To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The total energy of an eigenstate in a composite quantum system tends to be distributed equally among its constituents. We identify the quantum fluctuation around this equipartition principle in the simplest disordered quantum system consisting of linear combinations of Wigner matrices. As our main ingredient, we prove the Eigenstate Thermalisation Hypothesis and Gaussian fluctuation for general quadratic forms of the bulk eigenvectors of Wigner matrices with an arbitrary deformation.
We consider momentum push-forwards of measures arising as quantum limits (semiclassical measures) of eigenfunctions of a point scatterer on the standard flat torus ${\mathbb T}^2 = {\mathbb R}^2/{\mathbb Z}^{2}$. Given any probability measure arising by placing delta masses, with equal weights, on ${\mathbb Z}^2$-lattice points on circles and projecting to the unit circle, we show that the mass of certain subsequences of eigenfunctions, in momentum space, completely localizes on that measure and are completely delocalized in position (i.e., concentration on Lagrangian states). We also show that the mass, in momentum, can fully localize on more exotic measures, for example, singular continuous ones with support on Cantor sets. Further, we can give examples of quantum limits that are certain convex combinations of such measures, in particular showing that the set of quantum limits is richer than the ones arising only from weak limits of lattice points on circles. The proofs exploit features of the half-dimensional sieve and behavior of multiplicative functions in short intervals, enabling precise control of the location of perturbed eigenvalues.
We study the limiting behavior of Maass forms on sequences of large-volume compact quotients of $\operatorname {SL}_d({\mathbb R})/\textrm {SO}(d)$, $d\ge 3$, whose spectral parameter stays in a fixed window. We prove a form of quantum ergodicity in this level aspect which extends results of Le Masson and Sahlsten to the higher rank case.
We establish sharp bounds for the second moment of symmetric-square L-functions attached to Hecke Maass cusp forms $u_j$ with spectral parameter $t_j$, where the second moment is a sum over $t_j$ in a short interval. At the central point $s=1/2$ of the L-function, our interval is smaller than previous known results. More specifically, for $\left \lvert t_j\right \rvert $ of size T, our interval is of size $T^{1/5}$, whereas the previous best was $T^{1/3}$, from work of Lam. A little higher up on the critical line, our second moment yields a subconvexity bound for the symmetric-square L-function. More specifically, we get subconvexity at $s=1/2+it$ provided $\left \lvert t_j\right \rvert ^{6/7+\delta }\le \lvert t\rvert \le (2-\delta )\left \lvert t_j\right \rvert $ for any fixed $\delta>0$. Since $\lvert t\rvert $ can be taken significantly smaller than $\left \lvert t_j\right \rvert $, this may be viewed as an approximation to the notorious subconvexity problem for the symmetric-square L-function in the spectral aspect at $s=1/2$.
for triple product L-functions, where $\Psi $ is a fixed Hecke–Maass form on $\operatorname {\mathrm {SL}}_2(\mathbb {Z})$ and $\varphi $ runs over the Hecke–Maass newforms on $\Gamma _0(p)$ of bounded eigenvalue. The proof is via the theta correspondence and analysis of periods of half-integral weight modular forms. This estimate is not expected to be optimal, but the exponent $5/4$ is the strongest obtained to date for a moment problem of this shape. We show that the expected upper bound follows if one assumes the Ramanujan conjecture in both the integral and half-integral weight cases.
Under the triple product formula, our result may be understood as a strong level aspect form of quantum ergodicity: for a large prime p, all but very few Hecke–Maass newforms on $\Gamma _0(p) \backslash \mathbb {H}$ of bounded eigenvalue have very uniformly distributed mass after pushforward to $\operatorname {\mathrm {SL}}_2(\mathbb {Z}) \backslash \mathbb {H}$.
Our main result turns out to be closely related to estimates such as
where the sum is over those n for which $n p$ is a fundamental discriminant and $\chi _{n p}$ denotes the corresponding quadratic character. Such estimates improve upon bounds of Duke–Iwaniec.
We provide a systematic study of a non-commutative extension of the classical Anzai skew-product for the cartesian product of two copies of the unit circle to the non-commutative 2-tori. In particular, some relevant ergodic properties are proved for these quantum dynamical systems, extending the corresponding ones enjoyed by the classical Anzai skew-product. As an application, for a uniquely ergodic Anzai skew-product $\unicode[STIX]{x1D6F7}$ on the non-commutative $2$-torus $\mathbb{A}_{\unicode[STIX]{x1D6FC}}$, $\unicode[STIX]{x1D6FC}\in \mathbb{R}$, we investigate the pointwise limit, $\lim _{n\rightarrow +\infty }(1/n)\sum _{k=0}^{n-1}\unicode[STIX]{x1D706}^{-k}\unicode[STIX]{x1D6F7}^{k}(x)$, for $x\in \mathbb{A}_{\unicode[STIX]{x1D6FC}}$ and $\unicode[STIX]{x1D706}$ a point in the unit circle, and show that there are examples for which the limit does not exist, even in the weak topology.
We consider the semiclassical Schrödinger equation on a compact negatively curved surface. For any sequence of initial data microlocalized on the unit cotangent bundle, we look at the quantum evolution (below the Ehrenfest time) under small perturbations of the Schrödinger equation, and we prove that, in the semiclassical limit, and for typical perturbations, the solutions become equidistributed on the unit cotangent bundle.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.