Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-05T11:35:33.631Z Has data issue: false hasContentIssue false

Chapter 12 - Apnea and Control of Breathing

Published online by Cambridge University Press:  05 April 2016

Alan H. Jobe
Affiliation:
University of Cincinnati
Jeffrey A. Whitsett
Affiliation:
Cincinnati Children’s Hospital
Steven H. Abman
Affiliation:
University of Colorado School of Medicine
Get access

Summary

Abstract

Maturation of neonatal respiratory control is an essential component of the developing respiratory system. Transition from fetal to postnatal life requires continuous versus intermittent respiratory neural output to minimize the risk of apnea with resultant desaturation and bradycardia. Neonatal lung injury is a complication of our therapeutic interventions, many of which may be necessitated by apnea of prematurity. There is, therefore, a need to understand the physiologic maturation of respiratory control, which encompasses both chemo- and mechanoreceptor input to a developing brain stem. A significant contributor to progress has been the widespread use of xanthine (e.g., caffeine) therapy to enhance respiratory neural output. Future studies should identify mechanisms for the ability of such treatment to benefit both respiratory and neurodevelopmental outcomes.

Type
Chapter
Information
Fetal and Neonatal Lung Development
Clinical Correlates and Technologies for the Future
, pp. 223 - 237
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Smith, JC, Abdala, APL, Rybak, IA, et al. Structural and functional architecture of respiratory networks in the mammalian brainstem. Philos Trans R Soc Lond B Biol Sci. 2009;364:25772587.CrossRefGoogle ScholarPubMed
Bianchi, AL, Denavit-Saubié, M, Champagnat, J. Central control of breathing in mammals: neuronal circuitry, membrane properties, and neurotransmitters. Physiol Rev. 1995;75:145.CrossRefGoogle ScholarPubMed
Alheid, GF, McCrimmon, DR. The chemical neuroanatomy of breathing. Respir Physiol Neurobiol. 2008b;164:311.CrossRefGoogle ScholarPubMed
Koshiya, N, Smith, JC. Neuronal pacemaker for breathing visualized in vitro. Nature. 1999;400:360363.CrossRefGoogle ScholarPubMed
Feldman, JL, Mitchell, GS, Nattie, EE. Breathing: rhythmicity, plasticity, chemosensitivity. Ann Rev Neurosci. 2003;26:239266.CrossRefGoogle ScholarPubMed
Akilesh, MR, Kamper, M, Li, A, et al. Effects of unilateral lesions of retrotrapezoid nucleus on breathing in awake rats. J Appl Physiol. 1997;82:469479.CrossRefGoogle ScholarPubMed
Ritchie, JW, Lakhani, K. Fetal breathing movements in response to maternal inhalation of 5% carbon dioxide. Am J Obstet Gynecol. 1980;136:386388.CrossRefGoogle ScholarPubMed
Krauss, AN, Klain, DB, Waldman, S, et al. Ventilatory responses to carbon dioxide in newborn infants. Pediatr Res. 1975;9:4650.CrossRefGoogle Scholar
Rigatto, H, Brady, JF, Verduzco, RT. Chemoreceptor reflexes in preterm infants: II. The effect of gestational and postnatal age on the ventilatory response to inhaled carbon dioxide. Pediatrics. 1975a;55:614.CrossRefGoogle ScholarPubMed
Frantz, ID, Adler, SM, Thach, BT, et al. Maturational effects on respiratory responses to carbon dioxide in premature infants. J Appl Physiol. 1976;41:4145.CrossRefGoogle ScholarPubMed
Eichenwald, EC, Ungarelli, RA, Stark, AR. Hypercapnia increases expiratory breaking in preterm infants. J Appl Physiol. 1993;75:26652670.CrossRefGoogle Scholar
Gerhardt, T, Bancalari, E. Apnea of prematurity. 1. Lung function and regulation of breathing. Pediatrics. 1984;74:5862.CrossRefGoogle ScholarPubMed
Khan, A, Qurashi, M, Kwiatkowski, K, et al. Measurement of the CO2 apneic threshold in newborn infants: possible relevance for periodic breathing and apnea. J Appl Physiol. 2005;98:11711176.CrossRefGoogle ScholarPubMed
Putnam, RW, Conrad, SC, Gdovin, MJ, et al. Neonatal maturation of the hypercapnic ventilatory response and central neural CO2 chemosensitivity. Respir Physiol Neurobiol. 2005;149:165179.CrossRefGoogle ScholarPubMed
Amiel, J, Dubreuil, V, Ramanantsoa, N, et al. PHOX2B in respiratory control: lessons from congenital central hypoventilation syndrome and its mouse models. Respir Physiol Neurobiol. 2009;168:125132.CrossRefGoogle ScholarPubMed
Martin, RJ, Wilson, CG, Abu-Shaweesh, JM, et al. Role of inhibitory neurotransmitter interactions in the pathogenesis of neonatal apnea: implications for management. Semin Perinatol. 2004;28:273278.CrossRefGoogle ScholarPubMed
Kinney, HC, Broadbelt, KG, Haynes, RL, et al. The serotonergic anatomy of the developing human medulla oblongata: implications for pediatric disorders of homeostasis. J Chem Neuroanat. 2011;41:182199.CrossRefGoogle ScholarPubMed
Kubin, L, Alheid, GF, Zuperku, EJ, et al. Central pathways of pulmonary and lower airway vagal afferents. J Appl Physiol. 2006;101:618627.CrossRefGoogle ScholarPubMed
Widdicombe, J. Reflexes from the lungs and airways: historical perspective. J Appl Physiol. 2006;101:628634.CrossRefGoogle ScholarPubMed
Hasan, SU, Rigaux, A. Effect of bilateral vagotomy on oxygenation, arousal, and breathing movements in fetal sheep. J Appl Physiol. 1992;73:14021412.CrossRefGoogle ScholarPubMed
Lalani, S, Remmers, JE, Green, FH, et al. Effects of vagal denervation on cardiorespiratory and behavioral responses in the newborn lamb. J Appl Physiol. 2001;91:23012313.CrossRefGoogle ScholarPubMed
Wong, KA, Bano, A, Rigaux, A, et al. Pulmonary vagal innervation is required to establish adequate alveolar ventilation in the newborn lamb. J Appl Physiol. 1998;85:849859.CrossRefGoogle ScholarPubMed
Rabbette, PS, Fletcher, ME, Dezateux, CA, et al. Hering-Breuer reflex and respiratory system compliance in the first year of life: a longitudinal study. J Appl Physiol. 1994;76:650656.CrossRefGoogle ScholarPubMed
De Winter, JP, Merth, IT, Berkenbosch, A, et al. Strength of the Breuer-Hering inflation reflex in term and preterm infants. J Appl Physiol. 1995;79:19861990.CrossRefGoogle ScholarPubMed
Landolfo, F, Saiki, T, Peacock, J, et al. Hering-Breuer reflex, lung volume and position in prematurely born infants. Pediatr Pulmonol. 2008;43:767771.CrossRefGoogle ScholarPubMed
Hand, IL, Noble, L, Wilks, M, et al. Hering-Breuer reflex and sleep state in the preterm infant. Pediatr Pulmonol. 2004;37:6164.CrossRefGoogle Scholar
Alvarez, JE, Bodani, J, Fajardo, CA, et al. Sighs and their relationship to apnea in the newborn infant. Biol Neonate. 1993;63:139146.CrossRefGoogle ScholarPubMed
Matsumoto, S, Takeda, M, Saiki, C, et al. Effects of vagal and carotid chemoreceptor afferents on the frequency and pattern of spontaneous augmented breaths in rabbits. Lung. 1997;175:175186.CrossRefGoogle ScholarPubMed
Frappell, PB, MacFarlane, PM. Development of mechanics and pulmonary reflexes. Respir Physiol Neurobiol. 2005;149:143154.CrossRefGoogle ScholarPubMed
Wang, R, Xu, F. Postnatal development of right atrial injection of capsaicin-induced apneic response in rats. J Appl Physiol. 2006;101:6067.CrossRefGoogle ScholarPubMed
Lee, LY, Pisarri, TE. Afferent properties and reflex functions of bronchopulmonary C-fibers. Respir Physiol. 2001;125:4765.CrossRefGoogle ScholarPubMed
Vardhan, A, Kachroo, A, Sapru, HN. Excitatory amino acid receptors in commissural nucleus of the NTS mediate carotid chemoreceptor responses. Am J Physiol. 1993;264:R41R50.Google ScholarPubMed
Smith, CA, Rodman, JR, Chenuel, BJ, et al. Response time and sensitivity of the ventilatory response to CO2 in unanesthetized intact dogs: central vs. peripheral chemoreceptors. J Appl Physiol. 2006;100:1319.CrossRefGoogle ScholarPubMed
Gauda, EB, Lawson, EE. Developmental influences on carotid body responses to hypoxia. Respir Physiol. 2000;121:199208.CrossRefGoogle ScholarPubMed
Carroll, JL, Bamford, OS, Fitzgerald, RS. Postnatal maturation of carotid chemoreceptor responses to O2 and CO2 in the cat. J Appl Physiol. 1993;75:23832391.CrossRefGoogle ScholarPubMed
Carroll, JL. Developmental plasticity in respiratory control. J Appl Physiol. 2003;94:375389.CrossRefGoogle ScholarPubMed
Gauda, EB, Cristofalo, E, Nunez, J. Peripheral arterial chemoreceptors and sudden infant death syndrome. Respir Physiol Neurobiol. 2007;157:162170.CrossRefGoogle ScholarPubMed
Rigatto, H, Brady, JP, de la Torre Verduzco, R. Chemoreceptor reflexes in preterm infants: I. The effect of gestational and postnatal age on the ventilatory response to inhalation of 100% and 15% oxygen. Pediatrics. 1975;55:604613.CrossRefGoogle ScholarPubMed
Koos, BJ, Mason, BA, Punla, O, et al. Hypoxic inhibition of breathing in fetal sheep: relationship to brain adenosine concentrations. J Appl Physiol. 1994;77:27342739.CrossRefGoogle ScholarPubMed
SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network. Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med. 2010;362:19591969.CrossRefGoogle Scholar
Hofstetter, AO, Saha, S, Siljehav, V, et al. The induced prostaglandin E2 pathway is a key regulator of the respiratory response to infection and hypoxia in neonates. Proceedings of the National Academy of Sciences of the United States of America. 2007;104:98949899.CrossRefGoogle ScholarPubMed
Olsson, A, Kayhan, G, Lagercrantz, H, et al. Il-1 beta depresses respiration and anoxic survival via a prostaglandin-dependent pathway in neonatal rats. Pediatr Res. 2003;54:326331.CrossRefGoogle Scholar
Balan, KV, Kc, P, Hoxha, Z, et al. Vagal afferents modulate cytokine-mediated respiratory control at the neonatal medulla oblongata. Respir Physiol Neurobiol. 2011;178:458464.CrossRefGoogle ScholarPubMed
Dale, EA, Mabrouk, FB, Mitchell, GS. Unexpected benefits of intermittent hypoxia: Enhanced respiratory and nonrespiratory motor function. Physiology. 2014;29:3948.CrossRefGoogle ScholarPubMed
Di Fiore, JM, Martin, RJ, Gauda, EV. Apnea of prematurity – perfect storm. Respir Physiol Neurobiol. 2013;189:213222.CrossRefGoogle ScholarPubMed
Moorman, JR, Carlo, WA, Kattwinkel, J, et al. Mortality reduction by heart rate characteristic monitoring in very low birth weight neonates: a randomized trial. J Pediatr. 2011;159:900906.CrossRefGoogle ScholarPubMed
Vagedes, J, Poets, CF, Dietz, K. Averaging time, desaturation level, duration and extent. Arch Dis Child Fetal Neonat Ed. 2013;98:F265266.CrossRefGoogle ScholarPubMed
The BOOST II United Kingdom, Australia, and New Zealand Collaborative Groups. Oxygen saturation and outcomes in preterm infants. N Engl J Med. 2013;368:20942104.CrossRefGoogle Scholar
Schmidt, B, Whyte, RK, Asztalos, EV, et al.; Canadian Oxygen Trial [COT] Group. Effects of targeting higher vs lower arterial oxygen saturations on death or disability in extremely preterm infants: a randomized clinical trial. JAMA. 2013;309:21112120.CrossRefGoogle ScholarPubMed
Di Fiore, JM, Bloom, JN, Orge, F, et al. A higher incidence of intermittent hypoxemic episodes is associated with severe retinopathy of prematurity. J Pediatr. 2010b;157:6973.CrossRefGoogle ScholarPubMed
Mayer, CA, Ao, J, Di Fiore, JM, et al. Impaired hypoxic ventilatory response following neonatal sustained and subsequent chronic intermittent hypoxia in rats. Respir Physiol Neurobiol. 2013;187:167175.CrossRefGoogle ScholarPubMed
Bloch-Salisbury, E, Indic, P, Bednarek, F, et al. Stabilizing immature breathing patterns of preterm infants using stochastic mechanosensory stimulation. J Appl Physiol. 2009;107:10171027.CrossRefGoogle ScholarPubMed
Soukka, H, Grönroos, L, Leppäsalo, J, et al. The effects of skin-to-skin on the diaphragmatic electrical activity in preterm infants. Early Hum Develop. 2014;90(9):531534.CrossRefGoogle ScholarPubMed
Abu Jawdeh, EG, O’Riordan, M, Limrungsikul, A, et al. Methylxanthine use for apnea of prematurity among an international cohort of neonatologists. J Neonat Perinat Med. 2013;6:251256.CrossRefGoogle ScholarPubMed
Zagol, K, Lake, DE, Vergales, B, et al. Anemia, apnea of prematurity, and blood transfusions. J Pediatr. 2012;161:417421.CrossRefGoogle ScholarPubMed
Martin, RJ, Wang, K, Koroglu, O, et al. Intermittent hypoxic episodes in preterm infants: Do they matter? Neonatology. 2011;100:303310.CrossRefGoogle ScholarPubMed
Claure, N, Bancalari, E, D’Ugard, C, et al. Multicenter crossover study of automated control of inspired oxygen in ventilated preterm infants. Pediatrics. 2011;127: e7683.CrossRefGoogle ScholarPubMed
Alvaro, RE, Khalil, M, Qurashi, M, et al. CO2 inhalation as a treatment for apnea of prematurity: a randomized double-blind controlled trial. J Pediatr. 2012;160:252257.CrossRefGoogle ScholarPubMed
Herlenius, E, Aden, U, Tang, LQ, et al. Perinatal respiratory control and its modulation by adenosine and caffeine in the rat. Pediatr Res. 2002;51:412.CrossRefGoogle ScholarPubMed
Mayer, CA, Haxhiu, MA, Martin, RJ, et al. Adenosine A2A receptors mediate GABAergic inhibition of respiration in immature rats. J Appl Physiol. 2006;100:9197.CrossRefGoogle ScholarPubMed
Davis, PG, Schmidt, B, Roberts, RS, et al. Caffeine for apnea of prematurity trial: benefits may vary in subgroups. J Pediatr. 2010;156:382387.CrossRefGoogle ScholarPubMed
Schmidt, B, Roberts, RS, Davis, P, et al. Long-term effects of caffeine therapy for apnea of prematurity. N Engl J Med. 2007;357:18931902.CrossRefGoogle ScholarPubMed
Koroglu, O, MacFarlane, PM, Balan, KV, et al. Anti-inflammatory effect of caffeine is associated with improved lung function after lipopolysaccharide-induced amnionitis. Neonatology. 2014;106:235240.CrossRefGoogle ScholarPubMed
Weichelt, U, Cay, R, Schmitz, T, et al. Prevention of hyperoxia-mediated pulmonary inflammation in neonatal rats by caffeine. Eur Respir J. 2013;41:966973.CrossRefGoogle ScholarPubMed
Desfrere, L, Olivier, P, Schwendimann, L, et al. Transient inhibition of astrocytogenesis in developing mouse brain following postnatal caffeine exposure. Pediatr Res. 2007;62:604609.CrossRefGoogle ScholarPubMed
Dayanim, S, Lopez, B, Maisonet, TM, et al. Caffeine induces alveolar apoptosis in the hyperoxia-exposed developing mouse lung. Pediatr Res. 2014;75:395402.CrossRefGoogle ScholarPubMed
Atik, A, Cheong, J, Harding, R, et al. Impact of daily high-dose caffeine exposure on developing white matter of the immature ovine brain. Pediatr Res. 2014;76(1):5463.CrossRefGoogle ScholarPubMed
Back, SA, Craig, A, Luo, NL, et al. Protective effects of caffeine on chronic hypoxia-induced perinatal white matter injury. Ann Neurol. 2006;60:696705.CrossRefGoogle ScholarPubMed
Doyle, LW, Cheong, J, Hunt, RW, et al. Caffeine and brain development in very preterm infants. Ann Neurol. 2010;68:734742.CrossRefGoogle ScholarPubMed
Patel, RM, Leong, T, Carlton, DP, et al. Early caffeine therapy and clinical outcomes in extremely preterm infants. J Perinatol. 2013;33:134140.CrossRefGoogle ScholarPubMed
Rhein, LM, Dobson, NR, Darnall, RA, et al; Caffeine Pilot Study Group. Effects of caffeine on intermittent hypoxia in infants born prematurely. A randomized clinical trial. JAMA Pediatr. 2014;168:250257.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×