Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-05T19:14:56.571Z Has data issue: false hasContentIssue false

Chapter 15 - Perinatal Disruptions of Lung Development:

Mechanisms and Implications for Chronic Lung Diseases

Published online by Cambridge University Press:  05 April 2016

Alan H. Jobe
Affiliation:
University of Cincinnati
Jeffrey A. Whitsett
Affiliation:
Cincinnati Children’s Hospital
Steven H. Abman
Affiliation:
University of Colorado School of Medicine
Get access

Summary

Abstract

The lung evolved to efficiently exchange oxygen and carbon dioxide between the external environment and circulating blood. Because it is an open conduit to the environment, the lung must also maintain tight barrier function, defend against inhaled toxins, and have tremendous repair capacity when injured. Creating, maintaining, and repairing the remarkably complex structure of the lung is controlled by genes that regulate cell autonomous functions and cell–cell interactions. However, many studies have now shown how perinatal environmental factors can also permanently modify lung development, thereby influencing long-term lung function and respiratory health. Environmental factors include oxygen at birth, nutrition and intrauterine growth restriction, prenatal and postnatal infections, ionizing radiation, ozone, tobacco smoke, and chemical toxins such as bisphenol A. Although perinatal influences are often considered detrimental to long-term respiratory health, how the lung responds to different levels of oxygen at birth suggests that its response to other influences may represent developmental changes in an organ evolutionarily designed to functionally adapt to its environment. Improving respiratory health as people age may therefore require a better understanding of how the perinatal environment plays a role in generating biologic fit and novelty.

Type
Chapter
Information
Fetal and Neonatal Lung Development
Clinical Correlates and Technologies for the Future
, pp. 269 - 285
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Farmer, CG, Sanders, K. Unidirectional airflow in the lungs of alligators. Science. 2010;327(5963):338340.CrossRefGoogle ScholarPubMed
Farmer, CG. The provenance of alveolar and parabronchial lungs: insights from paleoecology and the discovery of cardiogenic, unidirectional airflow in the American alligator (Alligator mississippiensis). Physiol Biochem Zool. 2010;83(4):561575.CrossRefGoogle ScholarPubMed
Maeda, Y, Dave, V, Whitsett, JA. Transcriptional control of lung morphogenesis. Physiol Rev. 2007;87(1):219244.CrossRefGoogle ScholarPubMed
Ochs, M, Nyengaard, JR, Jung, A, et al. The number of alveoli in the human lung. Am J Respir Crit Care Med. 2004;169(1):120124.CrossRefGoogle ScholarPubMed
Kitaoka, H, Takaki, R, Suki, B. A three-dimensional model of the human airway tree. J Appl Physiol (1985). 1999;87(6):22072217.CrossRefGoogle ScholarPubMed
Knust, J, Ochs, M, Gundersen, HJ, Nyengaard, JR. Stereological estimates of alveolar number and size and capillary length and surface area in mice lungs. Anat Rec (Hoboken). 2009;292(1):113122.CrossRefGoogle ScholarPubMed
Metzger, RJ, Klein, OD, Martin, GR, Krasnow, MA. The branching programme of mouse lung development. Nature. 2008;453(7196):745750.CrossRefGoogle ScholarPubMed
Morrisey, EE, Hogan, BL. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell. 2010;18(1):823.CrossRefGoogle ScholarPubMed
Herriges, M, Morrisey, EE. Lung development: orchestrating the generation and regeneration of a complex organ. Development. 2014;141(3):502513.CrossRefGoogle ScholarPubMed
Spooner, BS, Wessells, NK. Mammalian lung development: interactions in primordium formation and bronchial morphogenesis. J Exp Zool. 1970;175(4):445454.CrossRefGoogle ScholarPubMed
Hilfer, SR, Rayner, RM, Brown, JW. Mesenchymal control of branching pattern in the fetal mouse lung. Tissue Cell. 1985;17(4):523538.CrossRefGoogle ScholarPubMed
Shannon, JM. Induction of alveolar type II cell differentiation in fetal tracheal epithelium by grafted distal lung mesenchyme. Development. 1994;166(2):600614.Google ScholarPubMed
Alanis, DM, Chang, DR, Akiyama, H, Krasnow, MA, Chen, J. Two nested developmental waves demarcate a compartment boundary in the mouse lung. Nat Commun. 2014;5:3923.CrossRefGoogle ScholarPubMed
Kajekar, R. Environmental factors and developmental outcomes in the lung. Pharmacol Ther. 2007;114(2):129145.CrossRefGoogle ScholarPubMed
Madurga, A, Mizikova, I, Ruiz-Camp, J, Morty, RE. Recent advances in late lung development and the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2013;305(12):L893905.CrossRefGoogle ScholarPubMed
Buczynski, BW, Maduekwe, ET, O'Reilly, MA. The role of hyperoxia in the pathogenesis of experimental BPD. Semin Perinatol. 2013;37(2):6978.CrossRefGoogle ScholarPubMed
Auten, RL, Foster, WM. Biochemical effects of ozone on asthma during postnatal development. Biochim Biophys Acta. 2011;1810(11):11141119.CrossRefGoogle ScholarPubMed
Wang, L, Pinkerton, KE. Air pollutant effects on fetal and early postnatal development. Birth Defects Res C Embryo Today. 2007;81(3):144154.CrossRefGoogle ScholarPubMed
Schwartz, DA. Gene-environment interactions and airway disease in children. Pediatrics. 2009;123 Suppl 3:S151159.CrossRefGoogle ScholarPubMed
Harding, R, Maritz, G. Maternal and fetal origins of lung disease in adulthood. Semin Fetal Neonatal Med. 2012;17(2):6772.CrossRefGoogle ScholarPubMed
Rehan, VK, Asotra, K, Torday, JS. The effects of smoking on the developing lung: insights from a biologic model for lung development, homeostasis, and repair. Lung. 2009;187(5):281289.CrossRefGoogle ScholarPubMed
Turvey, SE, Bonilla, FA, Junker, AK. Primary immunodeficiency diseases: a practical guide for clinicians. Postgrad Med J. 2009;85(1010):660666.CrossRefGoogle ScholarPubMed
Beers, MF, Morrisey, EE. The three R's of lung health and disease: repair, remodeling, and regeneration. J Clin Invest. 2011;121(6):20652073.CrossRefGoogle ScholarPubMed
Davis, JM, Auten, RL. Maturation of the antioxidant system and the effects on preterm birth. Semin Fetal Neonatal Med. 2010;15(4):191195.CrossRefGoogle ScholarPubMed
Sjostedt, S, Rooth, G, Caligara, F. The oxygen tension of the amniotic fluid. Am J Obstet Gynecol. 1958;76(6):12261230.Google ScholarPubMed
Lee, YM, Jeong, CH, Koo, SY, et al. Determination of hypoxic region by hypoxia marker in developing mouse embryos in vivo: a possible signal for vessel development. Dev Dyn. 2001;220(2):175186.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Saini, Y, Harkema, JR, LaPres, JJ. HIF1alpha is essential for normal intrauterine differentiation of alveolar epithelium and surfactant production in the newborn lung of mice. J Biol Chem. 2008;283(48):3365033657.CrossRefGoogle ScholarPubMed
Compernolle, V, Brusselmans, K, Acker, T, et al. Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med. 2002;8(7):702710.CrossRefGoogle ScholarPubMed
Asikainen, TM, Chang, LY, Coalson, JJ, et al. Improved lung growth and function through hypoxia-inducible factor in primate chronic lung disease of prematurity. FASEB J. 2006;20(10):16981700.CrossRefGoogle ScholarPubMed
Asikainen, TM, Waleh, NS, Schneider, BK, Clyman, RI, White, CW. Enhancement of angiogenic effectors through hypoxia-inducible factor in preterm primate lung in vivo. Am J Physiol Lung Cell Mol Physiol. 2006;291(4):L588595.CrossRefGoogle ScholarPubMed
Clerch, LB, Massaro, D. Tolerance of rats to hyperoxia. Lung antioxidant enzyme gene expression. J Clin Invest. 1993;91(2):499508.CrossRefGoogle ScholarPubMed
Jean, JC, George, E, Kaestner, KH, Brown, LA, Spira, A, Joyce-Brady, M. Transcription factor Klf4, induced in the lung by oxygen at birth, regulates perinatal fibroblast and myofibroblast differentiation. PLoS One. 2013;8(1):e54806.CrossRefGoogle Scholar
Puente, BN, Kimura, W, Muralidhar, SA, et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell. 2014;157(3):565579.CrossRefGoogle ScholarPubMed
Chess, PR, D'Angio, CT, Pryhuber, GS, Maniscalco, WM. Pathogenesis of bronchopulmonary dysplasia. Semin Perinatol. 2006;30(4):171178.CrossRefGoogle ScholarPubMed
Askie, LM, Henderson-Smart, DJ, Irwig, L, Simpson, JM. Oxygen-saturation targets and outcomes in extremely preterm infants. New Engl J Med. 2003;349:959967.CrossRefGoogle ScholarPubMed
Madan, A, Brozanski, BS, Cole, CH, Oden, NL, Cohen, G, Phelps, DL. A pulmonary score for assessing the severity of neonatal chronic lung disease. Pediatrics. 2005;115:e450457.CrossRefGoogle ScholarPubMed
Saugstad, OD. Oxygen and oxidative stress in bronchopulmonary dysplasia. J Perinat Med. 2010;38(6):571577.CrossRefGoogle ScholarPubMed
Merritt, TA, Deming, DD, Boynton, BR. The 'new' bronchopulmonary dysplasia: challenges and commentary. Semin Fetal Neonatal Med. 2009;14(6):345357.CrossRefGoogle ScholarPubMed
Wright, CJ, Kirpalani, H. Targeting inflammation to prevent bronchopulmonary dysplasia: can new insights be translated into therapies? Pediatrics. 2011;128(1):111126.CrossRefGoogle ScholarPubMed
Parad, RB, Allred, EN, Rosenfeld, WN, Davis, JM. Reduction of retinopathy of prematurity in extremely low gestational age newborns treated with recombinant human Cu/Zn superoxide dismutase. Neonatology. 2012;102(2):139144.CrossRefGoogle ScholarPubMed
Davis, JM, Parad, RB, Michele, T, Allred, E, Price, A, Rosenfeld, W. Pulmonary outcome at 1 year corrected age in premature infants treated at birth with recombinant human CuZn superoxide dismutase. Pediatrics. 2003;111(3):469476.CrossRefGoogle ScholarPubMed
Kinsella, JP, Parker, TA, Davis, JM, Abman, SH. Superoxide dismutase improves gas exchange and pulmonary hemodynamics in premature lambs. Am J Respir Crit Care Med. 2005;172(6):745749.CrossRefGoogle ScholarPubMed
Polglase, GR, Dalton, RG, Nitsos, I, et al. Pulmonary vascular and alveolar development in preterm lambs chronically colonized with Ureaplasma parvum. Am J Physiol Lung Cell Mol Physiol. 2010;299(2):L232241.CrossRefGoogle ScholarPubMed
Velten, M, Hutchinson, KR, Gorr, MW, Wold, LE, Lucchesi, PA, Rogers, LK. Systemic maternal inflammation and neonatal hyperoxia induces remodeling and left ventricular dysfunction in mice. PLoS One. 2011;6(9):e24544.CrossRefGoogle ScholarPubMed
Robin, B, Kim, YJ, Huth, J, et al. Pulmonary function in bronchopulmonary dysplasia. Pediatr Pulmonol. 2004;37(3):236242.CrossRefGoogle ScholarPubMed
Doyle, LW. Respiratory function at age 8–9 years in extremely low birthweight/very preterm children born in Victoria in 1991–1992. Pediatr Pulmonol. 2006;41(6):570576.CrossRefGoogle ScholarPubMed
Doyle, LW, Faber, B, Callanan, C, Freezer, N, Ford, GW, Davis, NM. Bronchopulmonary dysplasia in very low birth weight subjects and lung function in late adolescence. Pediatrics. 2006;118(1):108113.CrossRefGoogle ScholarPubMed
Smith, VC, Zupancic, JA, McCormick, MC, et al. Rehospitalization in the first year of life among infants with bronchopulmonary dysplasia. J Pediatr. 2004;144(6):799803.Google ScholarPubMed
Weisman, LE. Populations at risk for developing respiratory syncytial virus and risk factors for respiratory syncytial virus severity: infants with predisposing conditions. Pediatr Infect Dis J. 2003;22(2 Suppl):S3337; discussion S37-39.CrossRefGoogle ScholarPubMed
Doyle, LW, Faber, B, Callanan, C, Morley, R. Blood pressure in late adolescence and very low birth weight. Pediatrics. 2003;111(2):252257.CrossRefGoogle ScholarPubMed
Roberts, G, Anderson, PJ, Doyle, LW. Neurosensory disabilities at school age in geographic cohorts of extremely low birth weight children born between the 1970s and the 1990s. J Pediatr. 2009;154(6):829834.e1.CrossRefGoogle ScholarPubMed
Jobe, AH, Kallapur, SG. Long term consequences of oxygen therapy in the neonatal period. Semin Fetal Neonatal Med. 2010;15(4):230235.CrossRefGoogle ScholarPubMed
Patz, A, Hoeck, LE, De La Cruz, E. Studies on the effect of high oxygen administration in retrolental fibroplasia. I. Nursery observations. Am J Ophthalmol. 1952;35(9):12481253.CrossRefGoogle ScholarPubMed
Supplemental Therapeutic Oxygen for Prethreshold Retinopathy Of Prematurity (STOP-ROP), a randomized, controlled trial. I: primary outcomes. Pediatrics. 2000;105(2):295–310.CrossRefGoogle Scholar
Askie, LM, Henderson-Smart, DJ, Irwig, L, Simpson, JM. Oxygen-saturation targets and outcomes in extremely preterm infants. N Engl J Med. 2003;349(10):959967.CrossRefGoogle ScholarPubMed
Carlo, WA, Finer, NN, Walsh, MC, et al. Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med. 2010;362(21):19591969.Google ScholarPubMed
Stenson, BJ, Tarnow-Mordi, WO, Darlow, BA, et al. Oxygen saturation and outcomes in preterm infants. N Engl J Med. 2013;368(22):20942104.Google ScholarPubMed
Stevens, TP, Dylag, A, Panthagani, I, Pryhuber, G, Halterman, J. Effect of cumulative oxygen exposure on respiratory symptoms during infancy among VLBW infants without bronchopulmonary dysplasia. Pediatr Pulmonol. 2010;45(4):371379.CrossRefGoogle ScholarPubMed
Warner, BB, Stuart, LA, Papes, RA, Wispe, JR. Functional and pathological effects of prolonged hyperoxia in neonatal mice. Am J Physiol. 1998;275(1 Pt 1):L110117.Google ScholarPubMed
Bonikos, DS, Bensch, KG, Ludwin, SK, Northway, WH Jr. Oxygen toxicity in the newborn. The effect of prolonged 100 percent O2 exposure on the lungs of newborn mice. Lab Invest. 1975;32(5):619635.Google Scholar
Maniscalco, WM, Watkins, RH, Pryhuber, GS, Bhatt, A, Shea, C, Huyck, H. Angiogenic factors and alveolar vasculature: development and alterations by injury in very premature baboons. Am J Physiol Lung Cell Mol Physiol. 2002;282(4):L811823.CrossRefGoogle ScholarPubMed
Klekamp, JG, Jarzecka, K, Perkett, EA. Exposure to hyperoxia decreases the expression of vascular endothelial growth factor and its receptors in adult rat lungs. Am J Pathol. 1999;154(3):823831.CrossRefGoogle ScholarPubMed
Maniscalco, WM, Watkins, RH, Roper, JM, Staversky, R, O'Reilly, MA. Hyperoxic ventilated premature baboons have increased p53, oxidant DNA damage and decreased VEGF expression. Pediatr Res. 2005;58(3):549556.CrossRefGoogle ScholarPubMed
Le Cras, TD, Markham, NE, Tuder, RM, Voelkel, NF, Abman, SH. Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure. Am J Physiol Lung Cell Mol Physiol. 2002;283(3):L555562.CrossRefGoogle ScholarPubMed
McGrath-Morrow, SA, Cho, C, Zhen, L, Hicklin, DJ, Tuder, RM. Vascular endothelial growth factor receptor 2 blockade disrupts postnatal lung development. Am J Respir Cell Mol Biol. 2005;32(5):420427.CrossRefGoogle ScholarPubMed
Zhao, L, Wang, K, Ferrara, N, Vu, TH. Vascular endothelial growth factor co-ordinates proper development of lung epithelium and vasculature. Mech Dev. 2005;122(7–8):877886.CrossRefGoogle ScholarPubMed
Kunig, AM, Balasubramaniam, V, Markham, NE, et al. Recombinant human VEGF treatment enhances alveolarization after hyperoxic lung injury in neonatal rats. Am J Physiol Lung Cell Mol Physiol. 2005;289(4):L529535.CrossRefGoogle ScholarPubMed
Thebaud, B, Ladha, F, Michelakis, ED, et al. Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization. Circulation. 2005;112(16):24772486.CrossRefGoogle ScholarPubMed
Balasubramaniam, V, Mervis, CF, Maxey, AM, Markham, NE, Abman, SH. Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: implications for the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2007;292(5):L10731084.CrossRefGoogle ScholarPubMed
van Haaften, T, Byrne, R, Bonnet, S, et al. Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med. 2009;180(11):11311142.CrossRefGoogle ScholarPubMed
Aslam, M, Baveja, R, Liang, OD, et al. Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am J Respir Crit Care Med. 2009;180(11):11221130.CrossRefGoogle Scholar
Doyle, LW. Cardiopulmonary outcomes of extreme prematurity. Semin Perinatol. 2008;32(1):2834.CrossRefGoogle ScholarPubMed
Yee, M, White, RJ, Awad, HA, Bates, WA, McGrath-Morrow, SA, O'Reilly, MA. Neonatal hyperoxia causes pulmonary vascular disease and shortens life span in aging mice. Am J Pathol. 2011;178(6):26012610.CrossRefGoogle ScholarPubMed
Yzydorczyk, C, Comte, B, Cambonie, G, et al. Neonatal oxygen exposure in rats leads to cardiovascular and renal alterations in adulthood. Hypertension. 2008;52(5):889895.CrossRefGoogle ScholarPubMed
Yee, M, Vitiello, PF, Roper, JM, et al. Type II epithelial cells are critical target for hyperoxia-mediated impairment of postnatal lung development. Am J Physiol Lung Cell Mol Physiol. 2006;291(5):L11011111.CrossRefGoogle ScholarPubMed
Auten, RL, Mason, SN, Auten, KM, Brahmajothi, M. Hyperoxia impairs postnatal alveolar epithelial development via NADPH oxidase in newborn mice. Am J Physiol Lung Cell Mol Physiol. 2009;297(1):L134142.CrossRefGoogle ScholarPubMed
O'Reilly, MA. DNA damage and cell cycle checkpoints in hyperoxic lung injury: braking to facilitate repair. Am J Physiol Lung Cell Mol Physiol. 2001;281(2):L291305.CrossRefGoogle ScholarPubMed
Ahmed, MN, Suliman, HB, Folz, RJ, et al. Extracellular superoxide dismutase protects lung development in hyperoxia-exposed newborn mice. Am J Respir Crit Care Med. 2003;167(3):400405.CrossRefGoogle ScholarPubMed
Auten, RL, O'Reilly, MA, Oury, TD, Nozik-Grayck, E, Whorton, MH. Transgenic extracellular superoxide dismutase protects postnatal alveolar epithelial proliferation and development during hyperoxia. Am J Physiol Lung Cell Mol Physiol. 2006;290(1):L3240.CrossRefGoogle ScholarPubMed
Auten, RL, Whorton, MH, Nicholas Mason, S. Blocking neutrophil influx reduces DNA damage in hyperoxia-exposed newborn rat lung. Am J Respir Cell Mol Biol. 2002;26(4):391397.CrossRefGoogle ScholarPubMed
McGrath-Morrow, SA, Cho, C, Soutiere, S, Mitzner, W, Tuder, R. The effect of neonatal hyperoxia on the lung of p21Waf1/Cip1/Sdi1-deficient mice. Am J Respir Cell Mol Biol. 2004;30(5):635640.CrossRefGoogle ScholarPubMed
Yee, M, Buczynski, BW, O'Reilly, MA. Neonatal hyperoxia stimulates the expansion of alveolar epithelial type II cells. Am J Respir Cell Mol Biol. 2014;50(4):757766.CrossRefGoogle ScholarPubMed
O'Reilly, MA, Marr, SH, Yee, M, McGrath-Morrow, SA, Lawrence, BP. Neonatal hyperoxia enhances the inflammatory response in adult mice infected with influenza A virus. Am J Respir Crit Care Med. 2008;177(10):11031110.CrossRefGoogle ScholarPubMed
O'Reilly, MA, Yee, M, Buczynski, BW, et al. Neonatal oxygen increases sensitivity to influenza A virus infection in adult mice by suppressing epithelial expression of Ear1. Am J Pathol. 2012;181(2):441451.CrossRefGoogle ScholarPubMed
Johnston, CJ, Stripp, BR, Piedbeouf, B, et al. Inflammatory and epithelial responses in mouse strains that differ in sensitivity to hyperoxic injury. Exp Lung Res. 1998;24(2):189202.CrossRefGoogle ScholarPubMed
Tryka, AF, Witschi, H, Gosslee, DG, McArthur, AH, Clapp, NK. Patterns of cell proliferation during recovery from oxygen injury. Species differences. The Am Rev Respir Dis. 1986;133(6):10551059.Google ScholarPubMed
Buczynski, BW, Yee, M, Paige Lawrence, B, O'Reilly, MA. Lung development and the host response to influenza A virus are altered by different doses of neonatal oxygen in mice. Am J Physiol Lung Cell Mol Physiol. 2012;302(10):L10781087.CrossRefGoogle ScholarPubMed
Maduekwe, ET, Buczynski, BW, Yee, M, et al. Cumulative neonatal oxygen exposure predicts response of adult mice infected with influenza A virus. Pediatr Pulmonol. 2014.CrossRefGoogle Scholar
Petousi, N, Croft, QP, Cavalleri, GL, et al. Tibetans living at sea level have a hyporesponsive hypoxia-inducible factor system and blunted physiological responses to hypoxia. J Appl Physiol (1985). 2014;116(7):893904.CrossRefGoogle ScholarPubMed
Frisancho, AR. Developmental functional adaptation to high altitude: review. Am J Hum Biol. 2013;25:151168.CrossRefGoogle ScholarPubMed
Beall, CM, Brittenham, GM, Strohl, KP, et al. Hemoglobin concentration of high-altitude Tibetans and Bolivian Aymara. Am J Phys Anthropol. 1998;106(3):385400.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Beall, CM, Cavalleri, GL, Deng, L, et al. Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci U S A. 2010;107(25):1145911464.CrossRefGoogle ScholarPubMed
Yi, X, Liang, Y, Huerta-Sanchez, E, et al. Sequencing of 50 human exomes reveals adaptation to high altitude. Science. 2010;329(5987):7578.CrossRefGoogle ScholarPubMed
Simonson, TS, Yang, Y, Huff, CD, et al. Genetic evidence for high-altitude adaptation in Tibet. Science. 2010;329(5987):7275.CrossRefGoogle ScholarPubMed
Bigham, A, Bauchet, M, Pinto, D, et al. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data. PLoS Genet. 2010;6(9):e1001116.CrossRefGoogle ScholarPubMed
Song, D, Li, LS, Arsenault, PR, et al. Defective Tibetan PHD2 binding to p23 links high altitude adaptation to altered oxygen sensing. J Biol Chem. 2014;289(21):1465614665.CrossRefGoogle ScholarPubMed
Erzurum, SC, Ghosh, S, Janocha, AJ, et al. Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans. Proc Natl Acad Sci U S A. 2007;104(45):1759317598.CrossRefGoogle ScholarPubMed
Ambalavanan, N, Nicola, T, Hagood, J, et al. Transforming growth factor-beta signaling mediates hypoxia-induced pulmonary arterial remodeling and inhibition of alveolar development in newborn mouse lung. Am J Physiol Lung Cell Mol Physiol. 2008;295(1):L8695.CrossRefGoogle ScholarPubMed
Nicola, T, Ambalavanan, N, Zhang, W, et al. Hypoxia-induced inhibition of lung development is attenuated by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Am J Physiol Lung Cell Mol Physiol. 2011;301(1):L125134.CrossRefGoogle ScholarPubMed
Radom-Aizik, S, Zaldivar, FP, Nance, DM, Haddad, F, Cooper, DM, Adams, GR. Growth inhibition and compensation in response to neonatal hypoxia in rats. Pediatr Res. 2013;74(2):111120.CrossRefGoogle ScholarPubMed
Choudhuri, JA, Ogden, LG, Ruttenber, AJ, Thomas, DS, Todd, JK, Simoes, EA. Effect of altitude on hospitalizations for respiratory syncytial virus infection. Pediatrics. 2006;117(2):349356.CrossRefGoogle ScholarPubMed
Yan, X. Pro: all dwellers at high altitude are persons of impaired physical and mental powers. High Alt Med Biol. 2013;14(3):208211.CrossRefGoogle ScholarPubMed
Voss, JD, Allison, DB, Webber, BJ, Otto, JL, Clark, LL. Lower obesity rate during residence at high altitude among a military population with frequent migration: a quasi experimental model for investigating spatial causation. PLoS One. 2014;9(4):e93493.CrossRefGoogle ScholarPubMed
Soria, R, Julian, CG, Vargas, E, Moore, LG, Giussani, DA. Graduated effects of high-altitude hypoxia and highland ancestry on birth size. Pediatr Res. 2013;74(6):633638.CrossRefGoogle ScholarPubMed
Lumbroso, D, Lemoine, A, Gonzales, M, Villalpando, G, Seaborn, T, Joseph, V. Life-long consequences of postnatal normoxia exposure in rats raised at high altitude. J Appl Physiol. 2012;112(1):3341.CrossRefGoogle ScholarPubMed
Berner, RA, Vandenbrooks, JM, Ward, PD. Evolution. Oxygen and evolution. Science. 2007;316(5824):557558.CrossRefGoogle ScholarPubMed
Fluck, M, Webster, KA, Graham, J, Giomi, F, Gerlach, F, Schmitz, A. Coping with cyclic oxygen availability: evolutionary aspects. Integr Comp Biol. 2007;47(4):524531.CrossRefGoogle ScholarPubMed
Stamati, K, Mudera, V, Cheema, U. Evolution of oxygen utilization in multicellular organisms and implications for cell signalling in tissue engineering. J Tissue Eng. 2011;2(1):2041731411432365.CrossRefGoogle ScholarPubMed
Thannickal, VJ. Oxygen in the evolution of complex life and the price we pay. Am J Respir Cell Mol Biol. 2009;40(5):507510.CrossRefGoogle Scholar
Frazier, MR, Woods, HA, Harrison, JF. Interactive effects of rearing temperature and oxygen on the development of Drosophila melanogaster. Physiol Biochem Zool. 2001;74(5):641650.CrossRefGoogle ScholarPubMed
Kho, AT, Bhattacharya, S, Mecham, BH, Hong, J, Kohane, IS, Mariani, TJ. Expression profiles of the mouse lung identify a molecular signature of time-to-birth. Am J Respir Cell Mol Biol. 2009;40(1):4757.CrossRefGoogle ScholarPubMed
Fanucchi, MV, Plopper, CG, Evans, MJ, et al. Cyclic exposure to ozone alters distal airway development in infant rhesus monkeys. Am J Physiol Lung Cell Mol Physiol. 2006;291(4):L644650.CrossRefGoogle ScholarPubMed
Lee, D, Wallis, C, Van Winkle, LS, Wexler, AS. Disruption of tracheobronchial airway growth following postnatal exposure to ozone and ultrafine particles. Inhal Toxicol. 2011;23(9):520531.CrossRefGoogle ScholarPubMed
Gabehart, K, Correll, KA, Yang, J, et al. Transcriptome profiling of the newborn mouse lung response to acute ozone exposure. Toxicol Sci. 2014;138(1):175190.CrossRefGoogle ScholarPubMed
Auten, RL, Gilmour, MI, Krantz, QT, Potts, EN, Mason, SN, Foster, WM. Maternal diesel inhalation increases airway hyperreactivity in ozone-exposed offspring. Am J Respir Cell Mol Biol. 2012;46(4):454460.CrossRefGoogle ScholarPubMed
Sekhon, HS, Keller, JA, Benowitz, NL, Spindel, ER. Prenatal nicotine exposure alters pulmonary function in newborn rhesus monkeys. Am J Respir Crit Care Med. 2001;164(6):989994.CrossRefGoogle ScholarPubMed
McGrath-Morrow, S, Rangasamy, T, Cho, C, et al. Impaired lung homeostasis in neonatal mice exposed to cigarette smoke. Am J Respir Cell Mol Biol. 2008;38(4):393400.CrossRefGoogle ScholarPubMed
McGrath-Morrow, SA, Lauer, T, Collaco, JM, et al. Neonatal hyperoxia contributes additively to cigarette smoke-induced chronic obstructive pulmonary disease changes in adult mice. Am J Respir Cell Mol Biol. 2011;45(3):610616.CrossRefGoogle ScholarPubMed
Van Winkle, LS, Murphy, SR, Boetticher, MV, VandeVoort, CA. Fetal exposure of rhesus macaques to bisphenol a alters cellular development of the conducting airway by changing epithelial secretory product expression. Environ Health Perspect. 2013;121(8):912918.CrossRefGoogle ScholarPubMed
Roy, A, Bauer, SM, Lawrence, BP. Developmental exposure to bisphenol A modulates innate but not adaptive immune responses to influenza A virus infection. PLoS One. 2012;7(6):e38448.CrossRefGoogle Scholar
Midoro-Horiuti, T, Tiwari, R, Watson, CS, Goldblum, RM. Maternal bisphenol a exposure promotes the development of experimental asthma in mouse pups. Environ Health Perspect. 2010;118(2):273277.CrossRefGoogle ScholarPubMed
Bauer, SM, Roy, A, Emo, J, Chapman, TJ, Georas, SN, Lawrence, BP. The effects of maternal exposure to bisphenol A on allergic lung inflammation into adulthood. Toxicol Sci. 2012;130(1):8293.CrossRefGoogle ScholarPubMed
Ledon-Rettig, CC, Pfennig, DW. Emerging model systems in eco-evo-devo: the environmentally responsive spadefoot toad. Evol Dev. 2011;13(4):391400.CrossRefGoogle ScholarPubMed
Cook, LM, Saccheri, IJ. The peppered moth and industrial melanism: evolution of a natural selection case study. Heredity. 2013;110(3):207212.CrossRefGoogle ScholarPubMed
Scheinfeldt, LB, Tishkoff, SA. Recent human adaptation: genomic approaches, interpretation and insights. Nat Rev Genet. 2013;14(10):692702.CrossRefGoogle ScholarPubMed
Barletta, KE, Cagnina, RE, Wallace, KL, Ramos, SI, Mehrad, B, Linden, J. Leukocyte compartments in the mouse lung: distinguishing between marginated, interstitial, and alveolar cells in response to injury. J Immunol Methods. 2012;375(1–2):100110.CrossRefGoogle ScholarPubMed
Streets, AM, Zhang, X, Cao, C, et al. Microfluidic single-cell whole-transcriptome sequencing. Proc Natl Acad Sci U S A. 2014;111(19):70487053.CrossRefGoogle ScholarPubMed
Treutlein, B, Brownfield, DG, Wu, AR, et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature. 2014;509(7500):371375.CrossRefGoogle ScholarPubMed
Rackley, CR, Stripp, BR. Building and maintaining the epithelium of the lung. J Clin Invest. 2012;122(8):27242730.CrossRefGoogle ScholarPubMed
Carvalho, TC, Peters, JI, Williams, RO III. Influence of particle size on regional lung deposition–what evidence is there? Int J Pharm. 2011;406(1–2):110.CrossRefGoogle Scholar
Hanahan, D, Weinberg, RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646674.CrossRefGoogle ScholarPubMed
Luch, A. Nature and nurture – lessons from chemical carcinogenesis. Nat Rev Cancer. 2005;5(2):113125.CrossRefGoogle ScholarPubMed
Minamoto, T, Mai, M, Ronai, Z. Environmental factors as regulators and effectors of multistep carcinogenesis. Carcinogenesis. 1999;20(4):519527.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×