We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We expand the theory of 2-classifiers, that are a 2-categorical generalization of subobject classifiers introduced by Weber. The idea is to upgrade monomorphisms to discrete opfibrations. We prove that the conditions of 2-classifier can be checked just on a dense generator. The study of what is classified by a 2-classifier is similarly reduced to a study over the objects that form a dense generator. We then apply our results to the cases of prestacks and stacks, where we can thus look just at the representables. We produce a 2-classifier in prestacks that classifies all discrete opfibrations with small fibres. Finally, we restrict such 2-classifier to a 2-classifier in stacks. This is the main ingredient of a proof that Grothendieck 2-topoi are elementary 2-topoi. Our results also solve a problem posed by Hofmann and Streicher when attempting to lift Grothendieck universes to sheaves.
Condensed mathematics, developed by Clausen and Scholze over the last few years, proposes a generalization of topology with better categorical properties. It replaces the concept of a topological space by that of a condensed set, which can be defined as a sheaf for the coherent topology on a certain category of compact Hausdorff spaces. In this case, the sheaf condition has a fairly simple explicit description, which arises from studying the relationship between the coherent, regular, and extensive topologies. In this paper, we establish this relationship under minimal assumptions on the category, going beyond the case of compact Hausdorff spaces. Along the way, we also provide a characterization of sheaves and covering sieves for these categories. All results in this paper have been fully formalized in the Lean proof assistant.
Dirac rings are commutative algebras in the symmetric monoidal category of $\mathbb {Z}$-graded abelian groups with the Koszul sign in the symmetry isomorphism. In the prequel to this paper, we developed the commutative algebra of Dirac rings and defined the category of Dirac schemes. Here, we embed this category in the larger $\infty $-category of Dirac stacks, which also contains formal Dirac schemes, and develop the coherent cohomology of Dirac stacks. We apply the general theory to stable homotopy theory and use Quillen’s theorem on complex cobordism and Milnor’s theorem on the dual Steenrod algebra to identify the Dirac stacks corresponding to $\operatorname {MU}$ and $\mathbb {F}_p$ in terms of their functors of points. Finally, in an appendix, we develop a rudimentary theory of accessible presheaves.
We recall several categories of graphs which are useful for describing homotopy-coherent versions of generalised operads (e.g. cyclic operads, modular operads, properads, and so on), and give new, uniform definitions for their morphisms. This allows for straightforward comparisons, and we use this to show that certain free-forgetful adjunctions between categories of generalised operads can be realised at the level of presheaves. This includes adjunctions between operads and cyclic operads, between dioperads and augmented cyclic operads, and between wheeled properads and modular operads.
Structures where we have both a contravariant (pullback) and a covariant (pushforward) functoriality that satisfy base change can be encoded by functors out of ($\infty$-)categories of spans (or correspondences). In this paper, we study the more complicated setup where we have two pushforwards (an ‘additive’ and a ‘multiplicative’ one), satisfying a distributivity relation. Such structures can be described in terms of bispans (or polynomial diagrams). We show that there exist $(\infty,2)$-categories of bispans, characterized by a universal property: they corepresent functors out of $\infty$-categories of spans where the pullbacks have left adjoints and certain canonical 2-morphisms (encoding base change and distributivity) are invertible. This gives a universal way to obtain functors from bispans, which amounts to upgrading ‘monoid-like’ structures to ‘ring-like’ ones. For example, symmetric monoidal $\infty$-categories can be described as product-preserving functors from spans of finite sets, and if the tensor product is compatible with finite coproducts our universal property gives the canonical semiring structure using the coproduct and tensor product. More interestingly, we encode the additive and multiplicative transfers on equivariant spectra as a functor from bispans in finite $G$-sets, extend the norms for finite étale maps in motivic spectra to a functor from certain bispans in schemes, and make $\mathrm {Perf}(X)$ for $X$ a spectral Deligne–Mumford stack a functor of bispans using a multiplicative pushforward for finite étale maps in addition to the usual pullback and pushforward maps. Combining this with the polynomial functoriality of $K$-theory constructed by Barwick, Glasman, Mathew, and Nikolaus, we obtain norms on algebraic $K$-theory spectra.
We provide a fairly self-contained account of the localisation and cofinality theorems for the algebraic $\operatorname K$-theory of stable $\infty$-categories. It is based on a general formula for the evaluation of an additive functor on a Verdier quotient closely following work of Waldhausen. We also include a new proof of the additivity theorem of $\operatorname K$-theory, strongly inspired by Ranicki's algebraic Thom construction, a short proof of the universality theorem of Blumberg, Gepner and Tabuada, and a second proof of the cofinality theorem which is based on the universal property of $\operatorname K$-theory.
We note that Gabber's rigidity theorem for the algebraic K-theory of henselian pairs also holds true for hermitian K-theory with respect to arbitrary form parameters.
The algebraic K-theory of Lawvere theories is a conceptual device to elucidate the stable homology of the symmetry groups of algebraic structures such as the permutation groups and the automorphism groups of free groups. In this paper, we fully address the question of how Morita equivalence classes of Lawvere theories interact with algebraic K-theory. On the one hand, we show that the higher algebraic K-theory is invariant under passage to matrix theories. On the other hand, we show that the higher algebraic K-theory is not fully Morita invariant because of the behavior of idempotents in non-additive contexts: We compute the K-theory of all Lawvere theories Morita equivalent to the theory of Boolean algebras.
Loday’sassembly maps approximate the K-theory of group rings by the K-theory of the coefficient ring and the corresponding homology of the group. We present a generalisation that places both ingredients on the same footing. Building on Elmendorf–Mandell’s multiplicativity results and our earlier work, we show that the K-theory of Lawvere theories is lax monoidal. This result makes it possible to present our theory in a user-friendly way without using higher-categorical language. It also allows us to extend the idea to new contexts and set up a nonabelian interpolation scheme, raising novel questions. Numerous examples illustrate the scope of our extension.
We study the symplectic geometry of derived intersections of Lagrangian morphisms. In particular, we show that for a functional $f : X \rightarrow \mathbb {A}_{k}^{1}$, the derived critical locus has a natural Lagrangian fibration $\textbf {Crit}(f) \rightarrow X$. In the case where f is nondegenerate and the strict critical locus is smooth, we show that the Lagrangian fibration on the derived critical locus is determined by the Hessian quadratic form.
For G a profinite group, we construct an equivalence between rational G-Mackey functors and a certain full subcategory of G-sheaves over the space of closed subgroups of G called Weyl-G-sheaves. This subcategory consists of those sheaves whose stalk over a subgroup K is K-fixed.
This extends the classification of rational G-Mackey functors for finite G of Thévenaz and Webb, and Greenlees and May to a new class of examples. Moreover, this equivalence is instrumental in the classification of rational G-spectra for profinite G, as given in the second author’s thesis.
We prove a constructive existence theorem for abelian envelopes of non-abelian monoidal categories. This establishes a new tool for the construction of tensor categories. As an example we obtain new proofs for the existence of several universal tensor categories as conjectured by Deligne. Another example constructs interesting tensor categories in positive characteristic via tilting modules for ${\rm SL}_2$.
Let $X^{n}$ be an oriented closed generalized $n$-manifold, $n\ge 5$. In our recent paper (Proc. Edinb. Math. Soc. (2) 63 (2020), no. 2, 597–607), we have constructed a map $t:\mathcal {N}(X^{n}) \to H^{st}_{n} ( X^{n}; \mathbb{L}^{+})$ which extends the normal invariant map for the case when $X^{n}$ is a topological $n$-manifold. Here, $\mathcal {N}(X^{n})$ denotes the set of all normal bordism classes of degree one normal maps $(f,\,b): M^{n} \to X^{n},$ and $H^{st}_{*} ( X^{n}; \mathbb{E})$ denotes the Steenrod homology of the spectrum $\mathbb{E}$. An important non-trivial question arose whether the map $t$ is bijective (note that this holds in the case when $X^{n}$ is a topological $n$-manifold). It is the purpose of this paper to prove that the answer to this question is affirmative.
Using the category of metric spaces as a template, we develop a metric analogue of the categorical semantics of classical/intuitionistic logic, and show that the natural notion of predicate in this “continuous semantics” is equivalent to the a priori separate notion of predicate in continuous logic, a logic which is independently well-studied by model theorists and which finds various applications. We show this equivalence by exhibiting the real interval
$[0,1]$
in the category of metric spaces as a “continuous subobject classifier” giving a correspondence not only between the two notions of predicate, but also between the natural notion of quantification in the continuous semantics and the existing notion of quantification in continuous logic.
Along the way, we formulate what it means for a given category to behave like the category of metric spaces, and afterwards show that any such category supports the aforementioned continuous semantics. As an application, we show that categories of presheaves of metric spaces are examples of such, and in fact even possess continuous subobject classifiers.
In this short paper, we combine the representability theorem introduced in [Porta and Yu, Representability theorem in derived analytic geometry, preprint, 2017, arXiv:1704.01683; Porta and Yu, Derived Hom spaces in rigid analytic geometry, preprint, 2018, arXiv:1801.07730] with the theory of derived formal models introduced in [António, $p$-adic derived formal geometry and derived Raynaud localization theorem, preprint, 2018, arXiv:1805.03302] to prove the existence representability of the derived Hilbert space $\mathbf{R}\text{Hilb}(X)$ for a separated $k$-analytic space $X$. Such representability results rely on a localization theorem stating that if $\mathfrak{X}$ is a quasi-compact and quasi-separated formal scheme, then the $\infty$-category $\text{Coh}^{-}(\mathfrak{X}^{\text{rig}})$ of almost perfect complexes over the generic fiber can be realized as a Verdier quotient of the $\infty$-category $\text{Coh}^{-}(\mathfrak{X})$. Along the way, we prove several results concerning the $\infty$-categories of formal models for almost perfect modules on derived $k$-analytic spaces.
We give a geometric interpretation of sheaf cohomology for higher degrees $n\geq 1$ in terms of torsors on the member of degree $d=n-1$ in hypercoverings of type $r=n-2$, endowed with an additional datum, the so-called rigidification. This generalizes the fact that cohomology in degree one is the group of isomorphism classes of torsors, where the rigidification becomes vacuous, and that cohomology in degree two can be expressed in terms of bundle gerbes, where the rigidification becomes an associativity constraint.
For ${\mathcal{C}}$ a factorisable and pivotal finite tensor category over an algebraically closed field of characteristic zero we show:
(1)${\mathcal{C}}$ always contains a simple projective object;
(2) if ${\mathcal{C}}$ is in addition ribbon, the internal characters of projective modules span a submodule for the projective $\text{SL}(2,\mathbb{Z})$-action;
(3) the action of the Grothendieck ring of ${\mathcal{C}}$ on the span of internal characters of projective objects can be diagonalised;
(4) the linearised Grothendieck ring of ${\mathcal{C}}$ is semisimple if and only if ${\mathcal{C}}$ is semisimple.
Results (1)–(3) remain true in positive characteristic under an extra assumption. Result (1) implies that the tensor ideal of projective objects in ${\mathcal{C}}$ carries a unique-up-to-scalars modified trace function. We express the modified trace of open Hopf links coloured by projectives in terms of $S$-matrix elements. Furthermore, we give a Verlinde-like formula for the decomposition of tensor products of projective objects which uses only the modular $S$-transformation restricted to internal characters of projective objects. We compute the modified trace in the example of symplectic fermion categories, and we illustrate how the Verlinde-like formula for projective objects can be applied there.
The aim of this paper is to show the importance of the Steenrod construction of homology theories for the disassembly process in surgery on a generalized n-manifold Xn, in order to produce an element of generalized homology theory, which is basic for calculations. In particular, we show how to construct an element of the nth Steenrod homology group $H^{st}_{n} (X^{n}, \mathbb {L}^+)$, where 𝕃+ is the connected covering spectrum of the periodic surgery spectrum 𝕃, avoiding the use of the geometric splitting procedure, the use of which is standard in surgery on topological manifolds.
We construct, for any set of primes $S$, a triangulated category (in fact a stable $\infty$-category) whose Grothendieck group is $S^{-1}\mathbf{Z}$. More generally, for any exact $\infty$-category $E$, we construct an exact $\infty$-category $S^{-1}E$ of equivariant sheaves on the Cantor space with respect to an action of a dense subgroup of the circle. We show that this $\infty$-category is precisely the result of categorifying division by the primes in $S$. In particular, $K_{n}(S^{-1}E)\cong S^{-1}K_{n}(E)$.
In order to work with non-Nagata rings which are Nagata “up-to-completely-decomposed-universal-homeomorphism,” specifically finite rank Hensel valuation rings, we introduce the notions of pseudo-integral closure, pseudo-normalization, and pseudo-Hensel valuation ring. We use this notion to give a shorter and more direct proof that $H_{\operatorname{cdh}}^{n}(X,F_{\operatorname{cdh}})=H_{l\operatorname{dh}}^{n}(X,F_{l\operatorname{dh}})$ for homotopy sheaves $F$ of modules over the $\mathbb{Z}_{(l)}$-linear motivic Eilenberg–Maclane spectrum. This comparison is an alternative to the first half of the author’s volume Astérisque 391 whose main theorem is a cdh-descent result for Voevodsky motives. The motivating new insight is really accepting that Voevodsky’s motivic cohomology (with $\mathbb{Z}[\frac{1}{p}]$-coefficients) is invariant not just for nilpotent thickenings, but for all universal homeomorphisms.