Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-30T01:18:59.529Z Has data issue: false hasContentIssue false

Chapter 7 - Lung Structure at Preterm and Term Birth

Published online by Cambridge University Press:  05 April 2016

Alan H. Jobe
Affiliation:
University of Cincinnati
Jeffrey A. Whitsett
Affiliation:
Cincinnati Children’s Hospital
Steven H. Abman
Affiliation:
University of Colorado School of Medicine
Get access

Summary

Abstract

When lung development is not interrupted by premature birth and unaffected by genetic or environmental disturbances, all components develop with complex control to form a functional organ with a predictable timeline during fetal development. In this chapter we describe the relationship between morphological development and function in both physiological and pathological conditions in human lung development. Tree-like growth of the lung begins during the first few weeks postconception, with the embryonic stage characterized by branching morphogenesis in both the airways and blood vessels, separately in the left and right lung buds, which appear near day 26 postcoitus (p.c.). Branching continues through the embryonic stage, with proliferation of mesenchymal and epithelial cells and apoptosis near branch points and in the areas of new formation. The pseudoglandular stage (weeks 5–17 p.c.) is characterized by accelerated cellular proliferation and airway and vascular branching, with epithelial differentiation in proximal and distal airways. Further epithelial differentiation, angiogenesis of the parenchymal capillary network, and the first formation of the air–blood barrier characterize the canalicular stage (16–26 weeks p.c.), just before the completion of branching morphogenesis (saccular stage, weeks 24–38 p.c.) and the start of alveolarization (week 36 through adolescence).

Type
Chapter
Information
Fetal and Neonatal Lung Development
Clinical Correlates and Technologies for the Future
, pp. 126 - 140
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Healy, F, Hanna, BD, Zinman, R. Pulmonary complications of congenital heart disease. Paediatr. Respir. Rev. 2012;13(1):1015.CrossRefGoogle ScholarPubMed
Keeler, AM, Flotte, TR. Cell and gene therapy for genetic diseases: inherited disorders affecting the lung and those mimicking sudden infant death syndrome. Hum. Gen. Ther. 2012;23(6):548556.CrossRefGoogle ScholarPubMed
Madurga, A, Mizíková, I, Ruiz-Camp, J, et al. Recent advances in late lung development and the pathogenesis of bronchopulmonary dysplasia. Am J. Physiol. Lung Cell Mol. Physiol. 2013;305(12):L893905.CrossRefGoogle ScholarPubMed
Herriges, M, Morrisey, EE. Lung development: orchestrating the generation and regeneration of a complex organ. Development. 2014;141(3):502513.CrossRefGoogle ScholarPubMed
Verbanck, S, Paiva, M. Gas mixing in the airways and airspaces. Compr. Physiol. 2011;1(2):809813.CrossRefGoogle ScholarPubMed
Aysola, R, de Lange, EE, Castro, M, et al. Demonstration of the heterogeneous distribution of asthma in the lungs using CT and hyperpolarized helium-3 MRI. J. Magn. Res. Imaging. 2010;32(6):13791387.CrossRefGoogle ScholarPubMed
Merritt, TA, Deming, DD, Boynton, BR. The “new” bronchopulmonary dysplasia: challenges and commentary. Semin. Fetal Neonatal. Med. 2009;14(6):345357.CrossRefGoogle Scholar
Gao, Y, Raj, JU. Regulation of the pulmonary circulation in the fetus and newborn. Physiol. Rev. 2010;90(4):12911335.CrossRefGoogle ScholarPubMed
Elliott, FM, Reid, LM. Some new facts about the pulmonary artery and its branching pattern. Clin. Radiol. 1965;16:193198.CrossRefGoogle ScholarPubMed
Reid, LM. Structural remodelling of the pulmonary vasculature by environmental change and disease. In: Wagner, W, Weir, E, eds. The Pulmonary Circulation and Gas Exchange. New York, NY: Futura; 1994:77110.Google Scholar
Hislop, A, Reid, LM. Intra-pulmonary arterial development during fetal life-branching pattern and structure. J. Anat. 1972;113:3548.Google ScholarPubMed
Rudolph, AM. Aortopulmonary transposition in the fetus: speculation on pathophysiology and therapy. Pediatr. Res. 2007;61:375380.CrossRefGoogle ScholarPubMed
Hislop, A, Reid, LM. Fetal and childhood development of the intrapulmonary veins in man-branching pattern and structure. Thorax. 1973;28:313319.CrossRefGoogle ScholarPubMed
Schittny, JC, Burri, PH. Development and growth of the lung. In: Fishman, AP, et al. eds. Fishman's pulmonary diseases and disorders. New York, NY: McGraw-Hill; 2008:91114.Google Scholar
Cardoso, WV, Lu, J. Regulation of early lung morphogenesis: questions, facts and controversies. Development. 2006;133(9):16111624.CrossRefGoogle ScholarPubMed
Kovesi, T, Rubin, S. Long-term complications of congenital esophageal atresia and/or tracheoesophageal fistula. Chest. 2004;126(3):915925.CrossRefGoogle ScholarPubMed
Kitaoka, H, Burri, PH, Weibel, ER. Development of the human fetal airway tree: analysis of the numerical density of airway endtips. Anat. Rec. 1996;244(2):207213.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Sparrow, MP, Warwick, SP, Mitchell, HW. Fetal airway motor tone in prenatal lung development of the pig. Eur. Resp. J. 1994;7:14161424.CrossRefGoogle ScholarPubMed
Koos, BJ, Rajaee, A. Fetal breathing movements and changes at birth. Adv. Exp. Med. Biol. 2014;814:89101.CrossRefGoogle ScholarPubMed
Pan, J, Copland, I, Post, M, et al. Mechanical stretch-induced serotonin release from pulmonary neuroendocrine cells: implications for lung development. Am. J. Resp. Cell Mol. Biol. 2006;290:L185193.Google ScholarPubMed
Liu, M, Tanswell, AK, Post, M. Mechanical force-induced signal transduction in lung cells. Am. J. Physiol. Lung Cell Mol. Physiol. 1999;277:L667683.CrossRefGoogle ScholarPubMed
Scott, JE, Yang, SY, Stanik, E, et al. Influence of strain on [3H]thymidine incorporation, surfactant-related phospholipid synthesis, and cAMP levels in fetal type II alveolar cells. Am. J. Resp. Cell Mol. Biol. 1993;8:258265.CrossRefGoogle ScholarPubMed
Harting, MT, Lally, KP. The Congenital Diaphragmatic Hernia Study Group registry update. Semin. Fetal Neonatal Med. 2014;19(6):370375.CrossRefGoogle Scholar
Bachofen, M, Weibel, ER. Alterations of the gas exchange apparatus in adult respiratory insufficiency associated with septicemia. Am. Rev. Respir. Dis. 1977;116(4):589615.CrossRefGoogle ScholarPubMed
Mercurio, AR, Rhodin, JA. An electron microscopic study on the type I pneumocyte in the cat: differentiation. Am. J. Anat. 1976;146(3):255271.CrossRefGoogle ScholarPubMed
Schittny, JC, Paulsson, M, Vallan, C, et al. Protein cross-linking mediated by tissue transglutaminase correlates with the maturation of extracellular matrices during lung development. Am. J. Physiol. Lung Cell Mol. Physiol. 1997;17(3):334343.Google ScholarPubMed
Willem, M, Miosge, N, Halfter, W, et al. Specific ablation of the nidogen-binding site in the laminin gamma1 chain interferes with kidney and lung development. Development. 2002;129(11):27112722.CrossRefGoogle ScholarPubMed
Burri, PH. Lung development and pulmonary angiogenesis. In: Gaultier, C, Bourbon, J, Post, M, eds. Lung Disease. New York, NY: Oxford University Press; 1999:122151.Google Scholar
Howatt, WF, Avery, ME, Humphreys, PW, et al. Factors affecting pulmonary surface properties in the foetal lamb. Clin. Sci. 1965;29(2):239248.Google ScholarPubMed
Boyden, EA. The structure of the pulmonary acinus in a child of 6 years and 8 months. Am. J. Anat. 1971;132(3):275299.CrossRefGoogle Scholar
Schittny, JC, Mund, SI A re-examination of the maturation of the alveolar septa revealed that microvascular maturation takes place in parallel to alveolarization. Am. J. Respir. Crit. Care Med. 2008;177:A317 (ATS poster, manuscript in preparation).Google Scholar
Rannels, SR, Rannels, DE. The type-II Pneumocyte as a model of lung cell interaction with the extracellular matrix. J. Mol. Cell. Cardiol. 1989;21(Suppl. 1):151159.CrossRefGoogle Scholar
Alcorn, DG, Adamson, TM, Maloney, JE, et al. A morphologic and morphometric analysis of fetal lung development in the sheep. Anat. Rec. 1981;201(4):655657.CrossRefGoogle ScholarPubMed
Sosenko, IR, Frank, L. Guinea pig lung development: antioxidant enzymes and premature survival in high O2. Am. J. Physiol. 1987;252(4 pt 2):R693698.Google ScholarPubMed
Burri, PH, Dbaly, J, Weibel, ER. The postnatal growth of the rat lung. Anat. Rec. 1974;178(4):711730.CrossRefGoogle ScholarPubMed
Amy, RW, Bowes, D, Burri, PH, et al. Postnatal growth of the mouse lung. J. Anat. 1977;124(pt 1):131151.Google ScholarPubMed
Zeltner, TB, Caduff, JH, Gehr, P, et al. The postnatal development and growth of the human lung. I. Morphometry. Respir. Physiol. 1987;67(3):247267.CrossRefGoogle ScholarPubMed
Makanya, AN, Sparrow, MP, Warui, CN, et al. Morphological analysis of the postnatally developing marsupial lung: The quokka wallaby. Anat. Rec. 2001;262(3):253265.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Chien, LN, Chiou, HY, Wang, CW, et al. Oligohydramnios increases the risk of respiratory hospitalization in childhood: a population-based study. Pediatr. Res. 2014;75(4):576581.CrossRefGoogle ScholarPubMed
Hartung, EA, Guay-Woodford, LM, Autosomal recessive polycystic kidney disease: a hepatorenal fibrocystic disorder with pleiotropic effects. Pediatrics. 2014;134(3):833845.CrossRefGoogle ScholarPubMed
Carraro, S, Filippone, M, Da Dalt, L, et al. Bronchopulmonary dysplasia: the earliest and perhaps the longest lasting obstructive lung disease in humans. Early Hum. Dev. 2013;89(Suppl 3):35.CrossRefGoogle ScholarPubMed
O'Reilly, M, Thébaud, B. The promise of stem cells in bronchopulmonary dysplasia. Semin. Perinatol. 2013;37(2):7984.CrossRefGoogle ScholarPubMed
Hofhuis, W, Huysman, MW, van der Wiel, EC, et al. Worsening of V′maxFRC in infants with chronic lung disease in the first year of life. a more favorable outcome after high-frequency oscillation ventilation. Am. J. Resp. Crit. Care Med. 2002;166(12):15391543.CrossRefGoogle ScholarPubMed
Tschanz, SA, Salm, LA, Roth-Kleiner, M, et al. Rat lungs show a biphasic formation of new alveoli during postnatal development. J. Appl. Physiol. 2014. 117(1):8995.CrossRefGoogle ScholarPubMed
Langston, C, Kida, K, Reed, M, et al. Human lung growth in late gestation and in the neonate. Am. Rev. Respir. Dis. 1984. 129:607613.Google ScholarPubMed
Burri, PH. Structural aspects of postnatal lung development – alveolar formation and growth. Biol. Neonate. 2006;89(4):313322.CrossRefGoogle ScholarPubMed
Schittny, JC, Djonov, V, Fine, A, et al. Programmed cell death contributes to postnatal lung development. Am. J. Respir. Cell Mol. Biol. 1998;18(6):786793.CrossRefGoogle ScholarPubMed
Wolff, J-C. Molecular mediators of alveolarization. In: Faculties of Veterinary Medicine and Medicine. Justus Liebig University Giessen: Giessen; 2010.Google Scholar
Kalenga, M, Tschanz, SA, Burri, PH. Protein deficiency and the growing rat lung. II. Morphometric analysis and morphology. Pediatr. Res. 1995;37(6):789795.CrossRefGoogle ScholarPubMed
Kalenga, M, Tschanz, SA, Burri, PH. Protein deficiency and the growing rat lung. I. Nutritional findings and related lung volumes. Pediatr. Res. 1995;37(6):783788.CrossRefGoogle Scholar
Coxson, HO, Chan, IH, Mayo, JR, et al. Early emphysema in patients with anorexia nervosa. Am. J. Resp. Crit. Care Med. 2004;170(7):748752.CrossRefGoogle ScholarPubMed
Massaro, D, Massaro, GD. Dexamethasone accelerates postnatal alveolar wall thinning and alters wall composition. Am. J. Physiol. 1986;251:R218R224.Google ScholarPubMed
Massaro, GD, Massaro, D. Retinoic acid treatment partially rescues failed septation in rats and in mice. Am. J. Physiol. Lung Cell Mol. Physiol. 2000;278(5):L955L960.CrossRefGoogle ScholarPubMed
Luyet, C, Burri, PH, Schittny, JC. Suppression of cell proliferation and programmed cell death by dexamethasone during postnatal lung development. Am. J. Physiol Lung Cell Mol. Physiol. 2002;282(3):L477L483.CrossRefGoogle ScholarPubMed
Corroyer, S, Schittny, JC. Djonov, V, et al. Impairment of rat postnatal lung alveolar development by glucocorticoids: involvement of the p21CIP1 and p27KIP1 cyclin-dependent kinase inhibitors. Pediatr. Res. 2002;51(2):169176.CrossRefGoogle ScholarPubMed
Roth-Kleiner, M, Berger, TM, Gremlich, S, et al. Neonatal steroids induce a down-regulation of tenascin-C and elastin and cause a deceleration of the first phase and an acceleration of the second phase of lung alveolarization. Histochem. Cell Biol. 2014;141(1):7584.CrossRefGoogle Scholar
El Mazloum, D, Moschino, L, Bozzetto, S, et al. Chronic lung disease of prematurity: long-term respiratory outcome. Neonatology. 2014;105(4):352356.CrossRefGoogle ScholarPubMed
Narayanan, M, Beardsmore, CS, Owers-Bradley, J, et al. Catch-up alveolarization in ex-preterm children: evidence from (3)He magnetic resonance. Am. J. Respir. Crit. Care Med. 2013;187(10):11041009.CrossRefGoogle ScholarPubMed
Yablonskiy, DA, Sukstanskii, AL, Woods, JC, et al. Quantification of lung microstructure with hyperpolarized 3He diffusion MRI. J. Appl. Physiol. 2009;107(4):12581265.CrossRefGoogle ScholarPubMed
Woods, JC, Choong, CK, Yablonskiy, DA, et al. Hyperpolarized 3He diffusion MRI and histology in pulmonary emphysema. Magn. Reson. Med. 2006;56(6):12931300.CrossRefGoogle ScholarPubMed
Bates, DV, Macklem, PT, Christie, RV. Respiratory Function in Disease; An Introduction to the Integrated Study of the Lung. 2nd ed. Philadelphia, PA: Saunders; 2004.Google Scholar
Butler, JP, Loring, SH, Patz, S, et al. Evidence for adult lung growth in humans. N. Engl. J. Med. 2012;367(3):244247.CrossRefGoogle ScholarPubMed
Wang, W, Nguyen, NM, Guo, J, et al. Longitudinal, noninvasive monitoring of compensatory lung growth in mice after pneumonectomy via 3He and 1H magnetic resonance imaging. Am. J. Resp. Cell Mol. Biol. 2013;49(5):697703.CrossRefGoogle ScholarPubMed
Altes, TA, Mata, J, De Lange, EE, et al. Assessment of lung development using hyperpolarized helium-3 diffusion MR imaging. J. Magn. Res. Imaging. 2006;24(6):12771283.CrossRefGoogle ScholarPubMed
Narayanan, M, Owers-Bradley, J, Beardsmore, CS, et al. Alveolarization continues during childhood and adolescence; new evidence from helium-3 magnetic resonance. Am. J. Resp. Crit. Care Med. 2012;185(2):186191.CrossRefGoogle ScholarPubMed
Schittny, JC. Strukturelle entwicklung – von der anlage zur adulten lunge. In: von Mutius, E, et al., eds. Pädiatrische Pneumologie. Berlin: Springer; 2014.Google Scholar
Caduff, JH, Fischer, LC, Burri, PH. Scanning electron microscopic study of the developing microvasculature in the postnatal rat lung. Anat. Rec. 1986;216:154164.CrossRefGoogle ScholarPubMed
Burri, PH, Weibel, ER. Ultrastructure and morphometry of the developing lung. In: Hodson, WA, ed. Development of the Lung. New York and Basel: Marcel Dekker;1977;215268.Google Scholar
Schittny, JC, Mund, SI, Stampanoni, M. Evidence and structural mechanism for late lung alveolarization. Am. J. Physiol Lung Cell Mol. Physiol. 2008;294(2):L246L254.CrossRefGoogle ScholarPubMed
Miettinen, PJ, Warburton, D, Bu, D, et al. Impaired lung branching morphogenesis in the absence of functional EGF receptor. Dev. Biol. 1997;186(2):224236.CrossRefGoogle ScholarPubMed
Bryden, MM, Evans, H, Binns, W. Embryology of the sheep. 3. The respiratory system, mesenteries and celom in the fourteen to thirty-four day embryo. Anat. Rec. 1973;175(4):725735.CrossRefGoogle ScholarPubMed
Ten Have-Opbroek, AAW. Lung development in the mouse embryo. Exp. Lung Res. 1991;17:111130.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×