Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-08T13:07:04.406Z Has data issue: false hasContentIssue false

11 - Bryophyte species and speciation

Published online by Cambridge University Press:  06 July 2010

Bernard Goffinet
Affiliation:
University of Connecticut
A. Jonathan Shaw
Affiliation:
Duke University, North Carolina
Get access

Summary

Introduction

The three lineages of bryophytes, mosses, liverworts, and hornworts, compose successful groups of early embryophytes. The mosses are estimated to include some 12 700 species (Crosby et al. 2000), the liverworts approximately 6000–8000 extant species (Crandall-Stotler & Stotler 2000, Chapter 1, this volume), and the hornworts about 100–150 species (Chapter 3, this volume). Mosses are comparable in species richness to the monilophytes, which are estimated to include about 11 500 species (Pryer et al. 2004). Among the extant land plants, therefore, only the angiosperms are currently more species-rich than are the bryophytes.

It is often stated that bryophytes are most diverse in the tropics and fit the general pattern found in many groups of organisms, with increasing species richness toward the equator (Rosenzweig 1995). However, a quantitative analysis of latitudinal diversity patterns in the mosses failed to detect any such latitudinal gradient, except perhaps a weak one in the Americas (Shaw et al. 2005a). It appears that liverwort diversity is highest at moderate to high latitudes of the Southern Hemisphere, although one family, the Lejeuneaceae, is hyperdiverse in wet tropical forests of both the New and Old Worlds (Gradstein 1979).

The fossil record for mosses, liverworts, and hornworts is too incomplete to assess whether these groups were more or less diverse in the geological past (Miller 1984, Oostendorp 1987).

Type
Chapter
Information
Bryophyte Biology , pp. 445 - 486
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamczak, M., Buczkowska, K., Baczkiewicz, A. & Wachowiak, W. (2005). Comparison of allozyme variability in Polish populations of two species of Ptilidium Nees (Hepaticae) with contrasting degrees of sexual reproduction. Cryptogamie Bryologie, 26, 151–65.Google Scholar
Ahmed, J. & Frahm, J. P. (2003). Isozyme variability among Central European species of the aquatic moss Cinclidotus. Cryptogamie Bryologie, 24, 147–54.Google Scholar
Akiyama, H. (2004). Allozyme variability within and among populations of the epiphytic moss Leucodon (Leucondontaceae: Musci). American Journal of Botany, 81, 1280–7.CrossRefGoogle Scholar
Akiyama, H. & Hiraoka, T. (1994). Allozyme variability within and among divergent populations of liverwort Conocephalum conicum (Marchantiales: Hepaticae). Japanese Journal of Plant Research, 107, 307–20.CrossRefGoogle Scholar
Anderson, L. E. (1963). Modern species concepts: mosses. Bryologist, 66, 107–19.CrossRefGoogle Scholar
Anderson, L. E. (1980). Cytology and reproductive biology of mosses. In The Mosses of North America, ed. Taylor, R. J. & Leviton, A. E., pp. 37–76. San Francisco, CA: Pacific Division of the American Association for the Advancement of Sciences.Google Scholar
Anderson, L. E. & Snider, J. A. (1982). Cytological and genetic barriers in mosses. Journal of the Hattori Botanical Laboratory, 52, 241–54.Google Scholar
Appelgren, L. & Cronberg, N. (1999). Genetic and morphological variation in the rare epiphytic moss Neckera pennata Hedw. Journal of Bryology, 21, 97–107.Google Scholar
Baldwin, B. G. & Sanderson, M. J. (1998). Age and rate of diversification of the Hawaiian silversword alliance (Compositae). Proceedings of the National Academy of Sciences, U.S.A., 95, 9402–6.CrossRefGoogle Scholar
Baum, D. A. & Donoghue, M. J. (1995). Choosing among alternative “phylogenetic” species concepts. Systematic Botany, 20, 560–73.CrossRefGoogle Scholar
Bijlsma, R.,Welde, M., Zande, L., Boerema, A. C. & Zanten, B. O. (2000). Molecular markers reveal cryptic species within Polytrichum commune (common hair-cap moss). Plant Biology, 2, 408–14.CrossRefGoogle Scholar
Bischler, H. & Boisselier-Dubayle, M.-C. (1997). Population genetics and variation in liverworts. Advances in Bryology, 6, 1–34.Google Scholar
Bischler, H., Boisselier-Dubayle, M.-C., Fontinha, S. & Lambourdiére, J. (2006). Species boundaries in European and Macaronesian Porella L. (Jungermanniales, Porellaceae). Cryptogamie Bryologie, 27, 35–57.Google Scholar
Boisselier-Dubayle, M.-C. & Bischler, H. (1994). A combination of molecular and morphological characters for delimitation of taxa in European Porella. Journal of Bryology, 18, 1–11.CrossRefGoogle Scholar
Boisselier-Dubayle, M.-C. & Bischler, H. (1997). Enzyme polymorphism in Preissia quadrata (Hepaticae, Marchantiaceae). Plant Systematics and Evolution, 205, 73–84.CrossRefGoogle Scholar
Boisselier-Dubayle, M.-C. & Bischler, H. (1998). Allopolyploidy in the thalloid liverwort Corsinia (Marchantiales). Botanica Acta, 111, 490–6.Google Scholar
Boisselier-Dubayle, M.-C. & Bischler, H. (1999). Genetic relationships between haploid and triploid Targionia (Targioniaceae, Hepaticae). International Journal of Plant Sciences, 160, 1163–9.CrossRefGoogle Scholar
Boisselier-Dubayle, M.-C., Chaldee, M., Lambourdiere, J. & Bischler, H. (1995a). Genetic variability in western European Lunularia. Fragmenta Floristica et Geobotanica, 40, 379–91.Google Scholar
Boisselier-Dubayle, M.-C., Jubier, M. F., Lejeune, B. & Bischler, H. (1995b). Genetic variability in three subspecies of Marchantia polymorpha: isozymes, RFLP, and RAPD markers. Taxon, 44, 363–76.CrossRefGoogle Scholar
Boisselier-Dubayle, M.-C., Lambourdiere, J. & Bischler, H. (1996). Progeny analysis by isozyme markers in the polyploid liverwort Plagiochasma rupestre. Canadian Journal of Botany, 74, 521–7.CrossRefGoogle Scholar
Boisselier-Dubayle, M.-C., Lambourdiere, J. & Bischler, H. (1998a). The leafy liverwort Porella baueri (Porellaceae) is an allopolyploid. Plant Systematics and Evolution, 210, 175–97.CrossRefGoogle Scholar
Boisselier-Dubayle, M.-C., Lambourdiere, J. & Bischler, H. (1998b). Taxa delimitation in Reboulia investigated with morphological, cytological, and isozyme markers. Bryologist, 101, 61–9.CrossRefGoogle Scholar
Buczkowska, K. (2004). Genetic differentiation of Calypogeia fissa Raddi (Hepaticae, Jungermanniales) in Poland. Plant Systematics and Evolution, 247, 187–201.CrossRefGoogle Scholar
Buczkowska, K., Odrzykoski, I. J. & Chudzinska, E. (2004). Delimitation of some European species of Calypogeia Raddi (Jungermanniales, Hepaticae) based on cytological characters and multienzyme phenotype. Nova Hedwigia, 78, 147–63.CrossRefGoogle Scholar
Budke, J. M. & Goffinet, B. (2006). Phylogenetic analyses of Timmiaceae (Bryophyta : Musci) based on nuclear and chloroplast sequence data. Systematic Botany, 31, 633–41.CrossRefGoogle Scholar
Buryova, B. (2004). Genetic variation in two closely related species of Philonotis based on isozymes. Bryologist, 107, 316–27.CrossRefGoogle Scholar
Buryova, B. & Shaw, A. J. (2005). Phenotypic plasticity in Philonotis fontana (Bryopsida : Bartramiaceae). Journal of Bryology, 27, 13–22.CrossRefGoogle Scholar
Cano, M., Werner, O. & Guerra, J. (2005). A morphometric and molecular study in Tortula subulata complex (Pottiaceae, Bryophyta). Biological Journal of the Linnean Society, 149, 333–50.CrossRefGoogle Scholar
Cox, C. J., Goffinet, B., Shaw, A. J. & Boles, S. B. (2004). Phylogenetic relationships among the mosses based on heterogeneous Bayesian analysis of multiple genes from multiple genomic compartments. Systematic Botany, 29, 234–50.CrossRefGoogle Scholar
Coyne, J. & Orr, H. A. (2004). Speciation. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Crandall-Stotler, B. & Stotler, R. E. (2000). Morphology and classification of the Marchantiophyta. In Bryophyte Biology, ed. Shaw, A. J. & Goffinet, B., pp. 21–70. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Crisp, M. D. & Chandler, G. T. (1996). Paraphyletic species. Telopea, 6, 813–44.CrossRefGoogle Scholar
Cronberg, N. (1987). Genotypic differentiation between the two related peat mosses, Sphagnum rubellum and S. capillifolium in northern Europe. Journal of Bryology 19, 715–29.CrossRefGoogle Scholar
Cronberg, N. (1989). Patterns of variation in morphological characters and isoenzymes in populations of Sphagnum capillifolium (Ehrh.) Hedw. and S. rubellum Wils. from two bogs in southern Sweden. Journal of Bryology, 15, 683–96.CrossRefGoogle Scholar
Cronberg, N. (1996). Isozyme evidence of relationships within Sphagnum section Acutifolia (Sphagnaceae, Bryophyta). Plant Systematics and Evolution, 203, 41–64.CrossRefGoogle Scholar
Cronberg, N. (1998). Population structure and interspecific differentiation of the peat moss sister species Sphagnum rubellum and S. capillifolium (Sphagnaceae) in northern Europe. Plant Systematics and Evolution, 209, 139–58.CrossRefGoogle Scholar
Cronberg, N. & Natcheva, R. (2002). Hybridization between the peat mosses, Sphagnum capillifolium and S. quinquefarium (Sphagnaceae, Bryophyta) as inferred by morphological characters and isozyme markers. Plant Systematics and Evolution, 234, 53–70.CrossRefGoogle Scholar
Crosby, M. R., Magill, R. E., Allen, B. & He, S. (2000). A checklist of the mosses. Missouri Botanical Garden, St. Louis, MO, USA. www.mobot.org/MOBOT/tropicos/most/checklist.shtml.
Crum, H. A. (1972). The geographic origins of the mosses of North America's eastern deciduous forest. Journal of the Hattori Botanical Laboratory, 35, 269–98.Google Scholar
Crum, H. A. (1984). Sphagnopsida, Sphagnaceae. North American Flora, ser. II, Part 11, 1–180.Google Scholar
Darwin, C. (1859). On the Origin of Species. A Facsimile of the First Edition. Cambridge, MA: Harvard University Press.Google Scholar
Davis, J. I. (1997). Evolution, evidence, and the role of species concepts in phylogenetics. Systematic Botany, 22, 373–403.CrossRefGoogle Scholar
Davis, E. C., Franklin, J. B., Shaw, A. J. & Vilgalys, R. (2003). Endophytic Xylaria (Xylariaceae) among liverworts and angiosperms: phylogenetics, distribution, and symbiosis. American Journal of Botany, 90, 1661–7.CrossRefGoogle ScholarPubMed
Queiroz, K. & Donoghue, M. J. (1988). Phylogenetic systematics and the species problem. Cladistics, 4, 317–38.CrossRefGoogle Scholar
Derda, G. S. & Wyatt, R. (2000). Isoenzyme evidence regarding the origin of three allopolyploid species of Polytrichastrum (Polytrichaceae, Bryophyta). Plant Systematics and Evolution, 220, 37–53.CrossRefGoogle Scholar
Dewey, R. M. (1989). Genetic variation in the liverwort Riccia dictyospora (Ricciaceae, Hepaticopsia. Systematic Botany, 15, 155–67.CrossRefGoogle Scholar
Doyle, J. J., Doyle, J. J. & Brown, A. H. D. (1999). Origins, colonization, and lineage recombination in a widespread perennial soybean polyploidy complex. Proceedings of the National Academy of Sciences, U.S.A., 96, 10741–5.CrossRefGoogle Scholar
Espinoza, N. R. & Noor, M. A. F. (2002). Population genetics of a polyploidy: is there hybridization between lineages of Hyla versicolor?Journal of Heredity, 93, 81–5.CrossRefGoogle ScholarPubMed
Estoup, A., Jarne, P. & Cornuet, J. -M. (2002). Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Molecular Ecology, 11, 1591–604.CrossRefGoogle ScholarPubMed
Feldberg, K. & Heinrichs, J. (2005). On the identity of Herbertus borealis (Jungermanniopsida: Herbertaceae) with notes on the possible origin of H. sendtneri. Journal of Bryology, 27, 343–50.CrossRefGoogle Scholar
Feldberg, K. & Heinrichs, J. (2006). A taxonomic revision of Herbertus (Jungermanniidae: Herbertaceae) in the Neotropics based on nuclear and chloroplast DNA and morphology. Biological Journal of the Linnean Society, 151, 309–32.CrossRefGoogle Scholar
Feldberg, K., Groth, H., Wilson, R., Schafer-Verwimp, A. & Heinrichs, J. (2004). Cryptic speciation in Herbertus (Herbertaceae, Jungermanniopsida): range and morphology of Herbertus sendtneri inferred from nrITS sequences. Plant Systematics and Evolution, 249, 247–61.CrossRefGoogle Scholar
Fiedorow, P., Odrzkoski, I., Szweykowski, J. & Szweykowska-Kulinska, Z. (2001). Phylogeny of the European species of the genus Pellia (Hepaticae; Metzgeriales) based on molecular data from nuclear tRNA(CAA)(LEU) intergenic spacers. Gene, 262, 309–15.CrossRefGoogle Scholar
Flatberg, K. I. & Thingsgaard, K. (2003). Taxonomy and geography of Sphagnum tundrae with a description of S. mirum, sp. nov. (Sphagnaceae, sect. Squarrosa). Bryologist, 106, 501–15.CrossRefGoogle Scholar
Flatberg, K. I., Thingsgaard, K. & Såstad, S. M. (2006). Interploidal gene flow and introgression in bryophytes: Sphagnum girgensohnii × S. russowii, a case of spontaneous neotriploidy. Journal of Bryology, 28, 27–37.CrossRefGoogle Scholar
Frahm, J. P. (2005). The genus Hypnodontopsis (Bryophyta, Rhachitheciaceae) in Baltic and Saxon amber. Bryologist, 108, 228–35.CrossRefGoogle Scholar
Frahm, J. P., Müller, K. & Stech, M. (2000). The taxonomic status of Eurhynchium crassinervium from river banks based on ITS sequence data. Journal of Bryology, 22, 291–2.CrossRefGoogle Scholar
Fritsch, R. (1991). Index to bryophyte chromosome counts. Bryophytorum Bibliotheca, 40, 19–20.Google Scholar
Funk, D. J. & Omland, K. E. (2003). Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology and Systematics, 34, 397–423.CrossRefGoogle Scholar
Gallego, M. T., Werner, O., Sergio, C. & Guerra, J. (2005). A morphological and molecular study of the Syntrichia laevipila complex (Pottiaceae) in Portugal. Nova Hedwigia, 80, 301–22.CrossRefGoogle Scholar
Goffinet, B., Buck, W. R. & Wall, M. A. (2007). Orthotrichum freyanum (Orthotrichaceae, Bryophyta), a new epiphytic species from Chile. Beiheft zur Nova Hedwigia, in press.
Gottlieb, L. D. (1981). Electrophoretic evidence and plant populations. Progress in Phytochemistry, 7, 1–46.Google Scholar
Gradstein, S. R. (1979). The genera of the Lejeuneaceae: past and present. In Bryophyte Systematics, ed. Clarke, G. C. S. & Duckett, J. G., pp. 83–107. London: Academic Press.Google Scholar
Gradstein, S. R. (1994). Lejeuneaceae: Ptychantheae. Brachiolejeuneae. Flora Neotropica Monograph, 62, 1–225.Google Scholar
Gradstein, S. R. (1997). The taxonomic diversity of epiphyllous bryophytes. Abstracta Botanica, 21, 15–19.Google Scholar
Groth, H., Linder, M., & Heinrichs, J. (2004). Phylogeny and biogeography of Plagiochila based on nuclear and chloroplast DNA sequences. Monographs in Systematic Botany from the Missouri Botanical Garden, 98, 365–87.Google Scholar
Groth, H., Linder, M., Wilson, R.et al. (2003). Biogeography of Plagiochila (Hepaticae): natural species groups span several floral kingdoms. Journal of Biogeography, 30, 965–78.CrossRefGoogle Scholar
Hanssen, L., Såstad, S. M. & Flatberg, K. I. (2000). Population structure and taxonomy of Sphagnum cuspidatum and S. viride. Bryologist, 103, 93–103.CrossRefGoogle Scholar
Hartmann, F. A., Wilson, R., Gradstein, S. R., Schneider, H. & Heinrichs, J. (2006). Testing hypotheses on species delimitation and disjunctions in the liverwort Bryopteris (Jungermanniopsida: Lejeuneaceae). International Journal of Plant Science, 167, 1205–14.CrossRefGoogle Scholar
Heinrichs, J., Proschold, T., Renker, C., Groth, H. & Rycroft, D. S. (2002a). Plagiochila virginica A. Evans rather than Plagiochila dubia Lindenb. & Gottsche occurs in Macaronesia; placement in sect. Contiguae Carl is supported by ITS sequences of nuclear ribosomal DNA. Plant Systematics and Evolution, 230, 221–30.CrossRefGoogle Scholar
Heinrichs, J., Groth, H., Holz, I.et al. (2002b). The systematic position of Plagiochila moritziana, P. trichostoma, and P. deflexa based on ITS sequence variation of nuclear ribosomal DNA, morphology, and lipophylic secondary metabolites. Bryologist, 105, 189–203.CrossRefGoogle Scholar
Heinrichs, J., Gradstein, S. R., Groth, H. & Lindner, M. (2003). Plagiochila cucullifolia var. anomala var. nov. from Ecuador, with notes on discordant molecular and morphological variation in Plagiochila. Plant Systematics and Evolution, 242, 205–16.CrossRefGoogle Scholar
Heinrichs, J., Lindner, M., Gradstein, S. R.et al. (2005). Origin and subdivision of Plagiochila (Jungermanniidae: Plagiochilaceae) in tropical Africa based on evidence from nuclear and chloroplast DNA sequences and morphology. Taxon, 54, 317–33.CrossRefGoogle Scholar
Heinrichs, J., Lindner, M., Groth, H.et al. (2006). Goodbye or welcome Gondwana? – Insights into the phylogenetic biogeography of the leafy liverwort Plagiochila with a description of Proskauera, gen. nov. (Plagiochilaceae, Jungermanniales). Plant Systematics and Evolution, 258, 227–50.CrossRefGoogle Scholar
Heinrichs, J., Hentschel, J., Wilson, R., Feldberg, K. & Schneider, H. (2007). Evolution of leafy liverworts (Jungermanniidae, Marchantiophyta): estimating divergence times from chloroplast DNA sequences using penalized likelihood with integrated fossil evidence. Taxon, 56, 31–44.Google Scholar
Hey, J. (2001). The mind of the species problem. Trends in Ecology and Evolution, 16, 326–9.CrossRefGoogle ScholarPubMed
Hudson, R. R. (1990). Gene genealogies and the coalescent process. In Oxford Surveys in Evolutionary Biology, vol. 7, ed. Futuyma, D. J. & Antonovics, J., pp. 1–44. Oxford: Oxford University Press.Google Scholar
Hyvönen, J., Koskinen, S., Smith Merrill, G. L., Hedderson, T. A. & Stenroos, S. (2004). Phylogeny of the Polytrichales (Bryophyta) based on simultaneous analysis of molecular and morphological data. Molecular Phylogenetics and Evolution, 31, 915–28.CrossRefGoogle ScholarPubMed
Itouga, M., Yamagusci, T. & Deguchi, H. (1999). Allozyme variability within and among populations in the liverwort Conocephalum japonicum (Marchantiales, Hepaticae). Hikobia, 13, 89–96.Google Scholar
Jankowiak, K. & Szwekowska-Kulinska, Z. (2004). Organellar inheritance in the allopolyploid liverwort species Porella baueri (Porellaceae): reconstructing historical events using DNA sequence analysis. Monographs in Systematic Botany from the Missouri Botanical Garden, 98, 404–14.Google Scholar
Jankowiak, K., Rybarczyk, A., Wyatt, R.et al. (2005). Organellar inheritance in the allopolyploid moss Rhizomnium pseudopunctatum. Taxon, 54, 363–88.CrossRefGoogle Scholar
Janssens, J. A. P., Horton, D. G. & Bassinger, J. F. (1979). Aulacomnium heterostichoides sp. nov., an Eocene moss from south central British Columbia. Canadian Journal of Botany, 57, 2150–61.CrossRefGoogle Scholar
Korpelainen, H.,Kostamo, K. & Virtanen, V. (2007). Microsatellite markers identification using genome screening and restriction-ligation. Biotechniques, 42, 479–86.CrossRefGoogle ScholarPubMed
Lal, M. (1984). The culture of bryophytes including apogamy, apospory, parthenogenesis and protoplasts. In The Experimental Biology of Bryophytes, ed. Dyer, A. F. & Duckett, J. G., pp. 97–115. London: Academic Press.Google Scholar
Mayr, E. (1965). Animal Species and Evolution. Cambridge, MA: Belknap Press of Harvard University Press.Google Scholar
McDade, L. A. (1995). Species concepts and problems in practice: insight from botanical monographs. Systematic Botany, 20, 606–22.CrossRefGoogle Scholar
McDaniel, S. F. (2005). The evolutionary genetics of population divergence in Ceratodon purpureus. Ph.D. dissertation, Duke University, Durham, North Carolina.
McDaniel, S. F. & Shaw, A. J. (2003). Phylogeographic structure and cryptic speciation in the transantarctic moss Pyrrhobrum mnioides. Evolution, 57, 205–15.CrossRefGoogle Scholar
McDaniel, S. F. & Shaw, A. J. (2005). Selective sweeps and intercontinental migration in the cosmopolitan moss, Ceratodon purpureus (Hedw.) Brid. Molecular Ecology, 14, 1121–32.CrossRefGoogle ScholarPubMed
Melosik, I., Odrzykoski, I. J. & Sliwinska, E. (2005). Delimitation of taxa of Sphagnum subsecundum s.l. (Musci, Sphagnaceae) based on multienzyme phenotype and cytological characters. Nova Hedwigia, 80, 397–412.CrossRefGoogle Scholar
Miller, N. G. (1984). Tertiary and Quaternary fossils. In New Manual of Bryology, ed. Schuster, R. M., pp. 1194–232. Nichinan: The Hattori Botanical Laboratory.Google Scholar
Mishler, B. D. & Donoghue, M. J. (1982). Species concepts: a case for pluralism. Systematic Zoology, 31, 491–503.CrossRefGoogle Scholar
Mishler, B. D. (1985). Biosystematic studies of the Tortula ruralis complex. I. Variation of taxonomic characters in culture. Journal of the Hattori Botanical Laboratory, 58, 225–53.Google Scholar
Muñoz, J., Felicisimo, A. M., Cabezas, F., Burgaz, A. R. & Martinez, I. (2004). Wind as a long distance dispersal vehicle in the southern hemisphere. Science, 304, 1144–7.CrossRefGoogle ScholarPubMed
Natcheva, R. (2006). Evolutionary processes and hybridization within the peat mosses, Sphagnum. Ph.D. dissertation, Lund University, Lund, Sweden.
Natcheva, R. & Cronberg, N. (2004). What do we know about hybridization among bryophytes in nature?Canadian Journal of Botany, 82, 1687–704.CrossRefGoogle Scholar
Natcheva, R. & Cronberg, N. (2007a). Recombination and introgression of nuclear and chloroplast genomes between the peat mosses, Sphagnum capillifolium and Sphagnum quinquefarium. Molecular Ecology, 16, 811–18.CrossRefGoogle ScholarPubMed
Natcheva, R. & Cronberg, N. (2007b). Maternal transmission of cytoplasmic DNA in interspecific hybrids of peat mosses, Sphagnum (Bryophyta). Journal of Evolutionary Biology, 20, 1613–16.CrossRefGoogle Scholar
Nei, M. (1972). Genetic distances among populations. The American Naturalist, 106, 283–92.CrossRefGoogle Scholar
Newton, A. E., Wikström, N., Bell, N., Forrest, L. L. & Ignatov, M. (2007). Dating the diversification of pleurocarpous mosses. In Pleurocarpous Mosses: Systematics and Evolution, ed. Newton, A. E. & Tangney, R., pp. 337–66. Boca Raton, FL: Taylor & Francis.CrossRefGoogle Scholar
Nixon, K. C. & Wheeler, Q. D. (1990). An amplification of the phylogenetic species concepts. Cladistics, 6, 211–23.CrossRefGoogle Scholar
Odrzykoski, I. J. (1987). Genetic evidence for reproductive isolation between two European “forms” of Conocephalum conicum. Symposia Biologia Hungarica, 35, 577–87.Google Scholar
Odrzykoski, I. J. & Szweykowski, J. (1991). Genetic differentiation without concordant morphological divergence in the thallose liverwort Conocephalum conicum. Plant Systematics and Evolution, 178, 135–51.Google Scholar
Odrzykoski, I. J., Bobowicz, M. A. & Krzakowa, M. (1981). Variation in Conocephalum conicum – the existence of two genetically different forms in Europe. In New Perspectives in Bryotaxonomy and Bryogeography, ed. Szweykowski, J., pp. 519–42. Poznan, Poland: Adam Mickiewicz University.Google Scholar
Odrzykoski, I., Chudzinska, J. E. & Szweykowski, J. (1996). The hybrid origin of the polyploid liverwort Pellia borealis. Genetica, 98, 75–86.CrossRefGoogle Scholar
Olmstead, R. G. (1995). Species concepts and plesiomorphic species. Systematic Botany, 20, 623–30.CrossRefGoogle Scholar
Oostendorp, C. (1987). The Bryophytes of the Paleozoic and Mesozoic. Berlin: J. Cramer.Google Scholar
Pacak, A. & Szweykowska, Z. (2003). Organellar inheritance in liverworts: an example of Pellia borealis. Journal of Molecular Evolution, 56, 11–17.CrossRefGoogle ScholarPubMed
Pacek, A., Fiedorow, P., Dabert, J. & Szweykowska-Kulinska, Z. (1998). RAPD technique for taxonomic studies of Pellia epiphylla-complex (Hepaticae, Metzgeriales). Genetica, 104, 179–87.Google Scholar
Pacek, A. & Szweykowska-Kulinska, Z. (2003). Phylogenetic studies of liverworts from the genus Pellia using a new type of molecular marker. Acta Societis Botanicorum Poloniae, 71, 227–34.Google Scholar
Patterson, E., Blake Boles, S. & Shaw, A. J. (1998). Nuclear ribosomal DNA variation in Leucobryum glaucum and L. albidum (Leucobryaceae): a preliminary investigation. Bryologist, 101, 272–7.CrossRefGoogle Scholar
Pfeiffer, T. (2000a). Relationships and divergence patterns in Hypopterygium ‘rosulatum’ s.l. (Hypopterygiaceae, Bryophyta) inferred from trnL intron sequences. Studies in austral temperate rain forest bryophytes. 7. Edinburgh Journal of Botany, 57, 172–80.CrossRefGoogle Scholar
Pfeiffer, T. (2000b). Molecular relationship of Hymenophyton species (Metzgeriaceae, Hepaticophytina) in New Zealand and Tasmania. Studies in austral temperate rain forest bryophytes. 5. New Zealand Journal of Botany, 38, 415–23.CrossRefGoogle Scholar
Pfeiffer, T., Kruijer, H., Frey, W. & Stech, M. (2000). Systematics of the Hypopterygium tamarisci complex (Hypopterygiaceae, Bryophyta): implications of molecular and morphological data. Studies in austral temperate rainforest bryophytes 9. Journal of the Hattori Botanical Laboratory, 89, 55–70.Google Scholar
Pryer, K. P., Schuettpelz, E., Wolf, P. G.et al. (2004). Phylogeny and evolution of ferns (Monilophytes) with a focus on the early leptosporangiate divergences. American Journal of Botany, 91, 1582–98.CrossRefGoogle ScholarPubMed
Quandt, D. & Stech, M. (2004). Molecular evolution of the trnT(UGU)-trnF(GAA) region in bryophytes. Plant Biology, 6, 545–54.CrossRefGoogle Scholar
Quandt, D., Frahm, J. P. & Frey, W. (2001). Patterns of molecular divergence within the paleoaustral genus Weymouthia Broth. (Lembophyllaceae, Bryophyta). Journal of Bryology, 23, 305–11.CrossRefGoogle Scholar
Renker, C., Heinrichs, J., Pröschold, T., Groth, H. & Holtz, I. (2002). ITS sequences of nuclear ribosomal DNA support the generic placement and disjunct range of Plagiochila (Adelanthus) carringtonii. Cryptogamie, Bryologie, 23, 31–9.CrossRefGoogle Scholar
Rosenberg, N. A. (2003). The shapes of neutral gene phylogenies in two species: probabilities of monophyly, paraphyly, and polyphyly in a coalescent model. Evolution, 57, 1465–77.CrossRefGoogle Scholar
Rosenberg, N. A. (2007). Statistical tests for taxonomic distinctiveness from observations of monophyly. Evolution, 61, 317–23.CrossRefGoogle ScholarPubMed
Rosenberg, N. A. & Nordberg, M. (2002). Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nature Reviews, 3, 380–90.CrossRefGoogle ScholarPubMed
Rosenzweig, M. L. (1995). Species Diversity in Space and Time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Ryall, K., Whitton, J., Schofield, W. B., Ellis, S. & Shaw, A. J. (2005). Molecular phylogenetic study of interspecific variation in the moss Isothecium (Brachytheciaceae). Systematic Botany, 30, 242–7.CrossRefGoogle Scholar
Såstad, S. M. (1999). Genetic and environmental sources of variation in leaf morphology of Sphagnum fallax and Sphagnum isoviitae (Bryopsida): comparison of experiments conducted in the field and laboratory. Canadian Journal of Botany, 77, 1–10.CrossRefGoogle Scholar
Såstad, S. M. (2005). Patterns and mechanisms of polyploid formation bryophytes. Regnum Vegetabile, 143, 317–34.Google Scholar
Såstad, S. M., Flatberg, K. I. & Cronberg, N. (1999a). Electrophoretic evidence supporting a theory of allopolyploid origin of Sphagnum jensenii. Nordic Journal of Botany, 19, 355–62.CrossRefGoogle Scholar
Såstad, S. M., Stenoien, H. K. & Flatberg, K. I. (1999b). Species delimitation and relationships of the Sphagnum recurvum complex (Bryophyta) – as revealed by isozyme and RAPD markers. Systematic Botany, 24, 95–107.CrossRefGoogle Scholar
Såstad, S. M., Flatberg, K. I. & Hanssen, L. (2000). Origin, taxonomy and population structure of the allopolyploid peat moss Sphagnum majus. Plant Systematics and Evolution, 225, 73–84.CrossRefGoogle Scholar
Såstad, S. M., Stenoien, H., Flatberg, K. I. & Bakken, S. (2001). The narrow endemic Sphagnum troendelagicum is an allopolyploid derivative of the widespread S. balticum and S. tenellum. Systematic Botany, 26, 66–74.Google Scholar
Schaumann, F., Frey, W., Hassel de Menendez, G. & Pfeiffer, T. (2003). Geomolecular divergence in the Gondwanan dendroid Symphyogyna complex (Pallaviciniaceae, Hepaticophytina, Bryophyta). Flora, 198, 404–12.Google Scholar
Schaumann, F., Pfeiffer, T. & Frey, W. (2004). Molecular divergence patterns within the Gondwanan liverwort genus Jensenia (Pallaviciniaceae, Hepaticophytina, Bryophyta). Studies in Austral temperate rain forest bryophytes 25. Journal of the Hattori Botanical Laboratory, 96, 231–44.Google Scholar
Shaw, A. J. (1994). Systematics of Mielichhoferia (Bryaceae, Musci). III. Hybridization between M. elongata and M. mielichhoferiana. American Journal of Botany, 81, 782–90.CrossRefGoogle Scholar
Shaw, A. J. (1998). Genetic analysis of a hybrid zone in Mielichhoferia (Musci). In Bryology for the Twenty-First Century, ed. Bates, J. W., Ashton, N. W. & Duckett, J. G., pp. 161–74. Leeds: Maney and British Bryological Society.Google Scholar
Shaw, A. J. (2000a). Population ecology, population genetics, and microevolution. In Bryophyte Biology, ed. Shaw, A. J. & Goffinet, B., pp. 369–402. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Shaw, A. J. (2000b). Molecular phylogeography and cryptic speciation in the mosses, Mielichhoferia elongata and M. mielichhoferiana (Bryaceae). Molecular Ecology, 9, 595–608.CrossRefGoogle Scholar
Shaw, A. J. (2000c). Schizymenium shevockii (Bryaceae), a new species of moss from California, based on morphological and molecular evidence. Systematic Botany, 25, 188–95.CrossRefGoogle Scholar
Shaw, A. J. (2001). Biogeographic patterns and cryptic speciation in bryophytes. Journal of Biogeography, 28, 253–61.CrossRefGoogle Scholar
Shaw, A. J. & Allen, B. (2000). Phylogenetic relationships, morphological incongruence, and geographic speciation in the Fontinalaceae (Bryophyta). Molecular Phylogenetics and Evolution, 16, 225–37.CrossRefGoogle Scholar
Shaw, A. J. & Goffinet, B. (2000). Molecular evidence of reticulate evolution in the peatmosses (Sphagnum), including S. ehyalinum sp. nov. Bryologist, 103, 357–74.CrossRefGoogle Scholar
Shaw, A. J. & Schneider, R. E. (1995). Genetic biogeography of the rare “copper moss,” Mielichhoferia elongata (Bryaceae). American Journal of Botany, 82, 8–17.CrossRefGoogle Scholar
Shaw, A. J., Meagher, T. R. & Harley, P. (1987). Electrophoretic evidence of reproductive isolation between two varieties of the moss, Climacium americanum. Heredity, 59, 337–43.CrossRefGoogle Scholar
Shaw, A. J., Gutkin, M. S. & Bernstein, B. R. (1994). Systematics of tree mosses (Climacium, Musci) – genetic and morphological evidence. Systematic Botany 19, 263–72.CrossRefGoogle Scholar
Shaw, A. J., Cox, C. J. & Boles, S. B. (2003a). Polarity of peatmoss (Sphagnum) evolution: who says mosses have no roots?American Journal of Botany, 90, 1777–87.CrossRefGoogle ScholarPubMed
Shaw, A. J., Cox, C. J., Boles, S. B. & Goffinet, B. (2003b). Phylogenetic evidence for a rapid radiation of pleurocarpous mosses (Bryopsida). Evolution, 57, 2226–41.CrossRefGoogle Scholar
Shaw, S., Cox, C. J. & Boles, S. B. (2004). Phylogenetic relationships among Sphagnum sections, Hemitheca, Isocladus, and Subsecunda. Bryologist, 107, 189–96.CrossRefGoogle Scholar
Shaw, A. J., Cox, C. J. & Goffinet, B. (2005a). Global patterns of moss diversity: taxonomic and molecular inferences. Taxon, 54, 337–52.CrossRefGoogle Scholar
Shaw, A. J., Cox, C. J. & Boles, S. B. (2005b). Phylogeny, species delimitation, and interspecific hybridization in Sphagnum section Acutifolia. Systematic Botany, 30, 16–33.CrossRefGoogle Scholar
Shaw, A. J., Melosik, I., Cox, C. J. & Boles, S. B. (2005c). Divergent and reticulate evolution in closely related species of Sphagnum section Subsecunda (Bryophyta). Bryologist, 108, 363–78.CrossRefGoogle Scholar
So, M. L. & Grolle, R. (2000). Description of Plagiochila detecta sp. nov. (Hepaticae) from East Asia based on morphological and RAPD evidence. Nova Hedwigia, 71, 387–93.Google Scholar
Soltis, D. E. & Soltis, P. S. (1999). Polyploidy: recurrent formation and genome evolution. Trends in Ecology and Evolution, 14, 348–52.CrossRefGoogle ScholarPubMed
Stech, M. & Dohrmann, J. (2004). Molecular relationships and biogeography of two gondwanan Campylopus species, C. pilifer and C. introflexus (Dicranaceae). Monographs in Systematic Botany from the Missouri Botanical Garden, 98, 416–31.Google Scholar
Stech, M. & Frahm, J. P. (1999a). The status and systematic position of Platyhypnidium mutatum and the Donrichardsiaceae based on molecular data. Journal of Bryology, 21, 191–5.CrossRefGoogle Scholar
Stech, M. & Frahm, J. P. (1999b). Systematics of species of Eurhynchium, Rhynchostegiella, and Rhynchostegium (Brachytheciaceae, Bryopsida) based on molecular data. Bryobrothera, 5, 203–11.Google Scholar
Stech, M., Frey, W. & Frahm, J. P. (1999). The status and systematic position of Hypnobartlettia fontana Ochyra and the Hypnobartlettiaceae based on molecular data. Studies on austral temperate rainforest bryophytes 4. Lindbergia, 24, 97–102.Google Scholar
Stech, M., Osman, S., Sim-Sim, M. & Frey, W. (2006b). Molecular systematics and biogeography of the liverwort genus Tylimantus (Acrobolbaceae). Studies in austral temperate rain forest bryophytes 33. Nova Hedwigia, 83, 17–30.CrossRefGoogle Scholar
Stech, M., Pfeiffer, T. & Frey, W. (2006a). Molecular relationships and divergence of palaeoaustral Dicranoloma species (Dicranaceae, Bryopsida). Studies in austral temperate rain forest bryophytes 31. Journal of the Hattori Botanical Laboratory, 100, 451–64.Google Scholar
Stenøien, H. K. & Flatberg, K. I. (2000). Genetic variability in the rare Norwegian peat moss Sphagnum troendelagicum. Bryologist, 103, 794–801.CrossRefGoogle Scholar
Stenøien, H. K. & Såstad, S. M. (1999). Genetic structure in three haploid peat mosses (Sphagnum). Heredity, 82, 391–400.CrossRefGoogle Scholar
Stevens, M. I., Hunger, S. A., Hills, S. F. K. & Gemmill, C. E. C. (2007). Phantom hitch-hikers mislead estimates of genetic variation in Antarctic mosses. Plant Systematics and Evolution, 263, 191–201.CrossRefGoogle Scholar
Stoneburner, A., Wyatt, R. & Odrzykoski, I. J. (1991). Applications of enzyme electrophoresis to bryophyte systematics and population biology. Advances in Bryology, 4, 1–27.Google Scholar
Szövényi, P., Hock, Z., Urmi, E. & Schneller, J. (2006). New primers for amplifying the GapC gene in bryophytes and its ultility in infraspecific phylogenies in the genus Sphagnum. Lindbergia, 31, 78–84.Google Scholar
Szweykowski, J. & Krzakowa, M. (1979). Variation in four isozyme systems in Polish populations of Conocephalum conicum (L.) Dum. (Hepaticae, Marchantiales). Bulletin de l'Académie Polonaise des Sciences biologiques, classe II, 27, 27–41.Google Scholar
Szweykowski, J. & Odrzykoski, I. J. (1990). Chemical differentiation of Aneura pinguis (L.) Dum. (Hepaticae, Aneuraceae) in Poland and some comments on application of enzymatic markers in bryology. In Chemotaxonomy of Bryophytes, ed. Zinsmeister, H. D. & Mues, R., pp. 437–48. New York: Academic Press.Google Scholar
Szweykowski, J., Odrzykoski, I. J. & Zielinski, R. (1981a). Further data on the geographic distribution of two genetically different forms of the liverwort Conocephalum conicum (L.) Dum.: the sympatric and allopatric regions. Bulletin de l'Académie Polonaise des Sciences biologiques, classe II, 28, 437–49.Google Scholar
Szweykowski, J., Zielinski, R. & Mendelak, M. (1981b). Variation of peroxidase isoenzymes in central European taxa of the liverwort genus Pellia. Bulletin de l'Académie Polonaise des Sciences biologiques, classe II, 29, 9–19.Google Scholar
Szweykowski, J., Zielinski, R. & Odrzykoski, I. J. (1995). Geographic distribution of Pellia spp. (Hepaticae, Metzgeriales) in Poland based on electrophoretic identification. Acta Botanica Polonica, 1, 59–70.Google Scholar
Therrien, J. P., Crandall-Stotler, B. J. & Stotler, R. E. (1998). Morphological and genetic variation in Porella platyphylla and P. platyphylloidea and their systematic implications. Bryologist, 101, 1–19.CrossRefGoogle Scholar
Vanderpoorten, A., Boles, S. B. & Shaw, A. J. (2003a). Patterns of molecular and morphological variation in Leucobryum albidum, L. glaucum, and L. juniperoideum (Bryopsida). Systematic Botany, 28, 651–6.Google Scholar
Vanderpoorten, A., Hedenäs, L. & Jacquemart, A. L. (2003b). Differentiation in DNA fingerprinting and morphology among species of the pleurocarpous moss genus, Rhytidiadelphus (Hylocomiaceae). Taxon, 52, 229–36.CrossRefGoogle Scholar
Vanderpoorten, A., Goffinet, B. & Quandt, D. (2006). Utility of the internal transcribed spacers of the 18S-5.8S-26S nuclear ribosomal DNA in land plant systematics with special emphasis on Bryophytes. In Plant Genome: Biodiversity and Evolution, vol. 2B, Lower Plants, ed. Sharma, A. K. & Sharma, A., pp. 385–407. Enfield, NH: Science Publishers.Google Scholar
Vanderpoorten, A., Shaw, A. J. & Cox, C. J. (2004). Evolution of multiple paralogous adenosine kinase genes in the moss genus Hygroamblystegium: phylogenetic implications. Molecular Phylogenetics and Evolution, 31, 505–16.CrossRefGoogle ScholarPubMed
Vanderpoorten, A., Shaw, A. J. & Goffinet, B. (2001). Testing controversial alignments in Amblystegium and related genera (Amblystegiaceae: Bryopsida). Evidence from rDNA ITS sequences. Systematic Botany, 26, 470–9.Google Scholar
Velde, M. & Bijlsma, R. (2000). Amount and structure of intra- and interspecific genetic variation in the moss genus Polytrichum. Heredity, 85, 328–37.CrossRefGoogle Scholar
Velde, M. & Bijlsma, R. (2001). Genetic evidence for the allodiploid origin of the moss species Polytrichum longisetum. Plant Biology, 3, 379–85.CrossRefGoogle Scholar
Velde, M. & Bijlsma, R. (2004). Hybridization and asymmetric reproductive isolation between the closely related bryophyte taxa Polytrichum commune and Polytrichum uliginosum. Molecular Ecology, 13, 1447–54.CrossRefGoogle ScholarPubMed
Vos, P., Rogers, R., Blecker, M.et al. (1995). AFLP – a new technique for DNA fingerprinting. Nucleic Acids Research, 23, 4407–14.CrossRefGoogle ScholarPubMed
Vries, A., Zanten, B. O. & Dijk, H. (1983). Genetic variability within and between two species of Racopilum (Racopilaceae). Lindbergia, 9, 73–80.Google Scholar
Wall, D. P. (2005). Origin and rapid diversification of a tropical moss. Evolution, 59, 1413–24.CrossRefGoogle ScholarPubMed
Welsh, J. & McClelland, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research, 18, 7213–18.CrossRefGoogle ScholarPubMed
Wendel, J. (2000). Genome evolution in polyploids. Plant Molecular Biology, 42, 225–49.CrossRefGoogle ScholarPubMed
Werner, O., Ros, R. M., Guerra, J. & Cano, N. J. (2004). Inter-Simple Sequence Repeat (ISSR) markers support the species status of Weissia wimmeriana (Sendtn.) Bruch & Schimp. (Pottiaceae, Bryopsida). Cryptogamie Bryologie, 25, 137–46.Google Scholar
Werner, O., Ros, R. M., Guerra, J. & Shaw, A. J. (2003). Molecular data confirm the presence of Anacolia menziesii (Bartramiaceae, Musci) in southern Europe and its separation from Anacolia webbii. Systematic Botany, 28, 483–9.Google Scholar
Wettstein, F. (1928). Morphologie und physiologie des Formwechsels der Moose auf genetischer Grundlage. II. Bibliotheca Genetica, 10, 1–216.Google Scholar
Wettstein, F. (1932). Genetik. In Manual of Bryology, ed. Verdoorn, F., pp. 233–72. The Hague: Martinus Nijhoff.Google Scholar
Wheeler, Q. & Meier, R. (eds.) 2000. Species Concepts and Phylogenetic Theory: a Debate. New York: Columbia University Press.
Wyatt, R. & Anderson, L. E. (1984). Breeding systems in bryophytes. In The Experimental Biology of Bryophytes, ed. Dyer, A. F. & Duckett, J. G., pp. 39–63. London: Academic Press.Google Scholar
Wyatt, R. & Odrzykoski, I. J. (1998). On the origins of the allopolyploid moss Plagiomnium cuspidatum. Bryologist, 101, 263–71.CrossRefGoogle Scholar
Wyatt, R., Odrzykoski, I. J., Stoneburner, A., Bass, H. W. & Galau, G.-A. (1988). Allopolyploidy in bryophytes: Multiple origins of Plagiomnium medium. Proceedings of the National Academy of Sciences, U.S.A., 85, 5601–4.CrossRefGoogle ScholarPubMed
Wyatt, R., Stoneburner, A. & Odrzykoski, I. J. (1989). Bryophyte isozymes: systematic and evolutionary implications. In Isozymes in Plant Biology, ed. Soltis, D. E. & Soltis, P. S., pp. 221–40. Portland, OR: Dioscorides Press.CrossRefGoogle Scholar
Wyatt, R., Odrzykoski., I. J. & Stoneburner, A. (1992). Isozyme evidence of reticulate evolution in mosses – Plagiomnium medium is an allopolyploid of P. ellipticum × Plagiomnium insigne. Systematic Botany, 17, 532–50.CrossRefGoogle Scholar
Wyatt, R., Odrzykoski, I. J. & Stoneburner, A. (1993a). Isozyme evidence regarding the origins of the allpolyploid moss Plagiomnium curvatulum. Lindbergia, 18, 49–58.Google Scholar
Wyatt, R., Odrzykoski, I. J. & Stoneburner, A. (1993b). Isozyme evidence proves that Rhizomnium pseudopunctatum is an allopolyploid of R. gracile × R. magnifolium. Memoirs of the Torrey Botanical Club, 25, 21–35.Google Scholar
Wyatt, R., Odrzykoski, I. J. & Koponen, T. (1997). Mnium orientale sp. nov. from Japan is morphologically and genetically distinct from M. hornum in Europe and North America. Bryologist, 100, 226–36.CrossRefGoogle Scholar
Zanten, B. O. (1978). Experimental studies on trans-oceanic long range dispersal of moss spores in the southern hemisphere. Journal of the Hattori Botanical Laboratory, 44, 455–82.Google Scholar
Zhou, P. & Shaw, A. J. (2008). Systematics and population genetics in Sphagnum macrophyllum and S. cribrosum (Sphagnaceae). Systematic Botany (in press).
Zielinski, R. (1984). Electrophoretic and cytological study of the Pellia epiphylla and Pellia borealis complex. Journal of the Hattori Botanical Laboratory, 56, 263–69.Google Scholar
Zielinski, R. (1987). Interpretation of electrophoretic patterns in population-genetics of Bryophytes. 6. Genetic variation and evolution of the liverwort genus Pellia with special reference to central European territory. Lindbergia, 12, 87–96.Google Scholar
Zielinski, R., Szweykowski, J. & Rutkowska, E. (1985). A further electrophoretic study peroxidase isoenzyme variation in Pellia epiphylla (L.) Dum. from Poland, with special reference to the status of Pellia borealis Lorbeer. Monographs in Systematic Botany from the Missouri Botanical Garden, 11, 199–209.Google Scholar
Zietkiewicz, E., Rafalski, A. & Labuda, D. (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20, 176–83.CrossRefGoogle ScholarPubMed
Zouhair, R., Corradini, P., Defontaine, A. & Hallet, J. N. (2000). RAPD markers for genetic differentiation of species within Polytrichum (Polytrichaceae, Musci): a preliminary survey. Taxon, 49, 217–29.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×