-137 by cryptogams in a Liriodendron tulipifera forest. Botanical Gazette, 133, 107–19.CrossRefGoogle Scholar
Jäppinen, J.-P. & Hotanen, J.-P. (1990). Effect of fertilization on the abundance of bryophytes in two drained peatland forests in eastern Finland. Annales Botanici Fennici, 27, 93–108.Google Scholar
John, E. & Dale, M. R. T. (1995). Neighbor relations within a community of epiphytic lichens and bryophytes. Bryologist, 98, 29–37.CrossRefGoogle Scholar
Johnsen, I. & Rasmussen, L. (1977). Retrospective study (1944–1976) of heavy metals in the epiphyte Pterogonium gracile collected from one phorophyte. Bryologist, 80, 625–9.CrossRefGoogle Scholar
Johnsgard, B. & Birks, H. J. B. (1993). Quantitative studies on saxicolous bryophyte–environment relationships in western Norway. Journal of Bryology, 17, 579–611.CrossRefGoogle Scholar
Jules, E. S. & Shaw, A. J. (1994). Adaptation to metal-contaminated soils in populations of the moss Ceratodon purpureus – vegetative growth and reproductive expression. American Journal of Botany, 81, 791–7.CrossRefGoogle Scholar
Kellner, O. & Mårshagen, M. (1991). Effects of irrigation and fertilization on the ground vegetation in a 130-year-old stand of Scots pine. Canadian Journal of Forestry Research, 21, 733–8.CrossRefGoogle Scholar
Kelly, M. G. & Whitton, B. A. (1989). Interspecific differences in Zn, Cd and Pb accumulation by freshwater algae and bryophytes. Hydrobiologia, 175, 1–11.CrossRefGoogle Scholar
Kimmerer, R. W. (1994). Ecological consequences of sexual versus asexual reproduction in Dicranum flagellare and Tetraphis pellucida. Bryologist, 97, 20–5.CrossRefGoogle Scholar
Kimmerer, R. W. & Young, C. C. (1995). The role of slugs in dispersal of the asexual propagules of Dicranum flagellare. Bryologist, 98, 149–53.CrossRefGoogle Scholar
Koponen, A. M. (1978). The peristome and spores in Splachnaceae and their evolutionary and systematic significance. Bryophytorum Bibliotheca, 13, 535–67.Google Scholar
Koponen, A. M. & Koponen, T. (1978). Evidence of entomophily in Splachnaceae (Bryophyta). Bryophytorum Bibliotheca, 13, 569–77.Google Scholar
Kuik, P. & Wolterbeek, H. T. (1995). Factor analysis of atmospheric trace-element deposition data in the Netherlands obtained by moss monitoring. Water, Air and Soil Pollution, 84, 323–46.CrossRefGoogle Scholar
Lara, F. & Mazimpaka, V. (1998). Succession of epiphytic bryophytes in a Quercus pyrenaica forest from the Spanish Central Range (Iberian Peninsula). Nova Hedwigia, 67, 125–38.Google Scholar
Leblond, S., Gombert, S., Colin, J., Losno, R. & Traubenberg, C. (2004). Biological and temporal variations of trace element concentrations in the moss species Scleropodium purum (Hedw.) Limpr. Journal of Atmospheric Chemistry, 49, 95–110.CrossRefGoogle Scholar
Lee, J. A. (1999). The calcicole-calcifuge problem revisited. Advances in Botanical Research, 29, 2–30.Google Scholar
Legg, C. J., Maltby, E. & Proctor, M. C. F. (1992). The ecology of severe moorland fire on the North York Moors: seed distribution and seedling establishment of Calluna vulgaris. Journal of Ecology, 80, 737–52.CrossRefGoogle Scholar
LewisSmith, R. I. Smith, R. I. (1978). Summer and winter concentrations of sodium, potassium and calcium in some maritime antarctic cryptogams. Journal of Ecology, 66, 891–909.Google Scholar
Ligrone, R. & Duckett, J. G. (1994). Cytoplasmic polarity and endoplasmic microtubules associated with the nucleus and organelles are ubiquitous features of food-conducting cells in bryoid mosses (Bryophyta). New Phytologist, 127, 601–14.CrossRefGoogle Scholar
Ligrone, R. & Duckett, J. G. (1996). Polarity and endoplasmic microtubules in food-conducting cells of mosses: an experimental study. New Phytologist, 134, 503–16.CrossRefGoogle Scholar
Ligrone, R. & Gambardella, R. (1988). The sporophyte-gametophyte junction in bryophytes. Advances in Bryology, 3, 225–74.Google Scholar
Ligrone, R., Duckett, J. G. & Renzaglia, K. R. (2000). Conducting tissues and phyletic relationships of bryophytes. Philosophical Transactions of the Royal Society of London, B355, 795–813.CrossRefGoogle ScholarPubMed
Limpens, J., Tomassen, H. B. M. & Berendse, F. (2003a). Expansion of Sphagnum fallax in bogs: striking the balance between N and P availability. Journal of Bryology, 25, 83–90.CrossRefGoogle Scholar
Limpens, J., Berendse, F. & Klees, H. (2003b). N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation. New Phytologist, 157, 339–47.CrossRefGoogle Scholar
Limpens, J., Raymakers, J. T. A. G., Baar, J., Berendse, F. & Zijlstra, J. D. (2003c). The interaction between epiphytic algae, a parasitic fungus and Sphagnum as affected by N and P. Oikos, 103, 59–68.CrossRefGoogle Scholar
Lloret, F. (1991). Population-dynamics of the coprophilous moss Tayloria tenuis in a Pyrenean forest. Holarctic Ecology, 14, 1–8.Google Scholar
Longton, R. E. (1988). Biology of Polar Bryophytes and Lichens. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Longton, R. E. (1992). The role of bryophytes and lichens in terrestrial ecosystems. In Bryophytes and Lichens in a Changing Environment, ed. Bates, J. W. & Farmer, A. M., pp. 32–76. Oxford: Clarendon Press.Google Scholar
Longton, R. E. (1997). Reproductive biology and life-history strategies. Advances in Bryology, 6, 65–101.Google Scholar
Malmer, N. (1988). Patterns in the growth and the accumulation of inorganic constituents in the Sphagnum cover on ombrotrophic bogs in Scandinavia. Oikos, 53, 105–20.CrossRefGoogle Scholar
Maltby, E.,Legg, C. J. & Proctor, M. C. F. (1990). The ecology of severe moorland fire on the North York Moors: effects of the 1976 fires, and subsequent surface and vegetation development. Journal of Ecology, 78, 490–518.CrossRefGoogle Scholar
Marino, P. C. (1991a). Competition between mosses (Splachnaceae) in patchy habitats. Journal of Ecology, 79, 1031–46.CrossRefGoogle Scholar
Marino, P. C. (1991b). Dispersal and coexistence of mosses (Splachnaceae) in patchy habitats. Journal of Ecology, 79, 1047–60.CrossRefGoogle Scholar
Marino, P. C. (1997). Competition, dispersal and coexistence of Splachnaceae in patchy habitats. Advances in Bryology, 6, 241–63.Google Scholar
Markert, B., Herpin, U., Siewers, U., Berlkamp, J. & Lieth, H. (1996). The German heavy metal survey by means of mosses. The Science of the Total Environment, 182, 159–68.CrossRefGoogle ScholarPubMed
Markert, B. & Weckert, V. (1989). Fluctuations of element concentrations during the growing season of Polytrichum formosum Hedw. Water, Air, and Soil Pollution, 43, 177–89.CrossRefGoogle Scholar
Marschall, M. (1998). Nitrate reductase activity during desiccation and rehydration of the desiccation tolerant moss Tortula ruralis and the leafy liverwort Porella platyphylla. Journal of Bryology, 20, 273–85.CrossRefGoogle Scholar
Marschner, H. (1986). Mineral Nutrition of Higher Plants. London: Academic Press.Google Scholar
Martins, R. J. E. & Boaventura, R. A. R. (2002). Uptake and release of zinc by aquatic bryophytes (Fontinalis antipyretica L. ex Hedw.). Water Research, 36, 5005–12.CrossRefGoogle Scholar
Martínez-Abaigar, J., García-Álvaro, M. A., Beaucourt, N. & Núnez-Olivera, E. (2002a). Combined seasonal and longitudinal variations of element concentrations in two aquatic mosses (Fontinalis antipyretica and F. squamosa). Nova Hedwigia, 74, 349–64.CrossRefGoogle Scholar
Martínez-Abaigar, J., Núnez-Olivera, E. & Beaucourt, N. (2002b). Short-term physiological responses of the aquatic liverwort Jungermannia exsertifolia subsp. cordifolia to KH2PO4 and anoxia. Bryologist, 105, 86–95.CrossRefGoogle Scholar
Matzek, V. & Vitousek, P. (2003). Nitrogen fixation in bryophytes, lichens and decaying wood along a soil-age gradient in Hawaiian montane rain forest. Biotropica, 35, 12–19.Google Scholar
McLean, R. O. & Jones, A. K. (1975). Studies of tolerance to heavy metals in the flora of the rivers Ystwyth and Clarach, Wales. Freshwater Biology, 5, 431–44.CrossRefGoogle Scholar
Meeks, J. C. (1998). Symbiosis between nitrogen-fixing cyanobacteria and plants. BioScience, 48, 266–76.CrossRefGoogle Scholar
Meeks, J. C., Campbell, E. L., Hagen, K.et al. (1999). Developmental alternatives of symbiotic Nostoc punctiforme in response to its plant partner Anthoceros punctatus. In The Phototropic Prokaryotes, ed. Peschek, G. A., Löffelhardt, W. & Schmetterer, G., pp. 665–78. New York: Kluwer/Plenum.CrossRefGoogle Scholar
Mickiewicz, J. (1976). Influence of mineral fertilization on the biomass of moss. Polish Ecological Studies, 2, 57–62.Google Scholar
Mitchell, R. J., Sutton, M. A., Truscott, A. M.et al. (2004). Growth and tissue nitrogen of epiphytic Atlantic bryophytes: effects of increased and decreased atmospheric N deposition. Functional Ecology, 18, 322–9.CrossRefGoogle Scholar
Mitchell, R. J., Truscot, A. M., Leith, I. D.et al. (2005). A study of the epiphytic communities of Atlantic oakwoods along an atmospheric nitrogen deposition gradient. Journal of Ecology, 93, 482–92.CrossRefGoogle Scholar
Morecroft, M. D., Sellers, E. K. & Lee, J. A. (1994). An experimental investigation into the effects of atmospheric nitrogen deposition on two semi-natural grasslands. Journal of Ecology, 82, 475–83.CrossRefGoogle Scholar
Mouvet, C. (1985). The use of aquatic bryophytes to monitor heavy metals pollution of freshwaters as illustrated by case studies. Verhein Internationale Verein Limnologie, 22, 2420–5.Google Scholar
Mouvet, C., Morhain, E., Sutter, C. & Couturieux, N. (1993). Aquatic mosses for the detection and follow-up of accidental discharges in surface waters. Water, Air and Soil Pollution, 66, 333–48.Google Scholar
Mouvet, C., Pattée, E. & Cordebar, P. (1986). Utilisation des mousses aquatiques pour l'identification et la localisation précise de sources de pollution métallique multiforme. Acta Oecologia, 7, 77–91.Google Scholar
Muhle, H. & LeBlanc, F. (1975), Bryophyte and lichen succession on decaying logs. I. Analysis along an evaporational gradient in eastern Canada. Journal of the Hattori Botanical Laboratory, 39, 1–33.Google Scholar
Nadkarni, N. (1984). Epiphyte biomass and nutrient capital of a Neotropical elfin forest. Biotropica, 16, 249–56.CrossRefGoogle Scholar
Newmaster, S. G., Belland, R. J., Arsenault, A. & Vitt, D. H. (2003). Patterns of bryophyte diversity in humid coastal and inland cedar-hemlock forests of British Columbia. Environmental Review, 11, S159–85.CrossRefGoogle Scholar
Nordin, A. & Gunnarsson, U. (2000). Amino acid accumulation and growth of Sphagnum under different levels of N deposition. Ecoscience, 7, 474–80.CrossRefGoogle Scholar
Oechel, W. C. & Cleve, K. (1986). The role of bryophytes in nutrient cycling in the taiga. In Forest Ecosystems in the Alaskan Taiga, ed. Cleve, K., Chapin, F. S., Flanagan, P. W., Viereck, L. A. & Dyrness, C. T., pp. 121–37. New York: Springer-Verlag.CrossRefGoogle Scholar
Offler, C. E., McCurdy, D. W., Patrick, J. W. & Talbot, M. J. (2003). Transfer cells: cells specialized for a special purpose. Annual Review of Plant Biology, 54, 431–54.CrossRefGoogle ScholarPubMed
Onianwa, P. C. (2001). Monitoring atmospheric metal pollution: a review of the use of mosses as indicators. Environmental Monitoring and Assessment, 71, 13–50.CrossRefGoogle ScholarPubMed
Palmer, M. W. (1986). Pattern in corticolous bryophyte communities of the North Carolina Piedmont: do mosses see the forest or the trees?Bryologist, 89, 59–65.CrossRefGoogle Scholar
Paulissen, M. P. C. P., Besalú, L. E., Bruijn, H., Ven, P. J. M. & Bobbink, R. (2005). Contrasting effects of ammonium enrichment on fen bryophytes. Journal of Bryology, 27, 109–17.CrossRefGoogle Scholar
Pearce, I. S. K., Woodin, S. J. & Wal, R. (2003). Physiological and growth responses of the montane bryophyte Racomitrium lanuginosum to atmospheric nitrogen deposition. New Phytologist, 160, 145–55.CrossRefGoogle Scholar
Pearson, J., Wells, D. M., Seller, K. J.et al. (2000). Traffic exposure increases natural 15N and heavy metal concentrations in mosses. New Phytologist, 147, 317–26.CrossRefGoogle Scholar
Pharo, E. J. & Beattie, A. J. (2002). The association between substrate variability and bryophyte and lichen diversity in eastern Australian forests. Bryologist, 105, 11–26.CrossRefGoogle Scholar
Pickering, D. C. & Puia, I. L. (1969). Mechanism for the uptake of zinc by Fontinalis antipyretica. Physiologia Plantarum, 22, 653–61.CrossRefGoogle Scholar
Pócs, T. (1982). Tropical forest bryophytes. In Bryophyte Ecology, ed. Smith, A. J. E., pp. 59–104. London: Chapman & Hall.CrossRefGoogle Scholar
Press, M. C. & Lee, J. A. (1983). Acid phosphatase activity in Sphagnum species in relation to phosphate nutrition. New Phytologist, 93, 567–73.CrossRefGoogle Scholar
Pyysalo, H., Koponen, A. & Koponen, T. (1983). Studies on entomophily in Splachnaceae (Musci). II. Volatile compounds in the hypophysis. Annales Botanici Fennici, 21, 335–8.Google Scholar
Raven, J. A. (1977). The evolution of land plants in relation to supracellular transport processes. Advances in Botanical Research, 5, 314–19.Google Scholar
Raven, J. A. (2003). Long-distance transport in non-vascular plants. Plant, Cell and Environment, 26, 73–85.CrossRefGoogle Scholar
Raven, J. A., Griffiths, H., Smith, E. C. & Vaughn, K. C. (1998). New perspectives in the biophysics and physiology of bryophytes. In Bryology for the Twenty-First Century, ed. Bates, J. W., Ashton, N. W. & Duckett, J. G., pp. 261–75. Leeds: Maney and British Bryological Society.Google Scholar
Richter, C. & Dainty, J. (1989a). Ion behavior in plant cell walls. I. Characterization of the Sphagnum russowii cell wall ion exchanger. Canadian Journal of Botany, 67, 451–9.CrossRefGoogle Scholar
Richter, C. & Dainty, J. (1989b). Ion behavior in plant cell walls. II. Measurement of the Donnan free space, anion-exclusion space, anion-exchange capacity, and cation-exchange capacity in delignified Sphagnum russowii cell walls. Canadian Journal of Botany, 67, 460–5.CrossRefGoogle Scholar
Rieley, J. O., Richards, P. W. & Bebbington, A. D. L. (1979). The ecological role of bryophytes in a north Wales woodland. Journal of Ecology, 67, 497–527.CrossRefGoogle Scholar
Rincón, E. (1988). The effect of herbaceous litter on bryophyte growth. Journal of Bryology, 15, 209–17.CrossRefGoogle Scholar
Rincón, E. (1990). Growth responses of Brachythecium rutabulum to different litter arrangements. Journal of Bryology, 16, 120–2.CrossRefGoogle Scholar
Rincón, E. & Grime, J. P. (1989). Plasticity and light interception by six bryophytes of contrasted ecology. Journal of Ecology, 77, 439–46.CrossRefGoogle Scholar
Roberts, S. K. (2006). Plasma membrane anion channels in higher plants and their putative functions in roots. New Phytologist, 169, 647–66.CrossRefGoogle ScholarPubMed
Romero, C., Putz, F. E. & Kitajima, K. (2006). Ecophysiology in relation to exposure of pendant epiphytic bryophytes in the canopy of a tropical montane oak forest. Biotropica, 38, 35–41.Google Scholar
Ron, E., Estébanez, B., Alfayate, C., Marfil, R. & Corttella, A. (1999). Mineral deposits in cells of Hookeria lucens. Journal of Bryology, 21, 281–8.CrossRefGoogle Scholar
Rose, F. (1992). Temperate forest management: its effects on bryophyte and lichen floras and habitats. In Bryophytes and Lichens in a Changing Environment, ed. Bates, J. W. & Farmer, A. M., pp. 211–33. Oxford: Clarendon Press.Google Scholar
Rühling, Å. & Tyler, G. (1970). Sorption and retention of heavy metals in the woodland moss Hylocomium splendens (Hedw.) Br. et Sch. Oikos, 21, 92–7.CrossRefGoogle Scholar
Rühling, Å. & Tyler, G. (2004). Changes in the atmospheric deposition of minor and rare elements between 1975 and 2000 in south Sweden, as measured by moss analysis. Environmental Pollution, 131, 417–23.CrossRefGoogle ScholarPubMed
Rydin, H. (1997). Competition among bryophytes. Advances in Bryology, 6, 135–68.Google Scholar
Rydin, H. & Clymo, R. S. (1989). Transport of carbon and phosphorus compounds about Sphagnum. Proceedings of the Royal Society, London, B237, 63–84.CrossRefGoogle Scholar
Samecka-Cymerman, A., Kempers, A. J. & Kolon, K. (2000). Concentrations of heavy metals in aquatic bryophytes used for biomonitoring in rhyolite and trachybasalt areas: a case study with Platyhypnidium rusciforme from the Sudety Mountains. Annales Botanici Fennici, 37, 95–104.Google Scholar
Satake, K. (2000). Iron accumulation on the cell wall of the aquatic moss Drepanocladus fluitans in an acid lake at pH 3.4–3.8. Hydrobiologia, 433, 25–30.CrossRefGoogle Scholar
Satake, K., Shibata, K. & Bando, Y. (1990). Mercury sulphide (HgS) crystals in the cell walls of the aquatic bryophytes, Jungermannia vulcanicola Steph. and Scapania undulata (L.) Dum. Aquatic Botany, 36, 325–41.CrossRefGoogle Scholar
Schmitt, C. K. & Slack, N. G. (1990). Host specificity of epiphytic lichens and bryophytes: a comparison of the Adirondack Mountains (New York) and the Southern Blue Ridge Mountains (North Carolina). Bryologist, 93, 257–74.CrossRefGoogle Scholar
Sentenac, H. & Grignon, C. (1981). A model for predicting ionic equilibrium concentrations in cell walls. Plant Physiology, 68, 415–19.CrossRefGoogle ScholarPubMed
Sérgio, C., Figueira, R. & Viegas Crespo, A. M. (2000). Observations of heavy metal accumulation in the cell walls of Fontinalis antipyretica, in a Portuguese stream affected by mine effluent. Journal of Bryology, 22, 251–5.CrossRefGoogle Scholar
Shacklette, H. T. (1965). Element content of bryophytes. Geological Survey Bulletin, 1198-D, D1–D21.Google Scholar
Shaw, A. J. (1994). Adaptation to metals in widespread and endemic plants. Environmental Health Perspectives, 102, 105–8.CrossRefGoogle ScholarPubMed
Shepherd, V. A., Beilby, M. J. & Shimmen, T. (2002). Mechanosensory ion channels in charophyte cells: the response to touch and salinity stress. European Biophysics Journal, 31, 341–55.Google ScholarPubMed
Sjögren, E. (1975). Epiphyllous bryophytes of Madeira. Svensk Botaniska Tidskrift, 69, 217–88.Google Scholar
Skrindo, A. & Økland, R. H. (2002). Effects of fertilization on understorey vegetation in a Norwegian Pinus sylvestris forest. Applied Vegetation Science, 5, 167–72.CrossRefGoogle Scholar
Slack, N. G. (1988). The ecological importance of lichens and bryophytes. Bibliotheca Lichenologica, 30, 23–53.Google Scholar
Smith, A. J. E. (ed.) (1982a). Bryophyte Ecology. London: Chapman & Hall.CrossRefGoogle Scholar
Smith, A. J. E. (1982b). Epiphytes and epiliths. In Bryophyte Ecology, ed. Smith, A. J. E., pp. 191–227. London: Chapman & Hall.CrossRefGoogle Scholar
Söderlund, S., Forsberg, A. & Pedersén, M. (1988). Concentrations of cadmium and other metals in Fucus vesiculosus L. and Fontinalis dalecarlica Br. Eur. from the northern Baltic Sea and the southern Bothnian Sea. Environmental Pollution, 51, 197–212.CrossRefGoogle ScholarPubMed
Söderström, L. (1988). Sequence of bryophytes and lichens in relation to substrate variables of decaying coniferous wood in northern Sweden. Nordic Journal of Botany, 8, 89–97.CrossRefGoogle Scholar
Solga, A., Burkhardt, J., Zechmeister, H. G. & Frahm, J.-P. (2005). Nitrogen content, 15N natural abundance and biomass of the two pleurocarpous mosses Pleurozium schreberi (Brid.) Mitt. and Scleropodium purum (Hedw.) Limpr. in relation to atmospheric nitrogen deposition. Environmental Pollution, 134, 465–73.CrossRefGoogle ScholarPubMed
Solga, A. & Frahm, J.-P. (2006). Nitrogen accumulation by six pleurocarpous moss species and their suitability for monitoring nitrogen deposition. Journal of Bryology, 28, 46–52.CrossRefGoogle Scholar
Southorn, A. L. D. (1976). Bryophyte recolonization of burnt ground with particular reference to Funaria hygrometrica. I. Factors affecting the pattern of recolonization. Journal of Bryology, 9, 63–80.CrossRefGoogle Scholar
Southorn, A. L. D. (1977). Bryophyte recolonization of burnt ground with particular reference to Funaria hygrometrica. II. The nutrient requirements of Funaria hygrometrica. Journal of Bryology, 9, 361–73.CrossRefGoogle Scholar
Steinman, A. D. (1994). The influence of phosphorus enrichment on lotic bryophytes. Freshwater Biology, 31, 53–63.CrossRefGoogle Scholar
Stone, D. F. (1989). Epiphyte succession on Quercus ganyana branches in the Willamette Valley of Western Oregon. Bryologist, 92, 81–94.CrossRefGoogle Scholar
Streeter, D. T. (1970). Bryophyte ecology. Science Progress, 58, 419–34.Google Scholar
Strong, L. & Wall, R. (1988). Invermectin in cattle: non-specific effects on pastureland ecology. Aspects of Applied Biology, 17, 231–8.Google Scholar
Strong, L. & Wall, R. (1994). Effects of ivermectin and moxidectin on the insects of cattle dung. Bulletin of Entomological Research, 84, 403–9.CrossRefGoogle Scholar
Strong, L., Wall, R., Woodford, A. & Djeddou, D. (1996). The effect of faecally excreted ivermectin and fenbendazole on the insect colonization of cattle dung following the oral administration of sustain-release boluses. Veterinary Parasitology, 62, 253–66.CrossRefGoogle Scholar
Studlar, S. M. (1982). Succession of epiphytic bryophytes near Mountain Lake, Virginia. Bryologist, 85, 51–63.CrossRefGoogle Scholar
Takezawa, D. & Minami, A. (2004). Calmodulin-binding proteins in bryophytes: identification of abscisic acid-, cold-, and osmotic stress-induced genes encoding novel membrane-bound transporter-like proteins. Biochemistry and Biophysics Research Communications, 317, 428–36.CrossRefGoogle ScholarPubMed
Tamm, C. O. (1953). Growth, yield and nutrition in carpets of a forest moss (Hylocomium splendens). Meddelanden från Statens Skogsforskningsinstitut, 43, 1–140.Google Scholar
Tewari, M., Upreti, N., Pandey, P. & Singh, S. P. (1985). Epiphytic succession on tree trunks in a mixed oak-cedar forest, Kumaun Himalaya. Vegetatio, 63, 105–12.CrossRefGoogle Scholar
Trebacz, K., Simonis, W. & Schönknecht, G. (1994). Cytoplasmic Ca2+, K+, Cl− and NO3− activities in the liverwort Conocephalum conicum L. at rest and during action potentials. Plant Physiology, 106, 1073–84.CrossRefGoogle ScholarPubMed
Trynoski, S. E. & Glime, J. M. (1982). Direction and height of bryophytes on four species of northern trees. Bryologist, 85, 281–300.CrossRefGoogle Scholar
Tyler, G. (1990). Bryophytes and heavy-metals: a literature review. Botanical Journal of the Linnean Society, 104, 231–53.CrossRefGoogle Scholar
Tuba, Z. & Csintalan, Z. (1993). The use of moss transplantation technique for bioindication of heavy metal pollution. In Plants as Biomonitors. Indicators for Heavy Metals in the Terrestrial Environment, ed. Markert, B., pp. 253–9. Weinheim: VCH.Google Scholar
Turner, B. L., Baxter, R., Ellwood, N. T. W. & Whitton, B. A. (2003). Seasonal phosphatase activities of mosses from Upper Teesdale, northern England. Journal of Bryology, 25, 189–200.CrossRefGoogle Scholar
Turetsky, M. R. (2003). The role of bryophytes in carbon and nitrogen cycling. Bryologist, 106, 395–409.CrossRefGoogle Scholar
Tooren, B. F. (1988). Decomposition of bryophyte material in two Dutch chalk grasslands. Journal of Bryology, 15, 343–52.CrossRefGoogle Scholar
Tooren, B. F., Hertog, J. & Verhaar, J. (1988). Cover, biomass and nutrient content of bryophytes in Dutch chalk grasslands. Lindbergia, 14, 47–58.Google Scholar
Tooren, B. F., Dam, D. & During, H. J. (1990). The relative importance of precipitation and soil as sources of nutrients for Calliergonella cuspidata in a chalk grassland. Functional Ecology, 4, 101–7.CrossRefGoogle Scholar
Vanderpoorten, A. & Klein, J.-P. (1999). Variations of aquatic bryophyte assemblages in the Rhine Rift related to water quality. 2. The waterfalls of the Vosges and the Black Forest. Journal of Bryology, 21, 109–15.CrossRefGoogle Scholar
Virtanen, R., Johnston, A. E., Crawley, M. J. & Edwards, G. R. (2000). Bryophyte biomass and species richness on the Park Grass Experiment, Rothamsted, UK. Plant Ecology, 151, 129–41.CrossRefGoogle Scholar
Vitt, D. H., Wieder, K., Halsey, L. A. & Turetsky, M. (2003). Response of Sphagnum fuscum to nitrogen deposition: a case study of ombrogenous peatlands in Alberta, Canada. Bryologist, 106, 235–45.CrossRefGoogle Scholar
Voth, P. D. (1943). Effects of nutrient-solution concentration on the growth of Marchantia polymorpha. Botanical Gazette, 104, 591–601.CrossRefGoogle Scholar
Wall, R. & Strong, L. (1987). Environmental consequences of treating cattle with the antiparasitic drug ivermectin. Nature, 327, 418–21.CrossRefGoogle ScholarPubMed
Webster, H. J. & Sharp, A. J. (1973). Bryophytic succession on caribou dung in Arctic Alaska. American Biological Society Bulletin, 20, 90.Google Scholar
Wells, J. M. & Boddy, L. (1995). Phosphorus translocation by saprotrophic basidiomycete mycelial cord systems on the floor of a mixed deciduous woodland. Mycological Research, 99, 977–80.CrossRefGoogle Scholar
Wells, J. M. & Brown, D. H. (1996). Mineral nutrient recycling within shoots of the moss Rhytidiadelphus squarrosus in relation to growth. Journal of Bryology, 19, 1–17.CrossRefGoogle Scholar
Wells, J. M. & Richardson, D. H. S. (1985). Anion accumulation by the moss Hylocomium splendens: uptake and competition studies involving arsenate, selenate, selenite, phosphate, sulphate and sulphite. New Phytologist, 101, 571–83.CrossRefGoogle Scholar
Wiklund, K. & Rydin, H. (2004). Ecophysiological constraints on spore establishment in bryophytes. Functional Ecology, 18, 907–13.CrossRefGoogle Scholar
Wilson, J. A. & Coxon, D. S. (1999). Carbon flux in a subalpine spruce-fir forest: pulse release from Hylocomium splendens feather-moss mat. Canadian Journal of Botany, 77, 564–9.CrossRefGoogle Scholar
Woodin, S., Press, M. C. & Lee, J. A. (1985). Nitrate reductase activity in Sphagnum fuscum in relation to wet deposition of nitrate from the atmosphere. New Phytologist, 99, 381–8.CrossRefGoogle Scholar
Woolgrove, C. E. & Woodin, S. J. (1996a). Effects of pollutants in snowmelt on Kiaeria starkei, a characteristic species of late snowbed bryophyte dominated vegetation. New Phytologist, 133, 519–29.CrossRefGoogle Scholar
Woolgrove, C. E. & Woodin, S. J. (1996b). Current and historical relationships between the tissue nitrogen content of a snowbed bryophyte and nitrogenous air pollution. Environmental Pollution, 91, 283–8.CrossRefGoogle ScholarPubMed
Woollon, F. B. M. (1975). Mineral relationships and ecological distribution of Fissidens cristatus Wils. Journal of Bryology, 8, 455–64.CrossRefGoogle Scholar
Zechmeister, H. G. (2005). Bryophytes of continental salt meadows in Austria. Journal of Bryology, 27, 297–302.CrossRefGoogle Scholar
Zechmeister, H. G., Hohenwallner, D., Ross, A. & Hanus-Illner, A. (2003). Variations in heavy metal concentrations in the moss species Abietinella abietina (Hedw.) Fleisch. according to sampling time, within site variability and increase in biomass. The Science of the Total Environment, 301, 55–65.CrossRefGoogle ScholarPubMed
Zielke, M., Ekker, A. S., Olsen, R. A., Spjelkavik, S. & Solheim, B. (2002). The influence of abiotic factors on biological nitrogen fixation in different types of vegetation in the High Arctic. Arctic, Antarctic, and Alpine Research, 34, 293–9.CrossRefGoogle Scholar
Zielke, M., Solheim, B., Spjelkavik, S. & Olsen, R. A. (2005). Nitrogen fixation in the High Arctic: role of vegetation and environmental conditions. Arctic, Antarctic, and Alpine Research, 37, 372–8.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×