We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study explored mental workload recognition methods for carrier-based aircraft pilots utilising multiple sensor physiological signal fusion and portable devices. A simulation carrier-based aircraft flight experiment was designed, and subjective mental workload scores and electroencephalogram (EEG) and photoplethysmogram (PPG) signals from six pilot cadets were collected using NASA Task Load Index (NASA-TLX) and portable devices. The subjective scores of the pilots in three flight phases were used to label the data into three mental workload levels. Features from the physiological signals were extracted, and the interrelations between mental workload and physiological indicators were evaluated. Machine learning and deep learning algorithms were used to classify the pilots’ mental workload. The performances of the single-modal method and multimodal fusion methods were investigated. The results showed that the multimodal fusion methods outperformed the single-modal methods, achieving higher accuracy, precision, recall and F1 score. Among all the classifiers, the random forest classifier with feature-level fusion obtained the best results, with an accuracy of 97.69%, precision of 98.08%, recall of 96.98% and F1 score of 97.44%. The findings of this study demonstrate the effectiveness and feasibility of the proposed method, offering insights into mental workload management and the enhancement of flight safety for carrier-based aircraft pilots.
The generation of an autoresonantly phase-locked high-amplitude plasma waves to the chirped beat frequency of two driving lasers is studied in two dimensions using particle-in-cell simulations. The two-dimensional plasma and laser parameters correspond to those that optimized the plasma wave amplitude in one-dimensional simulations. Near the start of autoresonant locking, the two-dimensional simulations appear similar to one-dimensional particle-in-cell results (Luo et al., Phys. Rev. Res., vol. 6, 2024, p. 013338) with plasma wave amplitudes above the Rosenbluth–Liu limit. Later, just below wave breaking, the two-dimensional simulation exhibits a Weibel-like instability and eventually laser beam filamentation. These limit the coherence of the plasma oscillation after the peak plasma wave field is obtained. In spite of the reduction of spatial coherence of the accelerating density structure, the acceleration of self-injected electrons in the case studied remains at $70\,\%$ to $80\,\%$ of that observed in one dimension. Other effects such as plasma wave bowing are discussed.
We present the first results from a new backend on the Australian Square Kilometre Array Pathfinder, the Commensal Realtime ASKAP Fast Transient COherent (CRACO) upgrade. CRACO records millisecond time resolution visibility data, and searches for dispersed fast transient signals including fast radio bursts (FRB), pulsars, and ultra-long period objects (ULPO). With the visibility data, CRACO can localise the transient events to arcsecond-level precision after the detection. Here, we describe the CRACO system and report the result from a sky survey carried out by CRACO at 110-ms resolution during its commissioning phase. During the survey, CRACO detected two FRBs (including one discovered solely with CRACO, FRB 20231027A), reported more precise localisations for four pulsars, discovered two new RRATs, and detected one known ULPO, GPM J1839 $-$10, through its sub-pulse structure. We present a sensitivity calibration of CRACO, finding that it achieves the expected sensitivity of 11.6 Jy ms to bursts of 110 ms duration or less. CRACO is currently running at a 13.8 ms time resolution and aims at a 1.7 ms time resolution before the end of 2024. The planned CRACO has an expected sensitivity of 1.5 Jy ms to bursts of 1.7 ms duration or less and can detect $10\times$ more FRBs than the current CRAFT incoherent sum system (i.e. 0.5 $-$2 localised FRBs per day), enabling us to better constrain the models for FRBs and use them as cosmological probes.
With wide-field phased array feed technology, the Australian Square Kilometre Array Pathfinder (ASKAP) is ideally suited to search for seemingly rare radio transient sources that are difficult to discover previous-generation narrow-field telescopes. The Commensal Real-time ASKAP Fast Transient (CRAFT) Survey Science Project has developed instrumentation to continuously search for fast radio transients (duration $\lesssim$ 1 s) with ASKAP, with a particular focus on finding and localising fast radio bursts (FRBs). Since 2018, the CRAFT survey has been searching for FRBs and other fast transients by incoherently adding the intensities received by individual ASKAP antennas, and then correcting for the impact of frequency dispersion on these short-duration signals in the resultant incoherent sum (ICS) in real time. This low-latency detection enables the triggering of voltage buffers, which facilitates the localisation of the transient source and the study of spectro-polarimetric properties at high time resolution. Here we report the sample of 43 FRBs discovered in this CRAFT/ICS survey to date. This includes 22 FRBs that had not previously been reported: 16 FRBs localised by ASKAP to $\lesssim 1$ arcsec and 6 FRBs localised to $\sim 10$ arcmin. Of the new arcsecond-localised FRBs, we have identified and characterised host galaxies (and measured redshifts) for 11. The median of all 30 measured host redshifts from the survey to date is $z=0.23$. We summarise results from the searches, in particular those contributing to our understanding of the burst progenitors and emission mechanisms, and on the use of bursts as probes of intervening media. We conclude by foreshadowing future FRB surveys with ASKAP using a coherent detection system that is currently being commissioned. This will increase the burst detection rate by a factor of approximately ten and also the distance to which ASKAP can localise FRBs.
Background: Surgical delays are in common in Canada. Wait times in elective spine surgery and their impact on outcomes remain uncharacterized. Methods: This was a single-center analysis of elective spine surgery data between 2009-2020. Wait times between referral and consultation (T1), consultation and surgical booking (Ti), and booking and surgery (T2) were assessed. Results: 2041 patients were included. Longitudinal analyses were adjusted for age, sex, diagnosis, surgical volume, while outcomes analyses were age and sex-adjusted. Total T1+Ti+T2 increased 8.1% annually (p<0.001). T1 decreased 4.3% annually (p=0.032). It was not associated with adverse events (AEs) or disposition. Every 100 days of T1 was associated with 1.0% longer hospitalization (p=0.001). Ti increased 21.0% annually (p<0.001). Every 100 days of Ti was associated with 2.9% increased odds of an adverse event (p=0.002), 1.8% longer hospitalization (p<0.001), and 15.9% increased likelihood of discharge home (p<0.001). T2 increased 7.0% annually (p<0.001) and was not associated with AEs. Every 100 days of T2 was associated with 11.6% longer hospitalization (p<0.001) and 76.5% increased likelihood of discharge home (p<0.001). Conclusions: Total wait times for elective spine surgery have increased between 2009-2020. Notably, Ti increased ninefold and was associated with AEs. This study highlights areas of delay and targets for healthcare optimization.
Background: After a transient ischemic attack (TIA) or minor stroke, the long-term risk of subsequent stroke is uncertain. Methods: Electronic databases were searched for observational studies reporting subsequent stroke during a minimum follow-up of 1 year in patients with TIA or minor stroke. Unpublished data on number of stroke events and exact person-time at risk contributed by all patients during discrete time intervals of follow-up were requested from the authors of included studies. This information was used to calculate the incidence of stroke in individual studies, and results across studies were pooled using random-effects meta-analysis. Results: Fifteen independent cohorts involving 129794 patients were included in the analysis. The pooled incidence rate of subsequent stroke per 100 person-years was 6.4 events in the first year and 2.0 events in the second through tenth years, with cumulative incidences of 14% at 5 years and 21% at 10 years. Based on 10 studies with information available on fatal stroke, the pooled case fatality rate of subsequent stroke was 9.5% (95% CI, 5.9 – 13.8). Conclusions: One in five patients is expected to experience a subsequent stroke within 10 years after a TIA or minor stroke, with every tenth patient expected to die from their subsequent stroke.
Despite the importance of timing of nerve surgery after peripheral nerve injury, optimal timing of intervention has not been clearly delineated. The goal of this study is to explore factors that may have a significant impact on clinical outcomes of severe peripheral nerve injury that requires reconstruction with nerve transfer or graft.
Materials and Methods:
Adult patients who underwent peripheral nerve transfer or grafting in Alberta were reviewed. Clustered multivariable logistic regression analysis was used to examine the association of time to surgery, type of nerve repair, and patient characteristics on strength outcomes. Cox proportional hazard regression analysis model was used to examine factors correlated with increased time to surgery.
Results:
Of the 163 patients identified, the median time to surgery was 212 days. For every week of delay, the adjusted odds of achieving Medical Research Council strength grade ≥ 3 decreases by 3%. An increase in preinjury comorbidities was associated with longer overall time to surgery (aHR 0.84, 95% CI 0.74–0.95). Referrals made by surgeons were associated with a shorter time to surgery compared to general practitioners (aHR 1.87, 95% CI 1.14–3.06). In patients treated with nerve transfer, the adjusted odds of achieving antigravity strength was 388% compared to nerve grafting; while the adjusted odds decreased by 65% if the injury sustained had a pre-ganglionic injury component.
Conclusion:
Mitigating delays in surgical intervention is crucial to optimizing outcomes. The nature of initial nerve injury and surgical reconstructive techniques are additional important factors that impact postoperative outcomes.
TDuring COVID-19 pandemic, it was noticed that it was students who were mostly affected by the changes that aroused because of the pandemic. The interesting part is whether students’ well-being could be associated with their fields of study as well as coping strategies.
Objectives
In this study, we aimed to assess 1) the mental health of students from nine countries with a particular focus on depression, anxiety, and stress levels and their fields of study, 2) the major coping strategies of students after one year of the COVID-19 pandemic.
Methods
We conducted an anonymous online cross-sectional survey on 12th April – 1st June 2021 that was distributed among the students from Poland, Mexico, Egypt, India, Pakistan, China, Vietnam, Philippines, and Bangladesh. To measure the emotional distress, we used the Depression, Anxiety, and Stress Scale-21 (DASS-21), and to identify the major coping strategies of students - the Brief-COPE.
Results
We gathered 7219 responses from students studying five major studies: medical studies (N=2821), social sciences (N=1471), technical sciences (N=891), artistic/humanistic studies (N=1094), sciences (N=942). The greatest intensity of depression (M=18.29±13.83; moderate intensity), anxiety (M=13.13±11.37; moderate intensity ), and stress (M=17.86±12.94; mild intensity) was observed among sciences students. Medical students presented the lowest intensity of all three components - depression (M=13.31±12.45; mild intensity), anxiety (M=10.37±10.57; moderate intensity), and stress (M=13.65±11.94; mild intensity). Students of all fields primarily used acceptance and self-distraction as their coping mechanisms, while the least commonly used were self-blame, denial, and substance use. The group of coping mechanisms the most frequently used was ‘emotional focus’. Medical students statistically less often used avoidant coping strategies compared to other fields of study. Substance use was only one coping mechanism that did not statistically differ between students of different fields of study. Behavioral disengagement presented the highest correlation with depression (r=0.54), anxiety (r=0.48), and stress (r=0.47) while religion presented the lowest positive correlation with depression (r=0.07), anxiety (r=0.14), and stress (r=0.11).
Conclusions
1) The greatest intensity of depression, anxiety, and stress was observed among sciences students, while the lowest intensity of those components was found among students studying medicine.
2) Not using avoidant coping strategies might be associated with lower intensity of all DASS components among students.
3) Behavioral disengagement might be strongly associated with greater intensity of depression, anxiety, and stress among students.
4) There was no coping mechanism that provided the alleviation of emotional distress in all the fields of studies of students.
Bipolar disorder (BD) is a source of marked disability, morbidity, and premature death. There is a paucity of research on personalized psychosocial interventions for BD, especially in lowresource settings. A previously published pilot randomized controlled trial (RCT) of a Culturally adapted PsychoEducation (CaPE) intervention for BD in Pakistan reported higher patient satisfaction, enhanced medication adherence, knowledge and attitudes towards BD, and improvement in mood symptom scores and health-related quality of life measures compared to treatment-as-usual (TAU).
Objectives
This protocol describes a larger multicentre RCT to confirm the clinical and cost-effectiveness of CaPE in Pakistan.
Methods
A multicentre individual, parallel arm, RCT of CaPE in 300Pakistani adults with BD. Participants over the age of 18, with adiagnosis of bipolar I and II and who are currently euthymic, will berecruited from seven sites including Karachi, Lahore, Multan, Rawalpindi,Peshawar, Hyderabad and Quetta. Time to recurrence will be the primaryoutcome assessed using Longitudinal Interval Follow-up Evaluation(LIFE). Secondary measures will include mood symptomatology, qualityof life and functioning, adherence to psychotropic medications, andknowledge and attitudes towards BD.
Results
Full ethics approval has been received from National Bioethics Committee (NBC) of Pakistan and Centre for Addiction and Mental Health (CAMH), Toronto, Canada. The study has completed sixty-five screening across the seven centres, of which forty-eight participants have been randomised.
Conclusions
A successful trial will lead to rapid implementation of CaPE in clinical practice, not only in Pakistan, but also in other low-resource settings including those in high-income countries, to improve clinical outcomes, social and occupational functioning, and quality of life in South Asian and other minority patients with BD.
The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration (LDPA) and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers used as the driving sources. The successful use of the SG-II Peta-watt (SG-II PW) laser facility for LDPA and its applications in radiographic diagnoses have been manifested by the good performance of the SG-II PW facility. Recently, the SG-II PW laser facility has undergone extensive maintenance and a comprehensive technical upgrade in terms of the seed source, laser contrast and terminal focus. LDPA experiments were performed using the maintained SG-II PW laser beam, and the highest cutoff energy of the proton beam was obviously increased. Accordingly, a double-film target structure was used, and the maximum cutoff energy of the proton beam was up to 70 MeV. These results demonstrate that the comprehensive performance of the SG-II PW laser facility was improved significantly.
We investigate the diversity in the sizes and average surface densities of the neutral atomic hydrogen (H i) gas discs in $\sim$280 nearby galaxies detected by the Widefield ASKAP L-band Legacy All-sky Blind Survey (WALLABY). We combine the uniformly observed, interferometric H i data from pilot observations of the Hydra cluster and NGC 4636 group fields with photometry measured from ultraviolet, optical, and near-infrared imaging surveys to investigate the interplay between stellar structure, star formation, and H i structural parameters. We quantify the H i structure by the size of the H i relative to the optical disc and the average H i surface density measured using effective and isodensity radii. For galaxies resolved by $>$$1.3$ beams, we find that galaxies with higher stellar masses and stellar surface densities tend to have less extended H i discs and lower H i surface densities: the isodensity H i structural parameters show a weak negative dependence on stellar mass and stellar mass surface density. These trends strengthen when we limit our sample to galaxies resolved by $>$2 beams. We find that galaxies with higher H i surface densities and more extended H i discs tend to be more star forming: the isodensity H i structural parameters have stronger correlations with star formation. Normalising the H i disc size by the optical effective radius (instead of the isophotal radius) produces positive correlations with stellar masses and stellar surface densities and removes the correlations with star formation. This is due to the effective and isodensity H i radii increasing with mass at similar rates while, in the optical, the effective radius increases slower than the isophotal radius. Our results are in qualitative agreement with previous studies and demonstrate that with WALLABY we can begin to bridge the gap between small galaxy samples with high spatial resolution H i data and large, statistical studies using spatially unresolved, single-dish data.
Background: Veno-venous extracorporeal membrane oxygenation (VV-ECMO) is an invasive intervention for patients with respiratory failure associated with COVID-19. This meta-analysis aims to determine the incidence of neurovascular complications in COVID-19 patients requiring VV-ECMO. Methods: Systematic literature search of MEDLINE, Embase, PsycINFO, and Cochrane databases was performed to identify studies that reported neurovascular complications of adult COVID-19 patients on VV-ECMO for respiratory failure. Case series and reports were excluded. Studies with 95% or more of its patients on VV-ECMO were pooled for meta-analysis. Results: Eighteen studies (n=1968) were included for meta-analyses. In COVID-19 patients requiring VV-ECMO, the incidences of intracranial hemorrhage and ischemic stroke were 11% [95% CI, 8–15%] and 2% [95% CI, 1–3%], respectively. Intraparenchymal and subarachnoid hemorrhages accounted for 73% and 8% of all intracranial hemorrhages, respectively. The risk ratio of mortality in COVID-19 patients with neurovascular complications on VV-ECMO compared to patients without neurovascular complications was 2.24 [95% CI, 1.46–3.46]. Conclusions: COVID-19 patients requiring VV-ECMO have a higher incidence of intracranial hemorrhage compared to historical data in non-COVID-19 patients (11% vs. 8%), while the incidence of ischemic stroke is similar (2%) in both cohorts. COVID-19 patients with neurovascular complications on VV-ECMO are at an increased risk of death.
Background: Meningiomas are the most common intracranial tumor, graded from 1 (benign) to 3 (malignant). The aim of this study was to identify clinical features associated with overall survival (OS), progression-free survival (PFS) and functional status for malignant meningiomas. Methods: Demographic, clinical and histopathological data from grade 3 intracranial meningioma cases were identified in the clinical databases from seven sites in North America and Europe from 1991-2022. Summary statistics and Kaplan-Meier OS and PFS curves were generated. Results: We identified 108 patients, with a median age 65 years (IQR: 52, 72) and 53.7% were female. Median OS was 109 months (95% CIs: 88, 227), and 5-year OS rate was 65% (95% CIs: 56, 76). Median PFS was 38 months (95% CIs: 24, 56) and 5-year PFS rate was 37% (95% CIs: 28, 49). OS and PFS were significantly lower in patients aged ≥65 years. Median preoperative KPS score was 80 (IQR: 70, 90), postoperatively KPS was 90 (IQR: 70, 98) and 1-year follow-up KPS was 70 (IQR: 50, 80). Conclusions: This study provides robust survival, recurrence and functional data for grade 3 meningiomas in North America and Europe over a 30-year period.
We present the Widefield ASKAP L-band Legacy All-sky Blind surveY (WALLABY) Pilot Phase I Hi kinematic models. This first data release consists of Hi observations of three fields in the direction of the Hydra and Norma clusters, and the NGC 4636 galaxy group. In this paper, we describe how we generate and publicly release flat-disk tilted-ring kinematic models for 109/592 unique Hi detections in these fields. The modelling method adopted here—which we call the WALLABY Kinematic Analysis Proto-Pipeline (WKAPP) and for which the corresponding scripts are also publicly available—consists of combining results from the homogeneous application of the FAT and 3DBarolo algorithms to the subset of 209 detections with sufficient resolution and
$S/N$
in order to generate optimised model parameters and uncertainties. The 109 models presented here tend to be gas rich detections resolved by at least 3–4 synthesised beams across their major axes, but there is no obvious environmental bias in the modelling. The data release described here is the first step towards the derivation of similar products for thousands of spatially resolved WALLABY detections via a dedicated kinematic pipeline. Such a large publicly available and homogeneously analysed dataset will be a powerful legacy product that that will enable a wide range of scientific studies.
We present WALLABY pilot data release 1, the first public release of H i pilot survey data from the Wide-field ASKAP L-band Legacy All-sky Blind Survey (WALLABY) on the Australian Square Kilometre Array Pathfinder. Phase 1 of the WALLABY pilot survey targeted three
$60\,\mathrm{deg}^{2}$
regions on the sky in the direction of the Hydra and Norma galaxy clusters and the NGC 4636 galaxy group, covering the redshift range of
$z \lesssim 0.08$
. The source catalogue, images and spectra of nearly 600 extragalactic H i detections and kinematic models for 109 spatially resolved galaxies are available. As the pilot survey targeted regions containing nearby group and cluster environments, the median redshift of the sample of
$z \approx 0.014$
is relatively low compared to the full WALLABY survey. The median galaxy H i mass is
$2.3 \times 10^{9}\,{\rm M}_{{\odot}}$
. The target noise level of
$1.6\,\mathrm{mJy}$
per 30′′ beam and
$18.5\,\mathrm{kHz}$
channel translates into a
$5 \sigma$
H i mass sensitivity for point sources of about
$5.2 \times 10^{8} \, (D_{\rm L} / \mathrm{100\,Mpc})^{2} \, {\rm M}_{{\odot}}$
across 50 spectral channels (
${\approx} 200\,\mathrm{km \, s}^{-1}$
) and a
$5 \sigma$
H i column density sensitivity of about
$8.6 \times 10^{19} \, (1 + z)^{4}\,\mathrm{cm}^{-2}$
across 5 channels (
${\approx} 20\,\mathrm{km \, s}^{-1}$
) for emission filling the 30′′ beam. As expected for a pilot survey, several technical issues and artefacts are still affecting the data quality. Most notably, there are systematic flux errors of up to several 10% caused by uncertainties about the exact size and shape of each of the primary beams as well as the presence of sidelobes due to the finite deconvolution threshold. In addition, artefacts such as residual continuum emission and bandpass ripples have affected some of the data. The pilot survey has been highly successful in uncovering such technical problems, most of which are expected to be addressed and rectified before the start of the full WALLABY survey.
Mental health regional differences during pregnancy through the COVID-19 pandemic is understudied.
Objectives
We aimed to quantify the impact of the COVID-19 pandemic on maternal mental health during pregnancy.
Methods
A cohort study with a web-based recruitment strategy and electronic data collection was initiated in 06/2020. Although Canadian women, >18 years were primarily targeted, pregnant women worldwide were eligible. The current analysis includes data on women enrolled 06/2020-11/2020. Self-reported data included mental health measures (Edinburgh Perinatal Depression Scale (EPDS), Generalized Anxiety Disorders (GAD-7)), stress. We compared maternal mental health stratifying on country/continents of residence, and identified determinants of mental health using multivariable regression models.
Results
Of 2,109 pregnant women recruited, 1,932 were from Canada, 48 the United States (US), 73 Europe, 35 Africa, and 21 Asia/Oceania. Mean depressive symptom scores were lower in Canada (EPDS 8.2, SD 5.2) compared to the US (EPDS 10.5, SD 4.8) and Europe (EPDS 10.4, SD 6.5) (p<0.05), regardless of being infected or not. Maternal anxiety, stress, decreased income and access to health care due to the pandemic were increasing maternal depression. The prevalence of severe anxiety was similar across country/continents. Maternal depression, stress, and earlier recruitment during the pandemic (June/July) were associated with increased maternal anxiety.
Conclusions
In this first international study on the impact of the COVID-19 pandemic, CONCEPTION has shown significant country/continent-specific variations in depressive symptoms during pregnancy, whereas severe anxiety was similar regardless of place of residence. Strategies are needed to reduce COVID-19’s mental health burden in pregnancy.
The great demographic pressure brings tremendous volume of beef demand. The key to solve this problem is the growth and development of Chinese cattle. In order to find molecular markers conducive to the growth and development of Chinese cattle, sequencing was used to determine the position of copy number variations (CNVs), bioinformatics analysis was used to predict the function of ZNF146 gene, real-time fluorescent quantitative polymerase chain reaction (qPCR) was used for CNV genotyping and one-way analysis of variance was used for association analysis. The results showed that there exists CNV in Chr 18: 47225201-47229600 (5.0.1 version) of ZNF146 gene through the early sequencing results in the laboratory and predicted ZNF146 gene was expressed in liver, skeletal muscle and breast cells, and was amplified or overexpressed in pancreatic cancer, which promoted the development of tumour through bioinformatics. Therefore, it is predicted that ZNF146 gene affects the proliferation of muscle cells, and then affects the growth and development of cattle. Furthermore, CNV genotyping of ZNF146 gene was three types (deletion type, normal type and duplication type) by Real-time fluorescent quantitative PCR (qPCR). The association analysis results showed that ZNF146-CNV was significantly correlated with rump length of Qinchuan cattle, hucklebone width of Jiaxian red cattle and heart girth of Yunling cattle. From the above results, ZNF146-CNV had a significant effect on growth traits, which provided an important candidate molecular marker for growth and development of Chinese cattle.
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility (SULF). The peak power reaches 2.4 PW on target without the last amplifying during the experiment. The laser energy of 72 ± 9 J is directed to a focal spot of approximately 6 μm diameter (full width at half maximum) in 30 fs pulse duration, yielding a focused peak intensity around 2.0 × 1021 W/cm2. The first laser-proton acceleration experiment is performed using plain copper and plastic targets. High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4 μm via target normal sheath acceleration. For plastic targets of tens of nanometers thick, the proton cut-off energy is approximately 20 MeV, showing ring-like or filamented density distributions. These experimental results reflect the capabilities of the SULF-10 PW beamline, for example, both ultrahigh intensity and relatively good beam contrast. Further optimization for these key parameters is underway, where peak laser intensities of 1022–1023 W/cm2 are anticipated to support various experiments on extreme field physics.
Background: Despite a higher prevalence of traumatic spinal cord injury (TSCI) amongst Canadian Indigenous peoples, there is a paucity of studies focused on Indigenous TSCI. We present the first Canada-wide study comparing TSCI amongst Canadian Indigenous and non-Indigenous peoples. Methods: This study is a retrospective analysis of prospectively-collected TSCI data from the Rick Hansen Spinal Cord Injury Registry (RHSCIR) from 2004-2019. We divided participants into Indigenous and non-Indigenous cohorts and compared them with respect to demographics, injury mechanism, level, severity, and outcomes. Results: Compared with non-Indigenous patients, Indigenous patients were younger, more female, less likely to have higher education, and less likely to be employed. The mechanism of injury was more likely due to assault or transportation-related trauma in the Indigenous group. The length of stay for Indigenous patients was longer. Indigenous patients were more likely to be discharged to a rural setting, less likely to be discharged home, and more likely to be unemployed following injury. Conclusions: Our results suggest that more resources need to be dedicated for transitioning Indigenous patients sustaining a TSCI to community living and for supporting these patients in their home communities. A focus on resources and infrastructure for Indigenous patients by engagement with Indigenous communities is needed.
Direct observations of the products of binary interactions are sparse, yet they provide important insights on the outcome of the interaction and the physics at play. Young and intermediate-age star clusters are the ideal tool to search for, and characterize such interaction products and allow for a detailed comparison to theoretical predictions. We here report on integral field spectroscopy obtained with MUSE for several such clusters in the Magellanic Clouds.