Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-01T00:15:50.241Z Has data issue: false hasContentIssue false

Chapter 6 - Congenital Malformations of the Lung

Published online by Cambridge University Press:  05 April 2016

Alan H. Jobe
Affiliation:
University of Cincinnati
Jeffrey A. Whitsett
Affiliation:
Cincinnati Children’s Hospital
Steven H. Abman
Affiliation:
University of Colorado School of Medicine
Get access

Summary

Abstract

Congenital lung malformations are a heterogeneous group of abnormalities resulting from defective foregut specification, branching morphogenesis and cell proliferation, survival, and differentiation. Advancements in radiologic imaging and routine investigations in utero have resulted in a shift from postnatal to prenatal diagnoses. Prenatal diagnosis provides an opportunity to follow congenital malformations sequentially to better understand pathophysiological mechanisms. Genetic analysis of patients with hereditary lung malformations has also shed light on the molecular mechanisms underlying aberrant lung organogenesis. In this chapter, an overview of the five stages of lung development is given followed by discussion of the congenital lung malformations that result from defects in early and late lung morphogenesis. The malformations are described followed by a discussion of the associated syndromes, etiology, and pathogenesis with a focus toward the underlying cellular and molecular mechanisms. Clinical presentations, diagnosis, treatments, and outcomes are summarized, including radiographic and pathologic images of the most common malformations. The anomalies are presented in a format designed to provide clinicians caring for fetal and neonatal patients as well as scientists interested in lung development with a concise, up-to-date overview of congenital lung malformations and the deregulated cellular and molecular processes underlying their pathogenesis.

Type
Chapter
Information
Fetal and Neonatal Lung Development
Clinical Correlates and Technologies for the Future
, pp. 94 - 125
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burri, PH. Fetal and postnatal development of the lung. Annu Rev Physiol. 1984;46:617628.CrossRefGoogle ScholarPubMed
Burri, PH. Structural aspects of prenatal and postnatal development and growth of the lung. In: McDonald, JA, ed. Lung Growth and Development. New York: Taylor & Francis; 1997:136.Google Scholar
Burri, PH. Structural aspects of postnatal lung development – alveolar formation and growth. Biol Neonate. 2006;89(4):313322.CrossRefGoogle ScholarPubMed
Langston, C, Kida, K, Reed, M, Thurlbeck, WM. Human lung growth in late gestation and in the neonate. Am Rev Respir Dis. 1984;129(4):607613.Google ScholarPubMed
Thurlbeck, WM. Postnatal growth and development of the lung. Am Rev Respir Dis. 1975;111(6):803844.Google ScholarPubMed
Zeltner, TB, Caduff, JH, Gehr, P, Pfenninger, J, Burri, PH. The postnatal development and growth of the human lung. I. Morphometry. Respir Physiol. 1987;67(3):247267.CrossRefGoogle ScholarPubMed
Hislop, AA, Wigglesworth, JS, Desai, R. Alveolar development in the human fetus and infant. Early Hum Dev. 1986;13(1):111.CrossRefGoogle ScholarPubMed
Ochs, M, Nyengaard, JR, Jung, A, Knudsen, L, Voigt, M, Wahlers, T, et al. The number of alveoli in the human lung. Am J Respir Crit Care Med. 2004;169(1):120124.CrossRefGoogle ScholarPubMed
Langston, C. New concepts in the pathology of congenital lung malformations. Semin Pediatr Surg. 2003;12(1):1737.CrossRefGoogle ScholarPubMed
Newman, B. Congenital bronchopulmonary foregut malformations: concepts and controversies. Pediatr Radiol. 2006;36(8):773791.CrossRefGoogle ScholarPubMed
Biyyam, DR, Chapman, T, Ferguson, MR, Deutsch, G, Dighe, MK. Congenital lung abnormalities: embryologic features, prenatal diagnosis, and postnatal radiologic-pathologic correlation. Radiographics. 2010;30(6):17211738.CrossRefGoogle ScholarPubMed
Shaw-Smith, C. Genetic factors in esophageal atresia, tracheo-esophageal fistula and the VACTERL association: roles for FOXF1 and the 16q24.1 FOX transcription factor gene cluster, and review of the literature. Eur J Med Genet. 2010;53(1):613.CrossRefGoogle ScholarPubMed
Skandalakis, JE, Gray, SW, Ricketts, RR. Esophagus. In: Skandalakis, JE, Gray, SW, eds. Embryology for Surgeons. 2nd ed. Baltimore, MD: Williams & Wilkins; 1994:65112.Google Scholar
Solomon, BD, Bear, KA, Kimonis, V, de Klein, A, Scott, DA, Shaw-Smith, C, et al. Clinical geneticists' views of VACTERL/VATER association. Am J Med Genet A. 2012;158A(12):30873100.CrossRefGoogle ScholarPubMed
Fausett, SR, Klingensmith, J. Compartmentalization of the foregut tube: developmental origins of the trachea and esophagus. Wiley Interdiscip Rev Dev Biol. 2012;1(2):184202.CrossRefGoogle ScholarPubMed
Skandalakis, JE, Gray, SW, Symbas, PN. The trachea and the lungs. In: Skandalakis, JE, Gray, SW, eds. Embryology for Surgeons. 2nd ed. Baltimore, MD: Williams & Wilkins; 1994:414450.Google Scholar
Shaw-Smith, C. Oesophageal atresia, tracheo-oesophageal fistula, and the VACTERL association: review of genetics and epidemiology. J Med Genet. 2006;43(7):545554.CrossRefGoogle ScholarPubMed
Solomon, BD. VACTERL/VATER Association. Orphanet J Rare Dis. 2011;6:56.CrossRefGoogle ScholarPubMed
Felix, JF, Tibboel, D, de Klein, A. Chromosomal anomalies in the aetiology of oesophageal atresia and tracheo-oesophageal fistula. Eur J Med Genet. 2007;50(3):163175.CrossRefGoogle ScholarPubMed
Munzon, GB, Martinez-Ferro, M. Pediatric tracheal stenosis and vascular rings. Bulletin of Thoracic Surgery. 2012;5(II Aralik):207219.Google Scholar
Berrocal, T, Madrid, C, Novo, S, Gutierrez, J, Arjonilla, A, Gomez-Leon, N. Congenital anomalies of the tracheobronchial tree, lung, and mediastinum: embryology, radiology, and pathology. Radiographics. 2004;24(1):e17.CrossRefGoogle ScholarPubMed
de Groot-van der Mooren, MD, Haak, MC, Lakeman, P, Cohen-Overbeek, TE, van der Voorn, JP, Bretschneider, JH, et al. Tracheal agenesis: approach towards this severe diagnosis. Case report and review of the literature. Eur J Pediatr. 2012;171(3):425431.CrossRefGoogle ScholarPubMed
Aktogu, S, Yuncu, G, Halilcolar, H, Ermete, S, Buduneli, T. Bronchogenic cysts: clinicopathological presentation and treatment. Eur Respir J. 1996;9(10):20172021.CrossRefGoogle ScholarPubMed
Garcia-Pena, P, Coma, A, Enriquez, G. Congenital lung malformations: radiological findings and clues for differential diagnosis. Acta Radiol. 2013;54(9):10861095.CrossRefGoogle ScholarPubMed
Girosi, D, Bellodi, S, Sabatini, F, Rossi, GA. The lung and the gut: common origins, close links. Paediatr Respir Rev. 2006;7 Suppl 1:S235239.CrossRefGoogle ScholarPubMed
Nadeem, M, Elnazir, B, Greally, P. Congenital pulmonary malformation in children. Scientifica (Cairo). 2012;2012:209896.Google ScholarPubMed
Wallis, C. Clinical outcomes of congenital lung abnormalities. Paediatr Respir Rev. 2000;1(4):328335.Google ScholarPubMed
Sarper, A, Ayten, A, Golbasi, I, Demircan, A, Isin, E. Bronchogenic cyst. Tex Heart Inst J. 2003;30(2):105108.Google ScholarPubMed
Gould, SJ, Hasleton, PS. Congenital Abnormalities. In: Hasleton, PS, ed. Spencer's Pathology of the Lung. 5th ed. New York: McGraw-Hill, Inc; 1996:57114.Google Scholar
Hoffer, ME, Tom, LW, Wetmore, RF, Handler, SD, Potsic, WP. Congenital tracheal stenosis. The otolaryngologist's perspective. Arch Otolaryngol Head Neck Surg. 1994;120(4):449453.CrossRefGoogle ScholarPubMed
Phipps, LM, Raymond, JA, Angeletti, TM. Congenital tracheal stenosis. Crit Care Nurse. 2006;26(3):6069.CrossRefGoogle ScholarPubMed
Landing, BH, Dixon, LG. Congenital malformations and genetic disorders of the respiratory tract (larynx, trachea, bronchi, and lungs). Am Rev Respir Dis. 1979;120(1):151185.Google ScholarPubMed
Chen, CP, Lin, SP, Su, YN, Chien, SC, Tsai, FJ, Wang, W. Craniosynostosis and congenital tracheal anomalies in an infant with Pfeiffer syndrome carrying the W290C FGFR2 mutation. Genet Couns. 2008;19(2):165172.Google Scholar
Cohen, MM Jr., Kreiborg, S. Visceral anomalies in the Apert syndrome. Am J Med Genet. 1993;45(6):758760.CrossRefGoogle ScholarPubMed
Gonzales, M, Heuertz, S, Martinovic, J, Delahaye, S, Bazin, A, Loget, P, et al. Vertebral anomalies and cartilaginous tracheal sleeve in three patients with Pfeiffer syndrome carrying the S351C FGFR2 mutation. Clin Genet. 2005;68(2):179181.Google ScholarPubMed
Hockstein, NG, McDonald-McGinn, D, Zackai, E, Bartlett, S, Huff, DS, Jacobs, IN. Tracheal anomalies in Pfeiffer syndrome. Arch Otolaryngol Head Neck Surg. 2004;130(11):12981302.CrossRefGoogle ScholarPubMed
Jones, KL, Smith, DW. Smith's recognizable patterns of human malformation. Philadelphia: Elsevier-Saunders; 2006.Google Scholar
Kan, SH, Elanko, N, Johnson, D, Cornejo-Roldan, L, Cook, J, Reich, EW, et al. Genomic screening of fibroblast growth-factor receptor 2 reveals a wide spectrum of mutations in patients with syndromic craniosynostosis. Am J Hum Genet. 2002;70(2):472486.CrossRefGoogle ScholarPubMed
Lertsburapa, K, Schroeder, JW Jr, Sullivan, C. Tracheal cartilaginous sleeve in patients with craniosynostosis syndromes: a meta-analysis. J Pediatr Surg. 2010;45(7):14381444.CrossRefGoogle ScholarPubMed
Noorily, MR, Farmer, DL, Belenky, WM, Philippart, AI. Congenital tracheal anomalies in the craniosynostosis syndromes. J Pediatr Surg. 1999;34(6):10361039.CrossRefGoogle ScholarPubMed
Scheid, SC, Spector, AR, Luft, JD. Tracheal cartilaginous sleeve in Crouzon syndrome. Int J Pediatr Otorhinolaryngol. 2002;65(2):147152.CrossRefGoogle ScholarPubMed
Zackai, EH, McDonald-McGinn, DM, Stolle, C, Huff, DS. Craniosynostosis with tracheal sleeve: a patient with Pfeiffer syndrome, tracheal sleeve and additional malformations in whom an FGFR2 mutation was found. Clin Dysmorphol. 2003;12(3):209.CrossRefGoogle ScholarPubMed
Eswarakumar, VP, Horowitz, MC, Locklin, R, Morriss-Kay, GM, Lonai, P. A gain-of-function mutation of Fgfr2c demonstrates the roles of this receptor variant in osteogenesis. Proc Natl Acad Sci U S A. 2004;101(34):1255512560.CrossRefGoogle ScholarPubMed
Tiozzo, C, De Langhe, S, Carraro, G, Alam, DA, Nagy, A, Wigfall, C, et al. Fibroblast growth factor 10 plays a causative role in the tracheal cartilage defects in a mouse model of Apert syndrome. Pediatr Res. 2009;66(4):386390.CrossRefGoogle Scholar
Wang, Y, Xiao, R, Yang, F, Karim, BO, Iacovelli, AJ, Cai, J, et al. Abnormalities in cartilage and bone development in the Apert syndrome FGFR2(+/S252W) mouse. Development. 2005;132(15):35373548.CrossRefGoogle ScholarPubMed
Meyerholz, DK, Stoltz, DA, Namati, E, Ramachandran, S, Pezzulo, AA, Smith, AR, et al. Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children. Am J Respir Crit Care Med. 2010;182(10):12511261.CrossRefGoogle ScholarPubMed
DeBoer, EM, Swiercz, W, Heltshe, SL, Anthony, MM, Szefler, P, Klein, R, et al. Automated CT scan scores of bronchiectasis and air trapping in cystic fibrosis. Chest. 2014;145(3):593603.CrossRefGoogle ScholarPubMed
Adam, RJ, Michalski, AS, Bauer, C, Abou Alaiwa, MH, Gross, TJ, Awadalla, MS, et al. Air trapping and airflow obstruction in newborn cystic fibrosis piglets. Am J Respir Crit Care Med. 2013;188(12):14341441.CrossRefGoogle ScholarPubMed
Bonvin, E, Le Rouzic, P, Bernaudin, JF, Cottart, CH, Vandebrouck, C, Crie, A, et al. Congenital tracheal malformation in cystic fibrosis transmembrane conductance regulator-deficient mice. J Physiol. 2008;586(13):32313243.CrossRefGoogle ScholarPubMed
Wallace, HL, Southern, KW, Connell, MG, Wray, S, Burdyga, T. Abnormal tracheal smooth muscle function in the CF mouse. Physiol Rep. 2013;1(6):e00138.CrossRefGoogle ScholarPubMed
Carden, KA, Boiselle, PM, Waltz, DA, Ernst, A. Tracheomalacia and tracheobronchomalacia in children and adults: an in-depth review. Chest. 2005;127(3):9841005.CrossRefGoogle ScholarPubMed
Kayemba-Kay, S, Couvrat-Carcauzon, V, Goua, V, Podevin, G, Marteau, M, Sapin, E, et al. Unilateral pulmonary agenesis: a report of four cases, two diagnosed antenatally and literature review. Pediatr Pulmonol. 2014;49(3):E96102.CrossRefGoogle Scholar
Russell, BC, Whitecar, P, Nitsche, JF. Isolated unilateral pulmonary agenesis and other fetal thoracic anomalies. Obstet Gynecol Surv. 2014;69(6):335345.CrossRefGoogle ScholarPubMed
Cunningham, ML, Mann, N. Pulmonary agenesis: a predictor of ipsilateral malformations. Am J Med Genet. 1997;70(4):391398.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Pierron, C, Sigal-Cinqualbre, A, Lambert, V, Le Bret, E. Left pulmonary artery sling with right lung aplasia. J Pediatr Surg. 2011;46(11):21902194.CrossRefGoogle ScholarPubMed
Holstein, A, Weber, M. An extraordinary finding – accidental diagnosis of complete pulmonary aplasia in a 90-year-old lady. Age Ageing. 2009;38(4):487.CrossRefGoogle Scholar
Kwon, SH, Oh, JH, Sung, DW. Incidentally found right pulmonary aplasia in an adult patient: the 64-slice MDCT findings. J Thorac Imaging. 2009;24(1):5658.CrossRefGoogle Scholar
Bishop, NB, Stankiewicz, P, Steinhorn, RH. Alveolar capillary dysplasia. Am J Respir Crit Care Med. 2011;184(2):172179.CrossRefGoogle ScholarPubMed
Chow, CW, Massie, J, Ng, J, Mills, J, Baker, M. Acinar dysplasia of the lungs: variation in the extent of involvement and clinical features. Pathology. 2013;45(1):3843.CrossRefGoogle ScholarPubMed
Dishop, MK. Paediatric interstitial lung disease: classification and definitions. Paediatr Respir Rev. 2011;12(4):230237.CrossRefGoogle ScholarPubMed
Langenstroer, M, Carlan, SJ, Fanaian, N, Attia, S. Congenital acinar dysplasia: report of a case and review of literature. AJP Rep. 2013;3(1):912.CrossRefGoogle ScholarPubMed
Langston, C, Dishop, MK. Diffuse lung disease in infancy: a proposed classification applied to 259 diagnostic biopsies. Pediatr Dev Pathol. 2009;12(6):421437.CrossRefGoogle ScholarPubMed
Melly, L, Sebire, NJ, Malone, M, Nicholson, AG. Capillary apposition and density in the diagnosis of alveolar capillary dysplasia. Histopathology. 2008;53(4):450457.CrossRefGoogle ScholarPubMed
Wert, SE, Profitt, S, Kirwin, KL, Langston, C, Whitsett, J. Acinar dysplasia is associated with the absence of TTF-a and HNF3-B expression during human lung development. Pediatr Res. 1996;39:355A.CrossRefGoogle Scholar
Galambos, C, Sims-Lucas, S, Abman, SH. Three-dimensional reconstruction identifies misaligned pulmonary veins as intrapulmonary shunt vessels in alveolar capillary dysplasia. J Pediatr. 2014;164(1):192195.CrossRefGoogle ScholarPubMed
Galambos, C, Sims-Lucas, S, Ali, N, Gien, J, Dishop, MK, Abman, SH. Intrapulmonary vascular shunt pathways in alveolar capillary dysplasia with misalignment of pulmonary veins. Thorax. 2015;70(1):8485.CrossRefGoogle ScholarPubMed
Miranda, J, Rocha, G, Soares, P, Morgado, H, Baptista, MJ, Azevedo, I, et al. A novel mutation in FOXF1 gene associated with alveolar capillary dysplasia with misalignment of pulmonary veins, intestinal malrotation and annular pancreas. Neonatology. 2013;103(4):241245.CrossRefGoogle ScholarPubMed
Nguyen, L, Riley, MM, Sen, P, Galambos, C. Alveolar capillary dysplasia with misalignment of pulmonary veins with a wide spectrum of extrapulmonary manifestations. Pathol Int. 2013;63(10):519521.CrossRefGoogle ScholarPubMed
Stankiewicz, P, Sen, P, Bhatt, SS, Storer, M, Xia, Z, Bejjani, BA, et al. Genomic and genic deletions of the FOX gene cluster on 16q24.1 and inactivating mutations of FOXF1 cause alveolar capillary dysplasia and other malformations. Am J Hum Genet. 2009;84(6):780791.CrossRefGoogle ScholarPubMed
Sen, P, Dharmadhikari, AV, Majewski, T, Mohammad, MA, Kalin, TV, Zabielska, J, et al. Comparative analyses of lung transcriptomes in patients with alveolar capillary dysplasia with misalignment of pulmonary veins and in foxf1 heterozygous knockout mice. PLoS One. 2014;9(4):e94390.CrossRefGoogle ScholarPubMed
Sen, P, Yang, Y, Navarro, C, Silva, I, Szafranski, P, Kolodziejska, KE, et al. Novel FOXF1 mutations in sporadic and familial cases of alveolar capillary dysplasia with misaligned pulmonary veins imply a role for its DNA binding domain. Hum Mutat. 2013;34(6):801811.CrossRefGoogle ScholarPubMed
Ren, X, Ustiyan, V, Pradhan, A, Cai, Y, Havrilak, JA, Bolte, CS, et al. FOXF1 transcription factor is required for formation of embryonic vasculature by regulating VEGF signaling in endothelial cells. Circ Res. 2014;115(8):709720.CrossRefGoogle ScholarPubMed
Corbett, HJ, Humphrey, GM. Pulmonary sequestration. Paediatr Respir Rev. 2004;5(1):5968.CrossRefGoogle ScholarPubMed
Nunes, C, Pereira, I, Araujo, C, Santo, SF, Carvalho, RM, Melo, A, et al. Fetal bronchopulmonary malformations. J Matern Fetal Neonatal Med. 2014:1–5.Google Scholar
Kunisaki, SM, Fauza, DO, Nemes, LP, Barnewolt, CE, Estroff, JA, Kozakewich, HP, et al. Bronchial atresia: the hidden pathology within a spectrum of prenatally diagnosed lung masses. J Pediatr Surg. 2006;41(1):6165; discussion 61-65.CrossRefGoogle ScholarPubMed
Beydon, N, Larroquet, M, Coulomb, A, Jouannic, JM, Ducou le Pointe, H, Clement, A, et al. Comparison between US and MRI in the prenatal assessment of lung malformations. Pediatr Radiol. 2013;43(6):685696.CrossRefGoogle ScholarPubMed
Kongstad, T, Buchvald, F, Brenoe, J, Petersen, BL, Tabor, A, Nielsen, KG. Radiology, histology and short-term outcome of asymptomatic congenital thoracic malformations. Acta Paediatr. 2012;101(2):155158.CrossRefGoogle ScholarPubMed
Pacharn, P, Kline-Fath, B, Calvo-Garcia, M, Linam, LE, Rubio, EI, Salisbury, S, et al. Congenital lung lesions: prenatal MRI and postnatal findings. Pediatr Radiol. 2013;43(9):11361143.CrossRefGoogle ScholarPubMed
Baird, R, Puligandla, PS, Laberge, JM. Congenital lung malformations: informing best practice. Semin Pediatr Surg. 2014;23(5):270277.CrossRefGoogle ScholarPubMed
Wall, J, Coates, A. Prenatal imaging and postnatal presentation, diagnosis and management of congenital lung malformations. Curr Opin Pediatr. 2014;26(3):315319.CrossRefGoogle ScholarPubMed
Laberge, JM, Bratu, I, Flageole, H. The management of asymptomatic congenital lung malformations. Paediatr Respir Rev. 2004;5 Suppl A:S305312.CrossRefGoogle ScholarPubMed
Stocker, JT, Mani, H, Husain, AN. The respiratory tract. In: Stocker, JT, Dehner, LP, Husain, AN, eds. Pediatric Pathology. 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2011:441515.Google Scholar
Coleman, A, Phithakwatchara, N, Shaaban, A, Keswani, S, Kline-Fath, B, Kingma, P, et al. Fetal lung growth represented by longitudinal changes in MRI-derived fetal lung volume parameters predicts survival in isolated left-sided congenital diaphragmatic hernia. Prenat Diagn. 2015;35(2):160166.CrossRefGoogle ScholarPubMed
de Castro Rezende, G, Pereira, AK, Araujo Junior, E, Reis, ZS, Vieira Cabral, AC. Prediction of lethal pulmonary hypoplasia among high-risk fetuses via 2D and 3D ultrasonography. Int J Gynaecol Obstet. 2013;123(1):4245.CrossRefGoogle Scholar
Vergani, P. Prenatal diagnosis of pulmonary hypoplasia. Curr Opin Obstet Gynecol. 2012;24(2):8994.CrossRefGoogle ScholarPubMed
Joshi, S, Kotecha, S. Lung growth and development. Early Hum Dev. 2007;83(12):789794.CrossRefGoogle ScholarPubMed
Chen, F, Cao, Y, Qian, J, Shao, F, Niederreither, K, Cardoso, WV. A retinoic acid-dependent network in the foregut controls formation of the mouse lung primordium. J Clin Invest. 2010;120(6):20402048.CrossRefGoogle ScholarPubMed
Mendelsohn, C, Lohnes, D, Decimo, D, Lufkin, T, LeMeur, M, Chambon, P, et al. Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development. 1994;120(10):27492771.CrossRefGoogle ScholarPubMed
Darlow, BA, Graham, PJ. Vitamin A supplementation to prevent mortality and short- and long-term morbidity in very low birthweight infants. Cochrane Database Syst Rev. 2011(10):CD000501.Google Scholar
Massaro, GD, Massaro, D. Postnatal treatment with retinoic acid increases the number of pulmonary alveoli in rats. Am J Physiol. 1996;270(2 Pt 1):L305310.Google ScholarPubMed
Devriendt, K, Vanhole, C, Matthijs, G, de Zegher, F. Deletion of thyroid transcription factor-1 gene in an infant with neonatal thyroid dysfunction and respiratory failure. N Engl J Med. 1998;338(18):13171318.CrossRefGoogle Scholar
Kimura, S, Hara, Y, Pineau, T, Fernandez-Salguero, P, Fox, CH, Ward, JM, et al. The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev. 1996;10(1):6069.CrossRefGoogle Scholar
Shetty, VB, Kiraly-Borri, C, Lamont, P, Bikker, H, Choong, CS. NKX2-1 mutations in brain-lung-thyroid syndrome: a case series of four patients. J Pediatr Endocrinol Metab. 2014;27(3–4):373378.CrossRefGoogle ScholarPubMed
Hamvas, A, Deterding, RR, Wert, SE, White, FV, Dishop, MK, Alfano, DN, et al. Heterogeneous pulmonary phenotypes associated with mutations in the thyroid transcription factor gene NKX2-1. Chest. 2013;144(3):794804.CrossRefGoogle ScholarPubMed
Pohlenz, J, Dumitrescu, A, Zundel, D, Martine, U, Schonberger, W, Koo, E, et al. Partial deficiency of thyroid transcription factor 1 produces predominantly neurological defects in humans and mice. J Clin Invest. 2002;109(4):469473.CrossRefGoogle ScholarPubMed
Minoo, P, Su, G, Drum, H, Bringas, P, Kimura, S. Defects in tracheoesophageal and lung morphogenesis in Nkx2.1(–/–) mouse embryos. Dev Biol. 1999;209(1):6071.CrossRefGoogle ScholarPubMed
Gupta, K, Das, A, Menon, P, Kakkar, N, Rao, KL, Joshi, K. Revisiting the histopathologic spectrum of congenital pulmonary developmental disorders. Fetal Pediatr Pathol. 2012;31(2):7486.CrossRefGoogle ScholarPubMed
Nowaczyk, MJ, Irons, MB. Smith-Lemli-Opitz syndrome: phenotype, natural history, and epidemiology. Am J Med Genet C Semin Med Genet. 2012;160C(4):250262.CrossRefGoogle ScholarPubMed
Waterham, HR, Hennekam, RC. Mutational spectrum of Smith-Lemli-Opitz syndrome. Am J Med Genet C Semin Med Genet. 2012;160C(4):263284.CrossRefGoogle ScholarPubMed
Yu, H, Wessels, A, Chen, J, Phelps, AL, Oatis, J, Tint, GS, et al. Late gestational lung hypoplasia in a mouse model of the Smith-Lemli-Opitz syndrome. BMC Dev Biol. 2004;4:1.CrossRefGoogle Scholar
Deutsch, GH, Young, LR, Deterding, RR, Fan, LL, Dell, SD, Bean, JA, et al. Diffuse lung disease in young children: application of a novel classification scheme. Am J Respir Crit Care Med. 2007;176(11):11201128.CrossRefGoogle ScholarPubMed
Ruchonnet-Metrailler, I, Bessieres, B, Bonnet, D, Vibhushan, S, Delacourt, C. Pulmonary hypoplasia associated with congenital heart diseases: a fetal study. PLoS One. 2014;9(4):e93557.CrossRefGoogle ScholarPubMed
Akinkuotu, AC, Sheikh, F, Cass, DL, Zamora, IJ, Lee, TC, Cassady, CI, et al. Are all pulmonary hypoplasias the same? A comparison of pulmonary outcomes in neonates with congenital diaphragmatic hernia, omphalocele and congenital lung malformation. J Pediatr Surg. 2015;50(1):5559.CrossRefGoogle Scholar
Faruqi, S, Varma, R, Avery, G, Kastelik, J. Pulmonary hypoplasia. Intern Med. 2011;50(10):1129.CrossRefGoogle ScholarPubMed
Georgescu, A, Nuta, C, Bondari, S. 3D imaging in unilateral primary pulmonary hypoplasia in an adult: a case report. Case Rep Radiol. 2011;2011:659586.Google Scholar
Katsenos, S, Antonogiannaki, EM, Tsintiris, K. Unilateral primary lung hypoplasia diagnosed in adulthood. Respir Care. 2014;59(4):e4750.CrossRefGoogle ScholarPubMed
Cloutier, MM, Schaeffer, DA, Hight, D. Congenital cystic adenomatoid malformation. Chest. 1993;103(3):761764.CrossRefGoogle ScholarPubMed
Hill, DA, Jarzembowski, JA, Priest, JR, Williams, G, Schoettler, P, Dehner, LP. Type I pleuropulmonary blastoma: pathology and biology study of 51 cases from the international pleuropulmonary blastoma registry. Am J Surg Pathol. 2008;32(2):282295.CrossRefGoogle ScholarPubMed
Morotti, RA, Cangiarella, J, Gutierrez, MC, Jagirdar, J, Askin, F, Singh, G, et al. Congenital cystic adenomatoid malformation of the lung (CCAM): evaluation of the cellular components. Hum Pathol. 1999;30(6):618625.CrossRefGoogle ScholarPubMed
Nasr, A, Himidan, S, Pastor, AC, Taylor, G, Kim, PC. Is congenital cystic adenomatoid malformation a premalignant lesion for pleuropulmonary blastoma? J Pediatr Surg. 2010;45(6):10861089.CrossRefGoogle ScholarPubMed
Wagh, PK, Gardner, MA, Ma, X, Callahan, M, Shannon, JM, Wert, SE, et al. Cell- and developmental stage-specific Dicer1 ablation in the lung epithelium models cystic pleuropulmonary blastoma. J Pathol. 2015;236(1):4-521.CrossRefGoogle ScholarPubMed
Riedlinger, WF, Vargas, SO, Jennings, RW, Estroff, JA, Barnewolt, CE, Lillehei, CW, et al. Bronchial atresia is common to extralobar sequestration, intralobar sequestration, congenital cystic adenomatoid malformation, and lobar emphysema. Pediatr Dev Pathol. 2006;9(5):361373.CrossRefGoogle ScholarPubMed
Correia-Pinto, J, Gonzaga, S, Huang, Y, Rottier, R. Congenital lung lesions – underlying molecular mechanisms. Semin Pediatr Surg. 2010;19(3):171179.CrossRefGoogle ScholarPubMed
Gonzaga, S, Henriques-Coelho, T, Davey, M, Zoltick, PW, Leite-Moreira, AF, Correia-Pinto, J, et al. Cystic adenomatoid malformations are induced by localized FGF10 overexpression in fetal rat lung. Am J Respir Cell Mol Biol. 2008;39(3):346355.CrossRefGoogle ScholarPubMed
Jancelewicz, T, Nobuhara, K, Hawgood, S. Laser microdissection allows detection of abnormal gene expression in cystic adenomatoid malformation of the lung. J Pediatr Surg. 2008;43(6):10441051.CrossRefGoogle ScholarPubMed
Tichelaar, JW, Lu, W, Whitsett, JA. Conditional expression of fibroblast growth factor-7 in the developing and mature lung. J Biol Chem. 2000;275(16):1185811864.CrossRefGoogle ScholarPubMed
Volpe, MV, Pham, L, Lessin, M, Ralston, SJ, Bhan, I, Cutz, E, et al. Expression of Hoxb-5 during human lung development and in congenital lung malformations. Birth Defects Res A Clin Mol Teratol. 2003;67(8):550556.CrossRefGoogle ScholarPubMed
Wang, X, Wolgemuth, DJ, Baxi, LV. Overexpression of HOXB5, cyclin D1 and PCNA in congenital cystic adenomatoid malformation. Fetal Diagn Ther. 2011;29(4):315320.CrossRefGoogle ScholarPubMed
Lezmi, G, Verkarre, V, Khen-Dunlop, N, Vibhushan, S, Hadchouel, A, Rambaud, C, et al. FGF10 Signaling differences between type I pleuropulmonary blastoma and congenital cystic adenomatoid malformation. Orphanet J Rare Dis. 2013;8:130.CrossRefGoogle ScholarPubMed
DeBoer, EM, Keene, S, Winkler, AM, Shehata, BM. Identical twins with lethal congenital pulmonary airway malformation type 0 (acinar dysplasia): further evidence of familial tendency. Fetal Pediatr Pathol. 2012;31(4):217224.CrossRefGoogle Scholar
MacSweeney, F, Papagiannopoulos, K, Goldstraw, P, Sheppard, MN, Corrin, B, Nicholson, AG. An assessment of the expanded classification of congenital cystic adenomatoid malformations and their relationship to malignant transformation. Am J Surg Pathol. 2003;27(8):11391146.CrossRefGoogle ScholarPubMed
Hasegawa, M, Sakai, F, Arimura, K, Katsura, H, Koh, E, Sekine, Y, et al. EGFR mutation of adenocarcinoma in congenital cystic adenomatoid malformation/congenital pulmonary airway malformation: a case report. Jpn J Clin Oncol. 2014;44(3):278281.CrossRefGoogle ScholarPubMed
Kim, MY, Kang, CH, Park, SH. Multifocal synchronous mucinous adenocarcinomas arising in congenital pulmonary airway malformation: a case report with molecular study. Histopathology. 2014;65(6):926932.CrossRefGoogle ScholarPubMed
Tetsumoto, S, Kijima, T, Morii, E, Goya, S, Minami, T, Hirata, H, et al. Echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) rearrangement in congenital pulmonary airway malformation. Clin Lung Cancer. 2013;14(4):457460.CrossRefGoogle ScholarPubMed
Messinger, YH, Stewart, DR, Priest, JR, Williams, GM, Harris, AK, Schultz, KA, et al. Pleuropulmonary blastoma: A report on 350 central pathology-confirmed pleuropulmonary blastoma cases by the International Pleuropulmonary Blastoma Registry. Cancer. 2015;121(2):276285.CrossRefGoogle ScholarPubMed
Oliveira, C, Himidan, S, Pastor, AC, Nasr, A, Manson, D, Taylor, G, et al. Discriminating preoperative features of pleuropulmonary blastomas (PPB) from congenital cystic adenomatoid malformations (CCAM): a retrospective, age-matched study. Eur J Pediatr Surg. 2011;21(1):27.CrossRefGoogle ScholarPubMed
Manivel, JC, Priest, JR, Watterson, J, Steiner, M, Woods, WG, Wick, MR, et al. Pleuropulmonary blastoma. The so-called pulmonary blastoma of childhood. Cancer. 1988;62(8):15161526.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Priest, JR, Watterson, J, Strong, L, Huff, V, Woods, WG, Byrd, RL, et al. Pleuropulmonary blastoma: a marker for familial disease. J Pediatr. 1996;128(2):220224.CrossRefGoogle ScholarPubMed
Foulkes, WD, Bahubeshi, A, Hamel, N, Pasini, B, Asioli, S, Baynam, G, et al. Extending the phenotypes associated with DICER1 mutations. Hum Mutat. 2011;32(12):13811384.CrossRefGoogle ScholarPubMed
Rio Frio, T, Bahubeshi, A, Kanellopoulou, C, Hamel, N, Niedziela, M, Sabbaghian, N, et al. DICER1 mutations in familial multinodular goiter with and without ovarian Sertoli-Leydig cell tumors. JAMA. 2011;305(1):6877.CrossRefGoogle ScholarPubMed
Slade, I, Bacchelli, C, Davies, H, Murray, A, Abbaszadeh, F, Hanks, S, et al. DICER1 syndrome: clarifying the diagnosis, clinical features and management implications of a pleiotropic tumour predisposition syndrome. J Med Genet. 2011;48(4):273278.CrossRefGoogle ScholarPubMed
Hill, DA, Ivanovich, J, Priest, JR, Gurnett, CA, Dehner, LP, Desruisseau, D, et al. DICER1 mutations in familial pleuropulmonary blastoma. Science. 2009;325(5943):965.CrossRefGoogle ScholarPubMed
Medina, PP, Slack, FJ. microRNAs and cancer: an overview. Cell Cycle. 2008;7(16):24852492.CrossRefGoogle ScholarPubMed
Stefani, G, Slack, FJ. Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol. 2008;9(3):219230.CrossRefGoogle ScholarPubMed
Heravi-Moussavi, A, Anglesio, MS, Cheng, SW, Senz, J, Yang, W, Prentice, L, et al. Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. N Engl J Med. 2012;366(3):234242.CrossRefGoogle ScholarPubMed
Pugh, TJ, Yu, W, Yang, J, Field, AL, Ambrogio, L, Carter, SL, et al. Exome sequencing of pleuropulmonary blastoma reveals frequent biallelic loss of TP53 and two hits in DICER1 resulting in retention of 5p-derived miRNA hairpin loop sequences. Oncogene. 2014;33(45):52955302.CrossRefGoogle ScholarPubMed
Seki, M, Yoshida, K, Shiraishi, Y, Shimamura, T, Sato, Y, Nishimura, R, et al. Biallelic DICER1 mutations in sporadic pleuropulmonary blastoma. Cancer Res. 2014;74(10):27422749.CrossRefGoogle ScholarPubMed
Walker, CM, Wu, CC, Gilman, MD, Godwin, JD 2nd, Shepard, JA, Abbott, GF. The imaging spectrum of bronchopulmonary sequestration. Curr Probl Diagn Radiol. 2014;43(3):100114.CrossRefGoogle ScholarPubMed
Freedom, RM, Yoo, SJ, Goo, HW, Mikailian, H, Anderson, RH. The bronchopulmonary foregut malformation complex. Cardiol Young. 2006;16(3):229251.CrossRefGoogle ScholarPubMed
Sun, X, Xiao, Y. Pulmonary sequestration in adult patients: a retrospective study. Eur J Cardiothorac Surg. 2015;48(2):279282.CrossRefGoogle ScholarPubMed
Belchis, D, Cowan, M, Mortman, K, Rezvani, B. Adenocarcinoma arising in an extralobar sequestration: a case report and review of the literature. Lung Cancer. 2014;84(1):9295.CrossRefGoogle Scholar
Zhang, H, Tian, J, Chen, Z, Ma, X, Yu, G, Zhang, J, et al. Retrospective study of prenatal diagnosed pulmonary sequestration. Pediatr Surg Int. 2014;30(1):4753.CrossRefGoogle ScholarPubMed
Ozcelik, U, Gocmen, A, Kiper, N, Dogru, D, Dilber, E, Yalcin, EG. Congenital lobar emphysema: evaluation and long-term follow-up of thirty cases at a single center. Pediatr Pulmonol. 2003;35(5):384391.CrossRefGoogle Scholar
Mani, H, Suarez, E, Stocker, JT. The morphologic spectrum of infantile lobar emphysema: a study of 33 cases. Paediatr Respir Rev. 2004;5 Suppl A:S313320.CrossRefGoogle ScholarPubMed
Seo, T, Ando, H, Kaneko, K, Ono, Y, Tainaka, T, Sumida, W, et al. Two cases of prenatally diagnosed congenital lobar emphysema caused by lobar bronchial atresia. J Pediatr Surg. 2006;41(11):e1720.CrossRefGoogle ScholarPubMed
Reiterer, F, Grossauer, K, Morris, N, Uhrig, S, Resch, B. Congenital pulmonary lymphangiectasis. Paediatr Respir Rev. 2014;15(3):275280.Google ScholarPubMed
de Bruyn, G, Casaer, A, Devolder, K, Van Acker, G, Logghe, H, Devriendt, K, et al. Hydrops fetalis and pulmonary lymphangiectasia due to FOXC2 mutation: an autosomal dominant hereditary lymphedema syndrome with variable expression. Eur J Pediatr. 2012;171(3):447450.CrossRefGoogle ScholarPubMed
Fabretto, A, Kutsche, K, Harmsen, MB, Demarini, S, Gasparini, P, Fertz, MC, et al. Two cases of Noonan syndrome with severe respiratory and gastroenteral involvement and the SOS1 mutation F623I. Eur J Med Genet. 2010;53(5):322324.CrossRefGoogle ScholarPubMed
Mathur, D, Somashekar, S, Navarrete, C, Rodriguez, MM. Twin infant with lymphatic dysplasia diagnosed with Noonan syndrome by molecular genetic testing. Fetal Pediatr Pathol. 2014;33(4):253257.CrossRefGoogle ScholarPubMed
Yao, LC, Testini, C, Tvorogov, D, Anisimov, A, Vargas, SO, Baluk, P, et al. Pulmonary lymphangiectasia resulting from vascular endothelial growth factor-C overexpression during a critical period. Circ Res. 2014;114(5):806822.CrossRefGoogle ScholarPubMed
Boland, JM, Tazelaar, HD, Colby, TV, Leslie, KO, Hartman, TE, Yi, ES. Diffuse pulmonary lymphatic disease presenting as interstitial lung disease in adulthood: report of 3 cases. Am J Surg Pathol. 2012;36(10):15481554.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×