We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The demand for separating and analysing rare target cells is increasing dramatically for vital applications such as cancer treatment and cell-based therapies. However, there remains a grand challenge for high-throughput and label-free segregation of lesion cells with similar sizes. Cancer cells with different invasiveness usually manifest distinct deformability. In this work, we employ a hydrogel microparticle system with similar sizes but varied stiffness to mimic cancer cells and examine in situ their deformation and focusing under microfluidic flow. We first demonstrate the similar focusing behaviour of hydrogel microparticles and cancer cells in confined flow that is dominated by deformability-induced lateral migration. The deformation, orientation and focusing position of hydrogel microparticles in microfluidic flow under different Reynolds numbers are then systematically observed and measured using a high-speed camera. Linear correlations of the Taylor deformation and tilt angle of hydrogel microparticles with the capillary number are revealed, consistent with theoretical predictions. Detailed analysis of the dependence of particle focusing on the flow rate and particle stiffness enables us to identify a linear scaling between the equilibrium focusing position and the major axis of the deformed microparticles, which is uniquely determined by the capillary number. Our findings provide insights into the focusing and dynamics of soft beads, such as cells and hydrogel microparticles, under confined flow, and pave the way for applications including the separation and identification of circulating tumour cells, drug delivery and controlled drug release.
This paper provides an overview of the current status of ultrafast and ultra-intense lasers with peak powers exceeding 100 TW and examines the research activities in high-energy-density physics within China. Currently, 10 high-intensity lasers with powers over 100 TW are operational, and about 10 additional lasers are being constructed at various institutes and universities. These facilities operate either independently or are combined with one another, thereby offering substantial support for both Chinese and international research and development efforts in high-energy-density physics.
The multi-colour complete light curves and low-resolution spectra of two short period eclipsing Am binaries V404 Aur and GW Gem are presented. The stellar atmospheric parameters of the primary stars were derived through the spectra fitting. The observed and TESS-based light curves of them were analysed by using the Wilson-Devinney code. The photometric solutions suggest that both V404 Aur and GW Gem are semi-detached systems with the secondary component filling its critical Roche Lobe, while the former should be a marginal contact binary. The $O-C$ analysis found that the period of V404 Aur is decreasing at a rate of $dP/dt=-1.06(\pm0.01)\times 10^{-7}\,\mathrm{d}\,\mathrm{ yr}^{-1}$, while the period of GW Gem is increasing at $dP/dt=+2.41(\pm0.01)\times 10^{-8} \mathrm{d}\,\mathrm{yr}^{-1}$. The period decrease of V404 Aur may mainly be caused by the combined effects of the angular momentum loss (AML) via an enhanced stellar wind of the more evolved secondary star and mass transfer between two components. The period increase of GW Gem supports the mass transfer from the secondary to the primary. Both targets may be in the broken contact stage predicted by the thermal relaxation oscillations theory and will eventually evolve to the contact stage. We have collected about 54 well-known eclipsing Am binaries with absolute parameters from the literature. The relations of these parameters are summarised. There are some components that have a higher degree of evolution. The majority of their hydrogen shell may have been stripped away and the stellar internal layer exposed. The accretion processes from such evolved components may be very important for the formation of Am peculiarity in binaries.
This paper first discusses the relationship between Kullback–Leibler information (KL) and Fisher information in the context of multi-dimensional item response theory and is further interpreted for the two-dimensional case, from a geometric perspective. This explication should allow for a better understanding of the various item selection methods in multi-dimensional adaptive tests (MAT) which are based on these two information measures. The KL information index (KI) method is then discussed and two theorems are derived to quantify the relationship between KI and item parameters. Due to the fact that most of the existing item selection algorithms for MAT bear severe computational complexity, which substantially lowers the applicability of MAT, two versions of simplified KL index (SKI), built from the analytical results, are proposed to mimic the behavior of KI, while reducing the overall computational intensity.
Statisticians typically estimate the parameters of latent class and latent profile models using the Expectation-Maximization algorithm. This paper proposes an alternative two-stage approach to model fitting. The first stage uses the modified k-means and hierarchical clustering algorithms to identify the latent classes that best satisfy the conditional independence assumption underlying the latent variable model. The second stage then uses mixture modeling treating the class membership as known. The proposed approach is theoretically justifiable, directly checks the conditional independence assumption, and converges much faster than the full likelihood approach when analyzing high-dimensional data. This paper also develops a new classification rule based on latent variable models. The proposed classification procedure reduces the dimensionality of measured data and explicitly recognizes the heterogeneous nature of the complex disease, which makes it perfect for analyzing high-throughput genomic data. Simulation studies and real data analysis demonstrate the advantages of the proposed method.
Item replenishing is essential for item bank maintenance in cognitive diagnostic computerized adaptive testing (CD-CAT). In regular CAT, online calibration is commonly used to calibrate the new items continuously. However, until now no reference has publicly become available about online calibration for CD-CAT. Thus, this study investigates the possibility to extend some current strategies used in CAT to CD-CAT. Three representative online calibration methods were investigated: Method A (Stocking in Scale drift in on-line calibration. Research Rep. 88-28, 1988), marginal maximum likelihood estimate with one EM cycle (OEM) (Wainer & Mislevy In H. Wainer (ed.) Computerized adaptive testing: A primer, pp. 65–102, 1990) and marginal maximum likelihood estimate with multiple EM cycles (MEM) (Ban, Hanson, Wang, Yi, & Harris in J. Educ. Meas. 38:191–212, 2001). The objective of the current paper is to generalize these methods to the CD-CAT context under certain theoretical justifications, and the new methods are denoted as CD-Method A, CD-OEM and CD-MEM, respectively. Simulation studies are conducted to compare the performance of the three methods in terms of item-parameter recovery, and the results show that all three methods are able to recover item parameters accurately and CD-Method A performs best when the items have smaller slipping and guessing parameters. This research is a starting point of introducing online calibration in CD-CAT, and further studies are proposed for investigations such as different sample sizes, cognitive diagnostic models, and attribute-hierarchical structures.
The compatibility of computerized adaptive testing (CAT) with response revision has been a topic of debate in psychometrics for many years. The problem is to provide test takers opportunities to change their answers during the test, while discouraging deceptive strategies from their side and preserving the statistical efficiency of the traditional CAT. The estimating approach proposed in Wang et al. (Stat Sin 27(4):1987–2010, 2017), based on the nominal response model, allows test takers to provide more than one answer to each item during the test, which they all contribute to the interim and final ability estimation. This approach is here reformulated, extended to incorporate a larger class of polytomous and dichotomous item response theory models, and investigated with simulation studies under different test-taking strategies.
Over the past thirty years, obtaining diagnostic information from examinees’ item responses has become an increasingly important feature of educational and psychological testing. The objective can be achieved by sequentially selecting multidimensional items to fit the class of latent traits being assessed, and therefore Multidimensional Computerized Adaptive Testing (MCAT) is one reasonable approach to such task. This study conducts a rigorous investigation on the relationships among four promising item selection methods: D-optimality, KL information index, continuous entropy, and mutual information. Some theoretical connections among the methods are demonstrated to show how information about the unknown vector θ can be gained from different perspectives. Two simulation studies were carried out to compare the performance of the four methods. The simulation results showed that mutual information not only improved the overall estimation accuracy but also yielded the smallest conditional mean squared error in most region of θ. In the end, the overlap rates were calculated to empirically show the similarity and difference among the four methods.
With the advent of web-based technology, online testing is becoming a mainstream mode in large-scale educational assessments. Most online tests are administered continuously in a testing window, which may post test security problems because examinees who take the test earlier may share information with those who take the test later. Researchers have proposed various statistical indices to assess the test security, and one most often used index is the average test-overlap rate, which was further generalized to the item pooling index (Chang & Zhang, 2002, 2003). These indices, however, are all defined as the means (that is, the expected proportion of common items among examinees) and they were originally proposed for computerized adaptive testing (CAT). Recently, multistage testing (MST) has become a popular alternative to CAT. The unique features of MST make it important to report not only the mean, but also the standard deviation (SD) of test overlap rate, as we advocate in this paper. The standard deviation of test overlap rate adds important information to the test security profile, because for the same mean, a large SD reflects that certain groups of examinees share more common items than other groups. In this study, we analytically derived the lower bounds of the SD under MST, with the results under CAT as a benchmark. It is shown that when the mean overlap rate is the same between MST and CAT, the SD of test overlap tends to be larger in MST. A simulation study was conducted to provide empirical evidence. We also compared the security of MST under the single-pool versus the multiple-pool designs; both analytical and simulation studies show that the non-overlapping multiple-pool design will slightly increase the security risk.
We report a high-power ultra-narrow fiber-coupled diode laser using a Faraday anomalous dispersion optical filter (FADOF) as an external cavity element. An external cavity suitable for both the fiber-coupled package and FADOF configuration has been proposed. Using a 87Rb-based FADOF as the frequency-selective element, we realized a 103 W continuous laser output with a uniform circular beam. The center wavelength was precisely locked at the D2 line of the Rb resonance, and the bandwidth was narrowed from 1.8 nm (free-running, full width at half maximum (FWHM)) to 0.013 nm (6.9 GHz, FWHM). The side mode suppression ratio reached 31 dB. Such diode lasers with precise wavelength and high spectral brightness have critical applications in many fields, such as high-energy gas laser pumping, spin-exchange optical pumping, Raman spectroscopy and nonlinear optics.
We consider linear-fractional branching processes (one-type and two-type) with immigration in varying environments. For $n\ge0$, let $Z_n$ count the number of individuals of the nth generation, which excludes the immigrant who enters the system at time n. We call n a regeneration time if $Z_n=0$. For both the one-type and two-type cases, we give criteria for the finiteness or infiniteness of the number of regeneration times. We then construct some concrete examples to exhibit the strange phenomena caused by the so-called varying environments. For example, it may happen that the process is extinct, but there are only finitely many regeneration times. We also study the asymptotics of the number of regeneration times of the model in the example.
Drawing on resource-based and agency theories, this study examines the effects of business concentration and ownership structure on business group performance. On the basis of panel data (2004–2018) from the top 100 Taiwanese business groups investing globally, this study finds an S-shaped relationship between business concentration and business group performance with the interaction of advantages and costs at different levels. Performance increases when there is little business concentration, decreases when there is a moderate amount and increases again when there is a high level of business concentration. In addition, this study hypothesizes that ownership structure has a different moderating effect on this relationship. The family business group has a positive moderating effect; however, outsider direct and manager ownership have no significant moderating role. These findings have important theoretical and managerial implications for business groups.
Escherichia albertii is an emerging foodborne enteropathogen associated with infectious diarrhoea in humans. In February 2023, an outbreak of acute gastroenteric cases was reported in a junior high school located in Hangzhou, Zhejiang province, China. Twenty-two investigated patients presented diarrhoea (22/22, 100%), abdominal pain (21/22, 95.5%), nausea (6/22, 27.3%), and vomiting (3/22, 13.6%). E. albertii strains were successfully isolated from anal swabs collected from six patients. Each isolate was classified as sequence type ST2686, harboured eae-β gene, and carried both cdtB-I and cdtB-II subtypes, being serotyped as EAOg32:EAHg4 serotype. A comprehensive whole-genome phylogenetic analysis revealed that the six isolates formed a distinct cluster, separate from other strains. These isolates exhibited minimal genetic variation, differing from one another by 0 to 1 single nucleotide polymorphism, suggesting a common origin from a single clone. To the best of our knowledge, this represented the first reported outbreak of gastroenteritis attributed to E. albertii outside of Japan on a global scale.
The discovery that blazars dominate the extra-galactic $\gamma$-ray sky is a triumph in the Fermi era. However, the exact location of $\gamma$-ray emission region still remains in debate. Low-synchrotron-peaked blazars (LSPs) are estimated to produce high-energy radiation through the external Compton process, thus their emission regions are closely related to the external photon fields. We employed the seed factor approach proposed by Georganopoulos et al. It directly matches the observed seed factor of each LSP with the characteristic seed factors of external photon fields to locate the $\gamma$-ray emission region. A sample of 1 138 LSPs with peak frequencies and peak luminosities was adopted to plot a histogram distribution of observed seed factors. We also collected some spectral energy distributions (SEDs) of historical flare states to investigate the variation of $\gamma$-ray emission region. Those SEDs were fitted by both quadratic and cubic functions using the Markov-chain Monte Carlo method. Furthermore, we derived some physical parameters of blazars and compared them with the constraint of internal $\gamma\gamma$-absorption. We find that dusty torus dominates the soft photon fields of LSPs and most $\gamma$-ray emission regions of LSPs are located at 1–10 pc. The soft photon fields could also transition from dusty torus to broad line region and cosmic microwave background in different flare states. Our results suggest that the cubic function is better than the quadratic function to fit the SEDs.
Calorie restriction plays a role in reducing food intake and weight gain, and improving health and lifespan. We hypothesized that calorie restriction would affect body weight (BW), serum indices, gut microbiota, metabolites and short-chain fatty acids of finishing pigs. Castrated male (Landrace × Yorkshire) pigs (86.13 ± 3.50 kg) were randomly assigned into two groups indicated as control (Con) and calorie restriction (CR) (eight pigs/group), respectively. Pigs in the Con group consumed feed ad libitum, whereas pigs in the CR group were fed 70% of the amount of feed in the Con group. The trial lasted for 38 days. Blood and colonic contents were collected for serum parameters, and microbiota and metabolome analysis, respectively. Main effects were tested by Student’s t-test. We found that for finishing pigs, calorie restriction reduced the cumulative food intake, BW gain, serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, alanine aminotransferase and aspartate aminotransferase levels. Calorie restriction did not change the α and β diversity of intestinal microbiota. However, calorie restriction significantly increased the abundance of Romboutsia and unclassified_c_Bacilli, and significantly reduced the abundance of Lachnospiraceae_XPB1014_group, Candidatus_Saccharimonas, Escherichia-–Shigella and Gastranaerophilales. Calorie restriction also simultaneously changed the structure of intestinal metabolites and increased the concentration of isobutyric acid, isovaleric acid and valeric acid. In conclusion, calorie restriction may affect metabolism, reduce obesity and improve intestinal microbiota, which may be a healthy diet treatment that can reduce obesity and improve metabolism.
Based on a contingent valuation method survey on air quality improvement in northern China, we construct several subjective perception determinants of respondents' valuation uncertainty from both the demand and perceived supply sides. Using the individual-level uncertainty measurements initially proposed by Wang and He (2011) and their alternative transformations, we analyze how these factors of demand and perceived supply sides affect people's valuation uncertainty. Our results demonstrate the significant contribution of these determinants in explaining respondents' uncertainty. On the demand side, people who ‘don't know much’ about benefits-related factors have the highest level of uncertainty, and those claiming to ‘know nothing’ most often report the lowest level of uncertainty. On the supply side, people who either do not trust or are not satisfied with the control policies tend to be more certain of their valuation. The subsequent analyses also suggest that these results be interpreted as negative certainty, which is attributed to a lack of interest.
Double-cone ignition [Zhang et al., Phil. Trans. R. Soc. A 378, 20200015 (2020)] was proposed recently as a novel path for direct-drive inertial confinement fusion using high-power lasers. In this scheme, plasma jets with both high density and high velocity are required for collisions. Here we report preliminary experimental results obtained at the Shenguang-II upgrade laser facility, employing a CHCl shell in a gold cone irradiated with a two-ramp laser pulse. The CHCl shell was pre-compressed by the first laser ramp to a density of 3.75 g/cm3 along the isentropic path. Subsequently, the target was further compressed and accelerated by the second laser ramp in the cone. According to the simulations, the plasma jet reached a density of up to 15 g/cm3, while measurements indicated a velocity of 126.8 ± 17.1 km/s. The good agreements between experimental data and simulations are documented.
Extensive research has explored altered structural and functional networks in major depressive disorder (MDD). However, studies examining the relationships between structure and function yielded heterogeneous and inconclusive results. Recent work has suggested that the structure-function relationship is not uniform throughout the brain but varies across different levels of functional hierarchy. This study aims to investigate changes in structure-function couplings (SFC) and their relevance to antidepressant response in MDD from a functional hierarchical perspective.
Methods
We compared regional SFC between individuals with MDD (n = 258) and healthy controls (HC, n = 99) using resting-state functional magnetic resonance imaging and diffusion tensor imaging. We also compared antidepressant non-responders (n = 55) and responders (n = 68, defined by a reduction in depressive severity of >50%). To evaluate variations in altered and response-associated SFC across the functional hierarchy, we ranked significantly different regions by their principal gradient values and assessed patterns of increase or decrease along the gradient axis. The principal gradient value, calculated from 219 healthy individuals in the Human Connectome Project, represents a region's position along the principal gradient axis.
Results
Compared to HC, MDD patients exhibited increased SFC in unimodal regions (lower principal gradient) and decreased SFC in transmodal regions (higher principal gradient) (p < 0.001). Responders primarily had higher SFC in unimodal regions and lower SFC in attentional networks (median principal gradient) (p < 0.001).
Conclusions
Our findings reveal opposing SFC alterations in low-level unimodal and high-level transmodal networks, underscoring spatial variability in MDD pathology. Moreover, hierarchy-specific antidepressant effects provide valuable insights into predicting treatment outcomes.