Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-09T15:46:20.137Z Has data issue: false hasContentIssue false

Chapter 4 - Transcriptional Mechanisms Regulating Pulmonary Epithelial Maturation:

A Systems Biology Approach

Published online by Cambridge University Press:  05 April 2016

Alan H. Jobe
Affiliation:
University of Cincinnati
Jeffrey A. Whitsett
Affiliation:
Cincinnati Children’s Hospital
Steven H. Abman
Affiliation:
University of Colorado School of Medicine
Get access

Summary

Abstract

This chapter focuses on the perinatal period of lung growth and differentiation. Advances in high-resolution imaging are integrated with computational approaches to develop a “systems biology” approach to the study of perinatal lung development. Confocal microscopy, three-dimensional imaging, single-cell transcriptomics, and bioinformatics are providing deeper insights to the multiple cell types and molecular mechanisms controlling lung formation and function. Knowledge regarding the transcriptional and signaling networks at the single-cell level provide the framework to understand how cell–cell interactions are integrated to form and maintain the three-dimensional structure of the alveoli necessary for ventilation after birth.

Type
Chapter
Information
Fetal and Neonatal Lung Development
Clinical Correlates and Technologies for the Future
, pp. 58 - 76
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Weibel, ER. On the tricks alveolar epithelial cells play to make a good lung. Am J Respir Crit Care Med. 2015;191(5):504513.CrossRefGoogle ScholarPubMed
Consortium, EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):5774.CrossRefGoogle Scholar
Gerstein, MB, Rozowsky, J, Yan, KK, Wang, D, Cheng, C, Brown, JB, et al. Comparative analysis of the transcriptome across distant species. Nature. 2014;512(7515):445448.CrossRefGoogle ScholarPubMed
Ramos, EM, Hoffman, D, Junkins, HA, Maglott, D, Phan, L, Sherry, ST, et al. Phenotype-Genotype Integrator (PheGenI): synthesizing genome-wide association study (GWAS) data with existing genomic resources. Eur J Hum Genet. 2014;22(1):144147.CrossRefGoogle ScholarPubMed
Wang, Z, Gerstein, M, Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):5763.CrossRefGoogle ScholarPubMed
Hindorff, LA, MacArthur, J, Morales, J, Junkins, HA, Hall, PN, Klemm, AK, et al. A catalog of published genome-wide association studies (April 2, 2015). Available from: http://www.genome.gov/gwastudies.Google Scholar
Welter, D, MacArthur, J, Morales, J, Burdett, T, Hall, P, Junkins, H, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42(Database issue):D10011006.CrossRefGoogle ScholarPubMed
Schadt, EE, Linderman, MD, Sorenson, J, Lee, L, Nolan, GP. Computational solutions to large-scale data management and analysis. Nat Rev Genet. 2010;11(9):647657.CrossRefGoogle ScholarPubMed
Hogan, BL, Barkauskas, CE, Chapman, HA, Epstein, JA, Jain, R, Hsia, CC, et al. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell. 2014;15(2):123138.CrossRefGoogle ScholarPubMed
Bunyavanich, S, Schadt, EE. Systems biology of asthma and allergic diseases: a multiscale approach. J Allergy Clin Immunol. 2015;135(1):3142.CrossRefGoogle Scholar
Kitano, H. Computational systems biology. Nature. 2002;420(6912):206210.CrossRefGoogle ScholarPubMed
Massaro, GD, Massaro, D. Formation of pulmonary alveoli and gas-exchange surface area: quantitation and regulation. Annu Rev Physiol. 1996;58:7392.CrossRefGoogle ScholarPubMed
Schittny, JC, Mund, SI, Stampanoni, M. Evidence and structural mechanism for late lung alveolarization. Am J Physiol Lung Cell Mol Physiol. 2008;294(2):L246254.CrossRefGoogle ScholarPubMed
Tschanz, SA, Burri, PH, Weibel, ER. A simple tool for stereological assessment of digital images: the STEPanizer. J Microsc. 2011;243(1):4759.CrossRefGoogle ScholarPubMed
Mund, SI, Stampanoni, M, Schittny, JC. Developmental alveolarization of the mouse lung. Dev Dyn. 2008;237(8):2108–16.CrossRefGoogle ScholarPubMed
Tsuda, A, Filipovic, N, Haberthur, D, Dickie, R, Matsui, Y, Stampanoni, M, et al. Finite element 3D reconstruction of the pulmonary acinus imaged by synchrotron X-ray tomography. J Appl Physiol (1985). 2008;105(3):964976.CrossRefGoogle ScholarPubMed
Amos, WB, White, JG. How the confocal laser scanning microscope entered biological research. Biol Cell. 2003;95(6):335342.CrossRefGoogle ScholarPubMed
Inerot, S, Heinegard, D, Olsson, SE, Telhag, H, Audell, L. Proteoglycan alterations during developing experimental osteoarthritis in a novel hip joint model. J Orthop Res. 1991;9(5):658673.CrossRefGoogle Scholar
Kherlopian, AR, Song, T, Duan, Q, Neimark, MA, Po, MJ, Gohagan, JK, et al. A review of imaging techniques for systems biology. BMC Syst Biol. 2008;2:74.CrossRefGoogle ScholarPubMed
St Croix, CM, Shand, SH, Watkins, SC. Confocal microscopy: comparisons, applications, and problems. Biotechniques. 2005;39(6 Suppl):S25.CrossRefGoogle ScholarPubMed
Vielreicher, M, Schurmann, S, Detsch, R, Schmidt, MA, Buttgereit, A, Boccaccini, A, et al. Taking a deep look: modern microscopy technologies to optimize the design and functionality of biocompatible scaffolds for tissue engineering in regenerative medicine. J R Soc Interface. 2013;10(86):20130263.CrossRefGoogle ScholarPubMed
Ten Have-Opbroek, AA, Plopper, CG. Morphogenetic and functional activity of type II cells in early fetal rhesus monkey lungs. A comparison between primates and rodents. Anat Rec. 1992;234(1):93104.CrossRefGoogle ScholarPubMed
Hislop, A, Howard, S, Fairweather, DV. Morphometric studies on the structural development of the lung in Macaca fascicularis during fetal and postnatal life. J Anat. 1984;138 (Pt 1):95112.Google ScholarPubMed
Hyde, DM, Blozis, SA, Avdalovic, MV, Putney, LF, Dettorre, R, Quesenberry, NJ, et al. Alveoli increase in number but not size from birth to adulthood in rhesus monkeys. Am J Physiol Lung Cell Mol Physiol. 2007;293(3):L570579.CrossRefGoogle Scholar
Thurlbeck, WM. Lung growth and alveolar multiplication. Pathobiol Annu. 1975;5:134.Google ScholarPubMed
Metzger, RJ, Klein, OD, Martin, GR, Krasnow, MA. The branching programme of mouse lung development. Nature. 2008;453(7196):745750.CrossRefGoogle ScholarPubMed
Burri, PH, Hlushchuk, R, Djonov, V. Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev Dyn. 2004;231(3):474488.CrossRefGoogle ScholarPubMed
Galambos, C, Levy, H, Cannon, CL, Vargas, SO, Reid, LM, Cleveland, R, et al. Pulmonary pathology in thyroid transcription factor-1 deficiency syndrome. Am J Respir Crit Care Med. 2010;182(4):549554.CrossRefGoogle ScholarPubMed
Burri, PH. The postnatal growth of the rat lung. 3. Morphology. Anat Rec. 1974;180(1):7798.CrossRefGoogle ScholarPubMed
Roth-Kleiner, M, Berger, TM, Tarek, MR, Burri, PH, Schittny, JC. Neonatal dexamethasone induces premature microvascular maturation of the alveolar capillary network. Dev Dyn. 2005;233(4):12611271.CrossRefGoogle ScholarPubMed
Burri, PH. Fetal and postnatal development of the lung. Annu Rev Physiol. 1984;46:617628.CrossRefGoogle ScholarPubMed
Ten Have-Opbroek, AA. Lung development in the mouse embryo. Exp Lung Res. 1991;17(2):111130.CrossRefGoogle ScholarPubMed
Whitsett, JA, Wert, SE, Weaver, TE. Diseases of pulmonary surfactant homeostasis. Annu Rev Pathol. 2015;10:371393.CrossRefGoogle ScholarPubMed
Cuna, A, Halloran, B, Faye-Petersen, O, Kelly, D, Crossman, DK, Cui, X, et al. Alterations in gene expression and DNA methylation during murine and human lung alveolar septation. Am J Respir Cell Mol Biol. 2015;53(1):6073.CrossRefGoogle ScholarPubMed
Xu, Y, Wang, Y, Besnard, V, Ikegami, M, Wert, SE, Heffner, C, et al. Transcriptional programs controlling perinatal lung maturation. PLoS One. 2012;7(8):e37046.CrossRefGoogle ScholarPubMed
Treutlein, B, Brownfield, DG, Wu, AR, Neff, NF, Mantalas, GL, Espinoza, FH, et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature. 2014;509(7500):371375.CrossRefGoogle ScholarPubMed
Thas, O, Clement, L, Rayner, JC, Carvalho, B, Van Criekinge, W. An omnibus consistent adaptive percentile modified Wilcoxon rank sum test with applications in gene expression studies. Biometrics. 2012;68(2):446454.CrossRefGoogle ScholarPubMed
Tseng, GC, Wong, WH. Tight clustering: a resampling-based approach for identifying stable and tight patterns in data. Biometrics. 2005;61(1):1016.CrossRefGoogle ScholarPubMed
Holter, NS, Mitra, M, Maritan, A, Cieplak, M, Banavar, JR, Fedoroff, NV. Fundamental patterns underlying gene expression profiles: simplicity from complexity. Proc Natl Acad Sci U S A. 2000;97(15):84098414.CrossRefGoogle ScholarPubMed
Kaminski, N, Friedman, N. Practical approaches to analyzing results of microarray experiments. Am J Respir Cell Mol Biol. 2002;27(2):125132.CrossRefGoogle ScholarPubMed
Krajewski, P, Bocianowski, J. Statistical methods for microarray assays. J Appl Genet. 2002;43(3):269278.Google ScholarPubMed
Slonim, DK. From patterns to pathways: gene expression data analysis comes of age. Nat Genet. 2002;32 Suppl:502508.CrossRefGoogle ScholarPubMed
Gasch, AP, Eisen, MB. Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering. Genome Biol. 2002;3(11):RESEARCH0059.CrossRefGoogle ScholarPubMed
Fu, L, Medico, E. FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinformatics. 2007;8:3.CrossRefGoogle Scholar
Xu, Y, Zhang, M, Wang, Y, Kadambi, P, Dave, V, Lu, LJ, et al. A systems approach to mapping transcriptional networks controlling surfactant homeostasis. BMC Genomics. 2010;11:451.CrossRefGoogle ScholarPubMed
Dave, V, Childs, T, Xu, Y, Ikegami, M, Besnard, V, Maeda, Y, et al. Calcineurin/Nfat signaling is required for perinatal lung maturation and function. J Clin Invest. 2006;116(10):25972609.CrossRefGoogle ScholarPubMed
DeFelice, M, Silberschmidt, D, DiLauro, R, Xu, Y, Wert, SE, Weaver, TE, et al. TTF-1 phosphorylation is required for peripheral lung morphogenesis, perinatal survival, and tissue-specific gene expression. J Biol Chem. 2003;278(37):3557435583.CrossRefGoogle ScholarPubMed
Lin, S, Ikegami, M, Xu, Y, Bosserhoff, AK, Malkinson, AM, Shannon, JM. Misexpression of MIA disrupts lung morphogenesis and causes neonatal death. Dev Biol. 2008;316(2):441455.CrossRefGoogle ScholarPubMed
Martis, PC, Whitsett, JA, Xu, Y, Perl, AK, Wan, H, Ikegami, M. C/EBPalpha is required for lung maturation at birth. Development. 2006;133(6):11551164.CrossRefGoogle ScholarPubMed
Wan, H, Xu, Y, Ikegami, M, Stahlman, MT, Kaestner, KH, Ang, SL, et al. Foxa2 is required for transition to air breathing at birth. Proc Natl Acad Sci U S A. 2004;101(40):1444914454.CrossRefGoogle ScholarPubMed
Khatri, P, Draghici, S, Ostermeier, GC, Krawetz, SA. Profiling gene expression using onto-express. Genomics. 2002;79(2):266270.CrossRefGoogle ScholarPubMed
Zeeberg, BR, Feng, W, Wang, G, Wang, MD, Fojo, AT, Sunshine, M, et al. GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol. 2003;4(4):R28.CrossRefGoogle ScholarPubMed
Dennis, G Jr., Sherman, BT, Hosack, DA, Yang, J, Gao, W, Lane, HC, et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4(5):P3.CrossRefGoogle ScholarPubMed
Subramanian, A, Tamayo, P, Mootha, VK, Mukherjee, S, Ebert, BL, Gillette, MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):1554515550.CrossRefGoogle ScholarPubMed
Chen, J, Bardes, EE, Aronow, BJ, Jegga, AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37(Web Server issue):W305311.CrossRefGoogle ScholarPubMed
De Smet, R, Marchal, K. Advantages and limitations of current network inference methods. Nat Rev Microbiol. 2010;8(10):717729.CrossRefGoogle ScholarPubMed
Marbach, D, Costello, JC, Kuffner, R, Vega, NM, Prill, RJ, Camacho, DM, et al. Wisdom of crowds for robust gene network inference. Nat Methods. 2012;9(8):796804.CrossRefGoogle ScholarPubMed
Borgatti, SP, Mehra, A, Brass, DJ, Labianca, G. Network analysis in the social sciences. Science. 2009;323(5916):892895.CrossRefGoogle ScholarPubMed
Hahn, MW, Kern, AD. Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Mol Biol Evol. 2005;22(4):803806.CrossRefGoogle ScholarPubMed
Besnard, V, Wert, SE, Ikegami, M, Xu, Y, Heffner, C, Murray, SA, et al. Maternal synchronization of gestational length and lung maturation. PLoS One. 2011;6(11):e26682.CrossRefGoogle ScholarPubMed
Murray, SA, Morgan, JL, Kane, C, Sharma, Y, Heffner, CS, Lake, J, et al. Mouse gestation length is genetically determined. PLoS One. 2010;5(8):e12418.CrossRefGoogle ScholarPubMed
Xu, J, Liu, M, Xia, Z. Asian medicine: Call for more safety data. Nature. 2012;482(7383):35.CrossRefGoogle ScholarPubMed
Angelini, C, Cutillo, L, De Canditiis, D, Mutarelli, M, Pensky, M. BATS: a Bayesian user-friendly software for analyzing time series microarray experiments. BMC Bioinformatics. 2008;9:415.CrossRefGoogle Scholar
Ernst, J, Bar-Joseph, Z. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics. 2006;7:191.CrossRefGoogle Scholar
Whitsett, JA, Alenghat, T. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat Immunol. 2015;16(1):2735.CrossRefGoogle ScholarPubMed
Xu, Y, Saegusa, C, Schehr, A, Grant, S, Whitsett, JA, Ikegami, M. C/EBP{alpha} is required for pulmonary cytoprotection during hyperoxia. Am J Physiol Lung Cell Mol Physiol. 2009;297(2):L286298.CrossRefGoogle ScholarPubMed
Flatz, L, Roychoudhuri, R, Honda, M, Filali-Mouhim, A, Goulet, JP, Kettaf, N, et al. Single-cell gene-expression profiling reveals qualitatively distinct CD8 T cells elicited by different gene-based vaccines. Proc Natl Acad Sci U S A. 2011;108(14):57245729.CrossRefGoogle ScholarPubMed
Rawlins, EL, Perl, AK. The a“MAZE”ing world of lung-specific transgenic mice. Am J Respir Cell Mol Biol. 2012;46(3):269282.CrossRefGoogle Scholar
Bridges, JP, Xu, Y, Na, CL, Wong, HR, Weaver, TE. Adaptation and increased susceptibility to infection associated with constitutive expression of misfolded SP-C. J Cell Biol. 2006;172(3):395407.CrossRefGoogle ScholarPubMed
Lian, X, Yan, C, Yang, L, Xu, Y, Du, H. Lysosomal acid lipase deficiency causes respiratory inflammation and destruction in the lung. Am J Physiol Lung Cell Mol Physiol. 2004;286(4):L801807.CrossRefGoogle ScholarPubMed
Maeda, Y, Chen, G, Xu, Y, Haitchi, HM, Du, L, Keiser, AR, et al. Airway epithelial transcription factor NK2 homeobox 1 inhibits mucous cell metaplasia and Th2 inflammation. Am J Respir Crit Care Med. 2011;184(4):421429.CrossRefGoogle ScholarPubMed
Matsuzaki, Y, Xu, Y, Ikegami, M, Besnard, V, Park, KS, Hull, WM, et al. Stat3 is required for cytoprotection of the respiratory epithelium during adenoviral infection. J Immunol. 2006;177(1):527537.CrossRefGoogle ScholarPubMed
Metzger, DE, Xu, Y, Shannon, JM. Elf5 is an epithelium-specific, fibroblast growth factor-sensitive transcription factor in the embryonic lung. Dev Dyn. 2007;236(5):11751192.CrossRefGoogle ScholarPubMed
Miller, LA, Wert, SE, Clark, JC, Xu, Y, Perl, AK, Whitsett, JA. Role of Sonic hedgehog in patterning of tracheal-bronchial cartilage and the peripheral lung. Dev Dyn. 2004;231(1):5771.CrossRefGoogle ScholarPubMed
Mucenski, ML, Nation, JM, Thitoff, AR, Besnard, V, Xu, Y, Wert, SE, et al. Beta-catenin regulates differentiation of respiratory epithelial cells in vivo. Am J Physiol Lung Cell Mol Physiol. 2005;289(6):L971979.CrossRefGoogle ScholarPubMed
Wan, H, Dingle, S, Xu, Y, Besnard, V, Kaestner, KH, Ang, SL, et al. Compensatory roles of Foxa1 and Foxa2 during lung morphogenesis. J Biol Chem. 2005;280(14):1380913816.CrossRefGoogle ScholarPubMed
Wan, H, Luo, F, Wert, SE, Zhang, L, Xu, Y, Ikegami, M, et al. Kruppel-like factor 5 is required for perinatal lung morphogenesis and function. Development. 2008;135(15):25632572.CrossRefGoogle ScholarPubMed
Xu, Y, Ikegami, M, Wang, Y, Matsuzaki, Y, Whitsett, JA. Gene expression and biological processes influenced by deletion of Stat3 in pulmonary type II epithelial cells. BMC Genomics. 2007;8:455.CrossRefGoogle ScholarPubMed
Xu, Y, Liu, C, Clark, JC, Whitsett, JA. Functional genomic responses to cystic fibrosis transmembrane conductance regulator (CFTR) and CFTR (delta508) in the lung. J Biol Chem. 2006;281(16):1127911291.CrossRefGoogle Scholar
Xu, Y, Clark, JC, Aronow, BJ, Dey, CR, Liu, C, Wooldridge, JL, et al. Transcriptional adaptation to cystic fibrosis transmembrane conductance regulator deficiency. J Biol Chem. 2003;278(9):76747682.CrossRefGoogle ScholarPubMed
Bohinski, RJ, Di Lauro, R, Whitsett, JA. The lung-specific surfactant protein B gene promoter is a target for thyroid transcription factor 1 and hepatocyte nuclear factor 3, indicating common factors for organ-specific gene expression along the foregut axis. Mol Cell Biol. 1994;14(9):56715681.Google ScholarPubMed
Lazzaro, D, Price, M, de Felice, M, Di Lauro, R. The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development. 1991;113(4):10931104.CrossRefGoogle ScholarPubMed
Kimura, S, Hara, Y, Pineau, T, Fernandez-Salguero, P, Fox, CH, Ward, JM, et al. The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev. 1996;10(1):6069.CrossRefGoogle Scholar
Herriges, MJ, Swarr, DT, Morley, MP, Rathi, KS, Peng, T, Stewart, KM, et al. Long noncoding RNAs are spatially correlated with transcription factors and regulate lung development. Genes Dev. 2014;28(12):13631379.CrossRefGoogle ScholarPubMed
Liggins, GC, Howie, RN. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics. 1972;50(4):515525.CrossRefGoogle ScholarPubMed
Brownfoot, FC, Gagliardi, DI, Bain, E, Middleton, P, Crowther, CA. Different corticosteroids and regimens for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2013;8:CD006764.Google Scholar
Roberts, D, Dalziel, S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2006(3):CD004454.Google Scholar
Habermehl, D, Parkitna, JR, Kaden, S, Brugger, B, Wieland, F, Grone, HJ, et al. Glucocorticoid activity during lung maturation is essential in mesenchymal and less in alveolar epithelial cells. Mol Endocrinol. 2011;25(8):12801288.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×