Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-30T05:32:27.564Z Has data issue: false hasContentIssue false

Section I - Techniques and Practical Considerations

Published online by Cambridge University Press:  07 August 2021

Mirna Lechpammer
Affiliation:
New York University School of Medicine
Marc Del Bigio
Affiliation:
University of Manitoba, Canada
Rebecca Folkerth
Affiliation:
New York University School of Medicine
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Redline, RW, Boyd, T, Campbell, V, Hyde, S, Kaplan, C, Khong, TY, Prashner, HR, Waters, BL, Society for Pediatric Pathology, Perinatal Section, Maternal Vascular Perfusion Nosology Committee. Maternal vascular underperfusion: nosology and reproducibility of placental reaction patterns. Pediatr Dev Pathol 2004;7(3):237–49.Google Scholar
Korzeniewski, SJ, Romero, R, Chaiworapongsa, T, Chaemsaithong, P, Kim, CJ, Kim, YM, Kim, JS, Yoon, BH, Hassan, SS, Yeo, L. Maternal plasma angiogenic index-1 (placental growth factor/soluble vascular endothelial growth factor receptor-1) is a biomarker for the burden of placental lesions consistent with uteroplacental underperfusion: a longitudinal case-cohort study. Am J Obstet Gynecol 2016;214:629.e1629.e17.Google Scholar
Himmelmann, K, Ahlin, K, Jacobsson, B, Cans, C, Thorsen, P. Risk factors for cerebral palsy in children born at term. Acta Obstet Gynecol Scand 2011;90:1070–81.Google Scholar
Redline, RW. Severe fetal placental vascular lesions in term infants with neurologic impairment. Am J Obstet Gynecol 2005;192:452–7.Google Scholar
Redline, RW, Wilson-Costello, D, Borawski, E, Fanaroff, AA, Hack, M. Placental lesions associated with neurologic impairment and cerebral palsy in very low-birth-weight infants. Arch Pathol Lab Med 1998;122:1091–8.Google Scholar
Redline, RW. Disorders of placental circulation and the fetal brain. Clin Perinatol 2009;36:549–59.Google Scholar
O’Leary, H, Gregas, MC, Limperopoulos, C, et al. Elevated cerebral pressure passivity is associated with prematurity-related intracranial hemorrhage. Pediatrics 2009;124:302–9.Google Scholar
Folkerth, RD. Neuropathologic substrate of cerebral palsy. J Child Neurol 2005;20:940–9.CrossRefGoogle ScholarPubMed

References

Graziani, G, Tal, S, Adelman, A, Kugel, C, Bdolah-Abram, T, Krispin, A. Usefulness of unenhanced postmortem computed tomography – Findings in postmortem non-contrast computed tomography of the head, neck and spine compared to traditional medicolegal autopsy. J Forensic Leg Med 2018;55:105–11.Google Scholar
Norman, W, Jawad, N, Jones, R, Taylor, AM, Arthurs, OJ. Perinatal and paediatric post-mortem magnetic resonance imaging (PMMR): sequences and technique. Br J Radiol 2016;89:1062–74.Google Scholar
Birkl, C, Langkammer, C, Golob-Schwartzl, N, Leoni, M, Haybaeck, J, Goessler, W, Fazekas, F, Ropele, S. Effects of formalin fixation and temperature on MR relaxation times in the human brain. NMR Biomed 2016;29:458–65.CrossRefGoogle ScholarPubMed
Tashiro, K, Shiotani, S, Kobayashi, T, Kaga, K, Saito, H, Someya, S, Miyamoto, K, Hayakawa, H. Cerebral relaxation times from postmortem MR imaging of adults. Magn Reason Med Sci 2015;14:51–6.Google Scholar
Panigrahy, A, Wisnowski, JL, Furtado, A, Lepore, N, Paquette, L, Bluml, S. Neuroimaging biomarkers of preterm brain injury: toward developing the preterm connectome. Pediatr Radiol. 2012;42 Suppl 1:S3361.Google Scholar

References

Siebert, JR. Central Nervous System Manifestations of Chromosomal Change. In: Adle-Biassette, H, Harding, BN, Golden, JA, eds. Developmental Neuropathology, 2nd ed. Hoboken, NJ: Wiley Blackwell, 2018:111.Google Scholar
Graham, JM, Jr., Sanchez-Lara, PA, eds. Smith’s Recognizable Patterns of Human Deformation, 4th ed. Philadelphia: Elsevier, 2016.Google Scholar
Winter, RM, Knowles, SAS, Bieber, FR, Baraitser, M. The Malformed Fetus and Stillbirth: A Diagnostic Approach. Chichester: John Wiley and Sons, 1988.Google Scholar
Archie JG, Collins JS, Lebel RR. Quantitative standards for fetal and neonatal autopsy. Am J Clin Pathol. 2006;126(2):256–65.Google Scholar

References

Holder, AR, Levine, RJ. Informed consent for research on specimens obtained at autopsy or surgery: a case study in the overprotection of human subjects. Clin Res. 1976;24(2):6877.Google Scholar
McGuire, AL, Moore, Q, Majumder, M, Walkiewicz, M, Eng, CM, Belmont, JW, et al. The ethics of conducting molecular autopsies in cases of sudden death in the young. Genome Res. 2016;26(9):1165–9.Google Scholar
Roberts, LW, Nolte, KB, Warner, TD, McCarty, T, Rosenbaum, LS, Zumwalt, R. Perceptions of the ethical acceptability of using medical examiner autopsies for research and education: a survey of forensic pathologists. Arch Pathol Lab Med. 2000;124(10):1485–95.Google Scholar
Walker, B. Inquiry into matters arising from the post mortem and anatomical examination practices of the Institute of Forensic Medicine. Sydney: The Government of the State of New South Wales; 2001.Google Scholar
Kurosu, M, Mukai, T, Ohno, Y. Regulations and guidelines on handling human materials obtained from medico-legal autopsy for use in research. Leg Med (Tokyo). 2003;5 Suppl 1:S76–S8.Google Scholar
Sheach Leith, VM. Consent and nothing but consent? The organ retention scandal. Sociol Health Illn. 2007;29(7):1023–42.Google Scholar
Sque, M, Long, T, Payne, S, Roche, WR, Speck, P. The UK postmortem organ retention crisis: a qualitative study of its impact on parents. J R Soc Med. 2008;101(2):71–7.Google Scholar
Turnbull, A, Osborn, M, Nicholas, N. Hospital autopsy: endangered or extinct? J Clin Pathol. 2015;68(8):601–4.CrossRefGoogle ScholarPubMed
Khong, TY, Arbuckle, SM. Perinatal pathology in Australia after Alder Hey. J Paediatr Child Health. 2002;38(4):409–11.Google Scholar
Khong, TY, Tanner, AR. Foetal and neonatal autopsy rates and use of tissue for research: the influence of ‘organ retention’ controversy and new consent process. J Paediatr Child Health. 2006;42(6):366–9.Google Scholar
Underwood, JC. The impact on histopathology practice of new human tissue legislation in the UK. Histopathology. 2006;49(3):221–8.Google Scholar
Scott, IS, MacDonald, AW. An evaluation of overnight fixation to facilitate neuropathological examination in Coroner’s autopsies: our experience of over 200 cases. J Clin Pathol. 2013;66(1):50–3.Google Scholar
Thayyil, S. Less invasive autopsy: an evidenced based approach. Arch Dis Child. 2011;96(7):681–7.Google Scholar
Shelmerdine, SC, Arthurs, OJ, Gilpin, I, Norman, W, Jones, R, Taylor, AM, et al. Is traditional perinatal autopsy needed after detailed fetal ultrasound and post-mortem MRI? Prenat Diagn. 2019;39(9):818–29.Google Scholar
Hellkvist, A, Wikstrom, J, Mulic-Lutvica, A, Ericson, K, Eriksson-Falkerby, C, Lindgren, P, et al. Postmortem magnetic resonance imaging vs autopsy of second trimester fetuses terminated due to anomalies. Acta Obstet Gynecol Scand. 2019;98(7):865–876.Google Scholar
McPherson, E, Nestoridi, E, Heinke, D, Roberts, DJ, Fretts, R, Yazdy, MM, et al. Alternatives to autopsy for fetal and early neonatal (perinatal) deaths: insights from the Wisconsin Stillbirth Service Program. Birth Defects Res. 2017;109(18):1430–41.Google Scholar
Lewis, C, Riddington, M, Hill, M, Arthurs, OJ, Hutchinson, JC, Chitty, LS, et al. Availability of less invasive prenatal, perinatal and paediatric autopsy will improve uptake rates: a mixed methods study with bereaved parents. BJOG. 2019;126(6):745–753.CrossRefGoogle Scholar
Fallet-Bianco, C, De Bie, I, Desilets, V, Oligny, LL. No. 365-Fetal and perinatal autopsy in prenatally diagnosed fetal abnormalities with normal chromosome analysis. J Obstet Gynaecol Can. 2018;40(10):1358–66 e5.Google Scholar
Simonds, VW, Garroutte, EM, Buchwald, D. Health literacy and informed consent materials: designed for documentation, not comprehension of health research. J Health Commun. 2017;22(8):682–91.Google Scholar
Beskow, LM, Lin, L, Dombeck, CB, Gao, E, Weinfurt, KP. Improving biobank consent comprehension: a national randomized survey to assess the effect of a simplified form and review/retest intervention. Genet Med. 2017;19(5):505–12.Google Scholar
Foe, G, Larson, EL. Reading level and comprehension of research consent forms: an integrative review. J Empir Res Hum Res Ethics. 2016;11(1):3146.Google Scholar
Eka, I, Rowan, C, Osborn, M. Mind the gap: are NHS trusts falling short of recommended standards for consent to autopsy? J Clin Pathol. 2014;67(1):1013.Google Scholar
Heazell, AE, McLaughlin, MJ, Schmidt, EB, Cox, P, Flenady, V, Khong, TY, et al. A difficult conversation? The views and experiences of parents and professionals on the consent process for perinatal postmortem after stillbirth. BJOG. 2012;119(8):987–97.Google Scholar
Henry, J, Nicholas, N. Dead in the water – are we killing the hospital autopsy with poor consent practices? J R Soc Med. 2012;105(7):288–95.CrossRefGoogle ScholarPubMed
Schirmann, A, Boyle, FM, Horey, D, Siassakos, D, Ellwood, D, Rowlands, I, et al. Understanding mothers’ decision-making needs for autopsy consent after stillbirth: Framework analysis of a large survey. Birth. 2018;45(3):255–62.Google Scholar
Lane, M, Vercler, CJ. Is consent to autopsy necessary? Cartesian dualism in medicine and its limitations. AMA J Ethics. 2016;18(8):771–8.Google Scholar
Odendaal, HJ, Elliott, A, Kinney, HC, Human, M, Gaspar, D, Petersen, D, et al. Consent for autopsy research for unexpected death in early life. Obstet Gynecol. 2011;117(1):167–71.Google Scholar
Cohen, MC, Blakey, S, Donn, T, McGovern, S, Parry, L. An audit of parents’/guardians’ wishes recorded after coronial autopsies in cases of sudden unexpected death in infancy: issues raised and future directions. Med Sci Law. 2009;49(3):179–84.CrossRefGoogle ScholarPubMed
Elliot, JG, Ford, DL, Beard, JF, Fitzgerald, KN, Robinson, PJ, James, AL. Informed consent for the study of retained tissues from postmortem examination following sudden infant death. J Med Ethics. 2008;34(10):742–6.Google Scholar
Zarbo, RJ, Baker, PB, Howanitz, PJ. Quality assurance of autopsy permit form information, timeliness of performance, and issuance of preliminary report. A College of American Pathologists Q-Probes study of 5434 autopsies from 452 institutions. Arch Pathol Lab Med. 1996;120(4):346–52.Google Scholar
Krinsky, CS, Lathrop, SL, Reichard, RR. A policy for the retention and extended examination of organs at autopsy. J Forensic Sci. 2010;55(2):418–22.Google Scholar
Krook, MA, Chen, HZ, Bonneville, R, Allenby, P, Roychowdhury, S. Rapid research autopsy: piecing the puzzle of tumor heterogeneity. Trends Cancer. 2019;5(1):15.CrossRefGoogle ScholarPubMed
Alabran, JL, Hooper, JE, Hill, M, Smith, SE, Spady, KK, Davis, LE, et al. Overcoming autopsy barriers in pediatric cancer research. Pediatr Blood Cancer. 2013;60(2):204–9.Google Scholar
Pentz, RD, Cohen, CB, Wicclair, M, DeVita, MA, Flamm, AL, Youngner, SJ, et al. Ethics guidelines for research with the recently dead. Nat Med. 2005;11(11):1145–9.Google Scholar
Hakimian, R, Korn, D. Ownership and use of tissue specimens for research. JAMA. 2004;292(20):2500–5.Google Scholar
Harris, J. Law and regulation of retained organs: the ethical issues. Leg Stud. 2002;22(4):527–49.Google ScholarPubMed
Harris, J. Scientific research is a moral duty. J Med Ethics. 2005;31(4):242–8.Google Scholar
Stjernschantz Forsberg, J, Hansson, MG, Eriksson, S. Why participating in (certain) scientific research is a moral duty. J Med Ethics. 2014;40(5):325–8.Google Scholar

References

Kim, KS. Acute bacterial meningitis in infants and children. Lancet Infect Dis. 2010;10(1):3242.Google Scholar
Kowalsky, RH, Jaffe, DM. Bacterial meningitis post-PCV7: declining incidence and treatment. Pediatr Emerg Care. 2013;29(6):758–66; quiz 767.Google Scholar
Ouchenir, L, Renaud, C, Khan, S, Bitnun, A, Boisvert, A-A, McDonald, J, et al. The epidemiology, management, and outcomes of bacterial meningitis in infants. Pediatrics. 2017;140(1).Google Scholar
Simonsen, KA, Anderson-Berry, AL, Delair, SF, Davies, HD. Early-onset neonatal sepsis. Clin Microbiol Rev. 2014;27(1):2147.Google Scholar
Heath, PT, Okike, IO, Oeser, C. Neonatal meningitis: can we do better? Adv Exp Med Biol. 2011;719:1124.Google Scholar
Bundy, LM, Noor, A. Neonatal Meningitis. StatPearls. Treasure Island (FL): StatPearls Publishing; 2019.Google Scholar
Furyk, JS, Swann, O, Molyneux, E. Systematic review: neonatal meningitis in the developing world. Trop Med Int Health. 2011;16(6):672–9.Google Scholar
Arora, N, Sadovsky, Y, Dermody, TS, Coyne, CB. Microbial Vertical Transmission during Human Pregnancy. Cell Host Microbe. 2017;21(5):561–7.Google Scholar
Madrid, L, Varo, R, Sitoe, A, Bassat, Q. Congenital and perinatally-acquired infections in resource-constrained settings. Expert Rev Anti Infect Ther. 2016;14(9):845–61.Google Scholar
Muller, WJ. Treatment of perinatal viral infections to improve neurologic outcomes. Pediatr Res. 2017;81(1–2):162–9.Google Scholar
de Crom, SCM, Rossen, JWA, van Furth, AM, Obihara, CC. Enterovirus and parechovirus infection in children: a brief overview. Eur J Pediatr. 2016;175(8):1023–9.Google Scholar
Moylett, EH. Neonatal Candida meningitis. Semin Pediatr Infect Dis. 2003;14(2):115–22.Google Scholar
McCarthy, MW, Walsh, TJ. Molecular diagnosis of invasive mycoses of the central nervous system. Expert Rev Mol Diagn. 2017;17(2):129–39.Google Scholar
Miller, JM, Binnicker, MJ, Campbell, S, Carroll, KC, Chapin, KC, Gilligan, PH, et al. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2018 update by the infectious diseases society of america and the american society for microbiology. Clin Infect Dis. 2018;67(6):e194.CrossRefGoogle Scholar
World Health Organization. Laboratory methods for the diagnosis of meningitis, 2nd edition [Internet]. 2011 [cited 2019 Mar 8]. Available from: www.cdc.gov/meningitis/bacterial.htmlGoogle Scholar
Conly, JM, Ronald, AR. Cerebrospinal fluid as a diagnostic body fluid. Am J Med. 1983;75(1B):102–8.Google Scholar
Gray, LD, Fedorko, DP. Laboratory diagnosis of bacterial meningitis. Clin Microbiol Rev. 1992;5(2):130–45.Google Scholar
Ku, LC, Boggess, KA, Cohen-Wolkowiez, M. Bacterial meningitis in infants. Clin Perinatol. 2015;42(1):2945.CrossRefGoogle ScholarPubMed
Jerrard, DA, Hanna, JR, Schindelheim, GL. Cerebrospinal fluid. J Emerg Med. 2001;21(2):171–8.CrossRefGoogle ScholarPubMed
Bartholomew, JW, Mittwer, T. The Gram stain. Bacteriol Rev. 1952;16(1):129.Google Scholar
Aryal, S. Acid-Fast Stain- Principle, Procedure, Interpretation and Examples [Internet]. 2018 [cited 2019 Mar 8]. Available from: https://microbiologyinfo.com/acid-fast-stain-principle-procedure-interpretation-and-examples/Google Scholar
Guarner, J, Brandt, ME. Histopathologic diagnosis of fungal infections in the 21st century. Clin Microbiol Rev. 2011;24(2):247–80.Google Scholar
Lazcano, O, Speights, VO, Strickler, JG, Bilbao, JE, Becker, J, Diaz, J. Combined histochemical stains in the differential diagnosis of Cryptococcus neoformans. Mod Pathol. 1993;6(1):80–4.Google Scholar
Bishop, JA, Nelson, AM, Merz, WG, Askin, FB, Riedel, S. Evaluation of the detection of melanin by the Fontana-Masson silver stain in tissue with a wide range of organisms including Cryptococcus. Hum Pathol. 2012;43(6):898903.Google Scholar
Grocott, RG. A stain for fungi in tissue sections and smears. Am J Clin Pathol. 1955;25(8):975–9.Google Scholar
Kain, R. Histopathology. Methods Mol Biol. 2017;1508:185–93.Google Scholar
McManus, JFA. Histological and histochemical uses of periodic acid. Stain Technol. 1948;23(3):99108.Google Scholar
Hageage, GJ, Harrington, BJ. Use of calcofluor white in clinical mycology. Lab Med. 1984;15(2):109–12.Google Scholar
Barcia, JJ. The Giemsa stain: its history and applications. Int J Surg Pathol. 2007;15(3):292–6.CrossRefGoogle ScholarPubMed
Ochola, LB, Vounatsou, P, Smith, T, Mabaso, MLH, Newton, CRJC. The reliability of diagnostic techniques in the diagnosis and management of malaria in the absence of a gold standard. Lancet Infect Dis. 2006;6(9):582–8.Google Scholar
Singhi, P, Saini, AG. Fungal and parasitic CNS infections. Indian J Pediatr. 2019;86(1):8390.Google Scholar
Montoya, JG. Laboratory diagnosis of Toxoplasma gondii infection and toxoplasmosis. J Infect Dis. 2002;185 Suppl 1:S7382.Google Scholar
CDC – DPDx - Laboratory identification of parasites of public health concern [Internet]. [cited 2019 Mar 16]. Available from: www.cdc.gov/dpdx/index.htmlGoogle Scholar
Steiner, I, Budka, H, Chaudhuri, A, Koskiniemi, M, Sainio, K, Salonen, O, et al. Viral encephalitis: a review of diagnostic methods and guidelines for management. Eur J Neurol. 2005;12(5):331–43.Google Scholar
Levin, MJ, Weinberg, A, Schmid, DS. Herpes Simplex Virus and Varicella-Zoster Virus. Microbiol Spectr. 2016;4(3).Google Scholar
Visvesvara, GS, Moura, H, Schuster, FL. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol Med Microbiol. 2007;50(1):126.CrossRefGoogle ScholarPubMed
Moïsi, JC, Saha, SK, Falade, AG, Njanpop-Lafourcade, B-M, Oundo, J, Zaidi, AKM, et al. Enhanced diagnosis of pneumococcal meningitis with use of the Binax NOW immunochromatographic test of Streptococcus pneumoniae antigen: a multisite study. Clin Infect Dis. 2009;48 Suppl 2:S4956.Google Scholar
Tang, MW, Clemons, KV, Katzenstein, DA, Stevens, DA. The cryptococcal antigen lateral flow assay: A point-of-care diagnostic at an opportune time. Crit Rev Microbiol. 2016;42(4):634–42.Google Scholar
Eyzaguirre, E, Haque, AK. Application of Immunohistochemistry to Infections. Arch Pathol Lab Med. 2008;132(3):424–31.Google Scholar
Weinbergerova, B, Kocmanova, I, Racil, Z, Mayer, J. Serological approaches. Methods Mol Biol. 2017;1508:209–21.CrossRefGoogle ScholarPubMed
Bahr, NC, Boulware, DR. Methods of rapid diagnosis for the etiology of meningitis in adults. Biomark Med. 2014;8(9):1085–103.Google Scholar
Perfect, JR. Fungal diagnosis: how do we do it and can we do better? Curr Med Res Opin. 2013;29 Suppl 4:311.Google Scholar
Johnson, RH, Einstein, HE. Coccidioidal meningitis. Clin Infect Dis. 2006;42(1):103–7.Google Scholar
Frickmann, H, Zautner, AE, Moter, A, Kikhney, J, Hagen, RM, Stender, H, et al. Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: a review. Crit Rev Microbiol. 2017;43(3):263–93.CrossRefGoogle ScholarPubMed
Poppert, S, Essig, A, Stoehr, B, Steingruber, A, Wirths, B, Juretschko, S, et al. Rapid diagnosis of bacterial meningitis by real-time PCR and fluorescence in situ hybridization. J Clin Microbiol. 2005;43(7):3390–7.Google Scholar
Weiss, LM, Chen, Y-Y. EBER in situ hybridization for Epstein-Barr virus. Methods Mol Biol. 2013;999:223–30.Google Scholar
Procop, GW, Beck, RC, Pettay, JD, Kohn, DJ, Tuohy, MJ, Yen-Lieberman, B, et al. JC virus chromogenic in situ hybridization in brain biopsies from patients with and without PML. Diagn Mol Pathol. 2006;15(2):70–3.CrossRefGoogle ScholarPubMed
Mackay, IM, Arden, KE, Nitsche, A. Real-time PCR in virology. Nucleic Acids Res. 2002;30(6):1292–305.Google Scholar
Bookstaver, PB, Mohorn, PL, Shah, A, Tesh, LD, Quidley, AM, Kothari, R, et al. Management of viral central nervous system infections: A primer for clinicians. J Cent Nerv Syst Dis. 2017;9:1179573517703342.Google Scholar
Hanson, KE, Couturier, MR. Multiplexed molecular diagnostics for respiratory, gastrointestinal, and central nervous system infections. Clin Infect Dis. 2016;63(10):1361–7.Google ScholarPubMed
Fakruddin, M, Mannan, KSB, Chowdhury, A, Mazumdar, RM, Hossain, MN, Islam, S, et al. Nucleic acid amplification: Alternative methods of polymerase chain reaction. J Pharm Bioallied Sci. 2013;5(4):245–52.Google Scholar
Monis, PT, Giglio, S. Nucleic acid amplification-based techniques for pathogen detection and identification. Infect Genet Evol. 2006;6(1):212.CrossRefGoogle ScholarPubMed
Buchan, BW, Ledeboer, NA. Emerging technologies for the clinical microbiology laboratory. Clin Microbiol Rev. 2014;27(4):783822.CrossRefGoogle ScholarPubMed
Tomita, N, Mori, Y, Kanda, H, Notomi, T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc. 2008;3(5):877–82.Google Scholar
Notomi, T, Okayama, H, Masubuchi, H, Yonekawa, T, Watanabe, K, Amino, N, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):E63.Google Scholar
Kaneko, H, Iida, T, Aoki, K, Ohno, S, Suzutani, T. Sensitive and rapid detection of herpes simplex virus and varicella-zoster virus DNA by loop-mediated isothermal amplification. J Clin Microbiol. 2005;43(7):3290–6.Google Scholar
Seki, M, Kilgore, PE, Kim, EJ, Ohnishi, M, Hayakawa, S, Kim, DW. Loop-mediated isothermal amplification methods for diagnosis of bacterial meningitis. Front Pediatr. 2018;6:57.Google Scholar
Vincent, M, Xu, Y, Kong, H. Helicase-dependent isothermal DNA amplification. EMBO Rep. 2004;5(8):795800.Google Scholar
Toley, BJ, Covelli, I, Belousov, Y, Ramachandran, S, Kline, E, Scarr, N, et al. Isothermal strand displacement amplification (iSDA): a rapid and sensitive method of nucleic acid amplification for point-of-care diagnosis. Analyst. 2015;140(22):7540–9.Google Scholar
Qian, C, Wang, R, Wu, H, Ji, F, Wu, J. Nicking enzyme-assisted amplification (NEAA) technology and its applications: A review. Anal Chim Acta. 2019;1050:115.Google Scholar
Lefterova, MI, Suarez, CJ, Banaei, N, Pinsky, BA. Next-generation sequencing for infectious disease diagnosis and management: a report of the Association for Molecular Pathology. J Mol Diagn. 2015;17(6):623–34.Google Scholar
Wilson, MR, Naccache, SN, Samayoa, E, Biagtan, M, Bashir, H, Yu, G, et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing. N Engl J Med. 2014;370(25):2408–17.CrossRefGoogle ScholarPubMed
Chiu, CY. Viral pathogen discovery. Curr Opin Microbiol. 2013;16(4):468–78.CrossRefGoogle ScholarPubMed
Hou, Y, Zhang, X, Hou, X, Wu, R, Wang, Y, He, X, et al. Rapid pathogen identification using a novel microarray-based assay with purulent meningitis in cerebrospinal fluid. Sci Rep. 2018;8(1):15965.Google Scholar
Boriskin, YS, Rice, PS, Stabler, RA, Hinds, J, Al-Ghusein, H, Vass, K, et al. DNA microarrays for virus detection in cases of central nervous system infection. J Clin Microbiol. 2004;42(12):5811–8.Google Scholar
Zhou, L, Wu, R, Shi, X, Feng, D, Feng, G, Yang, Y, et al. Simultaneous detection of five pathogens from cerebrospinal fluid specimens using luminex technology. Int J Environ Res Public Health. 2016;13(2):193.Google Scholar
He, T, Kaplan, S, Kamboj, M, Tang, Y-W. Laboratory diagnosis of central nervous system infection. Curr Infect Dis Rep. 2016;18(11):35.CrossRefGoogle ScholarPubMed
Patel, R. New developments in clinical bacteriology laboratories. Mayo Clin Proc. 2016;91(10):1448–59.Google Scholar
Bhatia, NS, Farrell, JJ, Sampath, R, Ranken, R, Rounds, MA, Ecker, DJ, et al. Identification of Streptococcus intermedius central nervous system infection by use of PCR and electrospray ionization mass spectrometry. J Clin Microbiol. 2012;50(12):4160–2.CrossRefGoogle ScholarPubMed
Nagalingam, S, Lisgaris, M, Rodriguez, B, Jacobs, MR, Lederman, M, Salata, RA, et al. Identification of occult Fusobacterium nucleatum central nervous system infection by use of PCR-electrospray ionization mass spectrometry. J Clin Microbiol. 2014;52(9):3462–4.Google Scholar
Lévêque, N, Legoff, J, Mengelle, C, Mercier-Delarue, S, N’guyen, Y, Renois, F, et al. Virological diagnosis of central nervous system infections by use of PCR coupled with mass spectrometry analysis of cerebrospinal fluid samples. J Clin Microbiol. 2014;52(1):212–7.Google Scholar
Chávez-Bueno, S, McCracken, GH. Bacterial meningitis in children. Pediatr Clin North Am. 2005;52(3):795810, vii.Google Scholar
van Toorn, R, Solomons, R. Update on the diagnosis and management of tuberculous meningitis in children. Semin Pediatr Neurol. 2014;21(1):1218.Google Scholar
Waggoner, JJ, Pinsky, BA. Molecular diagnostics for human leptospirosis. Curr Opin Infect Dis. 2016;29(5):440–5.Google Scholar
Lipsett, SC, Nigrovic, LE. Diagnosis of Lyme disease in the pediatric acute care setting. Curr Opin Pediatr. 2016;28(3):287–93.Google Scholar
Waites, KB. What’s new in diagnostic testing and treatment approaches for Mycoplasma pneumoniae infections in children? Adv Exp Med Biol. 2011;719:4757.Google Scholar
Anzivino, E, Fioriti, D, Mischitelli, M, Bellizzi, A, Barucca, V, Chiarini, F, et al. Herpes simplex virus infection in pregnancy and in neonate: status of art of epidemiology, diagnosis, therapy and prevention. Virol J. 2009;6:40.Google Scholar
Pinninti, SG, Kimberlin, DW. Neonatal herpes simplex virus infections. Semin Perinatol. 2018;42(3):168–75.Google Scholar
Luck, SE, Wieringa, JW, Blázquez-Gamero, D, Henneke, P, Schuster, K, Butler, K, et al. Congenital cytomegalovirus: a European expert consensus statement on diagnosis and management. Pediatr Infect Dis J. 2017;36(12):1205–13.Google Scholar
Avgil, M, Ornoy, A. Herpes simplex virus and Epstein-Barr virus infections in pregnancy: consequences of neonatal or intrauterine infection. Reprod Toxicol. 2006;21(4):436–45.Google Scholar
Celletti, F, Sherman, G, Mazanderani, AH. Early infant diagnosis of HIV: review of current and innovative practices. Curr Opin HIV AIDS. 2017;12(2):112–6.Google Scholar
Schwartz, KL, Richardson, SE, MacGregor, D, Mahant, S, Raghuram, K, Bitnun, A. Adenovirus-associated central nervous system disease in children. J Pediatr. 2019;205:130–7.Google Scholar
Pinto, M, Dobson, S. BK and JC virus: a review. J Infect. 2014;68 Suppl 1:S2-8.Google Scholar
Agut, H, Bonnafous, P, Gautheret-Dejean, A. Laboratory and clinical aspects of human herpesvirus 6 infections. Clin Microbiol Rev. 2015;28(2):313–35.CrossRefGoogle ScholarPubMed
Tripathi, N, Watt, K, Benjamin, DK. Treatment and prophylaxis of invasive candidiasis. Semin Perinatol. 2012;36(6):416–23.Google Scholar
Fanella, S, Skinner, S, Trepman, E, Embil, JM. Blastomycosis in children and adolescents: a 30-year experience from Manitoba. Med Mycol. 2011;49(6):627–32.Google Scholar
Saccente, M, Woods, GL. Clinical and laboratory update on blastomycosis. Clin Microbiol Rev. 2010;23(2):367–81.Google Scholar
Lamoth, F, Calandra, T. Early diagnosis of invasive mould infections and disease. J Antimicrob Chemother. 2017;72(suppl_1):i1928.Google Scholar
Yansouni, CP, Bottieau, E, Lutumba, P, Winkler, AS, Lynen, L, Büscher, P, et al. Rapid diagnostic tests for neurological infections in central Africa. Lancet Infect Dis. 2013;13(6):546–58.Google Scholar
Carpio, A, Romo, ML, Parkhouse, RME, Short, B, Dua, T. Parasitic diseases of the central nervous system: lessons for clinicians and policy makers. Expert Rev Neurother. 2016;16(4):401–14.Google Scholar
Qvarnstrom, Y, Visvesvara, GS, Sriram, R, da Silva, AJ. Multiplex real-time PCR assay for simultaneous detection of Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri. J Clin Microbiol. 2006;44(10):3589–95.CrossRefGoogle ScholarPubMed
Rodriguez, S, Wilkins, P, Dorny, P. Immunological and molecular diagnosis of cysticercosis. Pathog Glob Health. 2012;106(5):286–98.Google Scholar
Gavin, PJ, Shulman, ST. Raccoon roundworm (Baylisascaris procyonis). Pediatr Infect Dis J. 2003;22(7):651–2.Google Scholar
Lv, S, Zhou, X-N, Andrews, JR. Eosinophilic meningitis caused by angiostrongylus cantonensis. ACS Chem Neurosci. 2017;8(9):1815–16.Google Scholar
Tsang, VC, Wilkins, PP. Immunodiagnosis of schistosomiasis. Immunol Invest. 1997;26(1–2):175–88.Google Scholar

References

Gonzales, PR, Carroll, AJ, Korf, BR. Overview of clinical cytogenetics. Curr Protoc Hum Genet. 2016;89:8.1.1–8.1.13.Google Scholar
Hardisty, EE, Vora, NL. Advances in genetic prenatal diagnosis and screening. Curr Opin Pediatr. 2014;26(6):634–8.Google Scholar
Rhoads, GG, Jackson, LG, Schlesselman, SE, de la Cruz, FF, Desnick, RJ, Golbus, MS, et al. The safety and efficacy of chorionic villus sampling for early prenatal diagnosis of cytogenetic abnormalities. N Engl J Med. 1989;320(10):609–17.Google Scholar
Cherry, A, Akkari, Y, Barr, K, Kearney, H, Rose, N, South, S et al. Diagnostic cytogenetic testing following positive noninvasive prenatal screening results: a clinical laboratory practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2017;19(8):845–50.Google Scholar
Srebniak, M, Van Opstal, D, Joosten, M, Diderich, K, de Vries, F, Riedijk, S et al. Whole-genome array as a first-line cytogenetic test in prenatal diagnosis. Ultrasound Obstet Gynecol. 2015;45(4):363–72.Google Scholar
Filipovic-Sadic, S, Sah, S, Chen, L, Krosting, J, Sekinger, E, Zhang, W, et al. A novel FMR1 PCR method for the routine detection of low abundance expanded alleles and full mutations in fragile X syndrome. Clin Chem. 2010;56(3):399408.Google Scholar
Kashork, CD, Theisen, A, Shaffwer, G. Diagnosis of cryptic chromosomal syndromes by fluorescence in situ hybridization (FISH). Curr Protoc Hum Genet. 2010;8.10.1–20.Google Scholar
Miller, DT, Adam, MP, Aradhya, S, Biesecker, LG, Brothman, AR, Carter, NP, et al. Consensus statement: Chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86(5):749–64.Google Scholar
Bi, W, Borgan, C, Pursley, AN, Hixson, P, Shaw, CA, Bacino, CA, et al. Comparison of chromosome analysis and chromosomal microarray analysis: what is the value of chromosome analysis in today’s genomic array era? Genet Med. 2013;15(6):450–7.Google Scholar
Kovacs, GG. (Ed.) Neuropathology of neurodegenerative diseases. A practical guide. Cambridge University Press; 2015.Google Scholar
Bartlett, JMS, Shaaban, A, Schmitt, F. (Eds.) Molecular Pathology. A practical guide for the surgical pathologist and cytopathologist. Cambridge University Press; 2015.Google Scholar

References

Tebani, A, Abily-Donval, L, Afonso, C, Marret, S, Bekri, S. Clinical metabolomics: the new metabolic window for inborn errors of metabolism investigations in the post-genomic era. Int J MolSci 2016;17(7):1167.Google Scholar
Costanzo, M, Zacchia, M, Bruno, G, Crisci, D, Caterino, M, Ruoppolo, M. Integration of proteomics and metabolomics in exploring genetic and rare metabolic diseases. Kidney Dis 2017;3:6677.Google Scholar
Waters, D, Adeloye, D, Woolham, D, Wastnedge, E, Patel, S, Rudan, I. Global birth prevalence and mortality from inborn errors of metabolism: a systematic analysis of the evidence. J Glob Health 2018;8(2):021102.Google Scholar
Ferreira, CR, van Karnebeek, CDM, Vockley, J, Blau, N. A proposed nosology of inborn errors of metabolism. Genet Med 2019;21(1):102–6.CrossRefGoogle ScholarPubMed
Mak, CM, Lee, HC, Chan, AY, Lam, CW. Inborn errors of metabolism and expanded newborn screening: review and update. Crit Rev Clin Lab Sci 2013; 50(6): 142–62.Google Scholar
Rice, GM, Steiner, RD. Inborn errors of metabolism (Metabolic disorders). Pediatr Rev 2016; 37(1):315.Google Scholar
Sandlers, Y. Amino acids profiling for the diagnosis of metabolic disorders. In: Clinical biochemistry – fundamentals of medical and laboratory science [monograph on the Internet]. London: IntertechOpen; 2019 [cited 2019 Apr 29]. Available from: www.intechopen.com/online-first/amino-acids-profiling-for-the-diagnosis-of-metabolic-disorders.Google Scholar
Genetics Home Reference. nlm.nih.gov [homepage on the Internet]. Bethesda: US National Library of Medicine [cited 2019 May 1]. Available from: https://ghr.nlm.nih.gov/condition/phenylketonuria#genes.Google Scholar
Shennar, HK, Al-Asmar, D, Kaddoura, A, Al-Fahoum, S. Diagnosis and clinical features of organic acidemias: a hospital-based study in a single center in Damascus, Syria. Qatar Med J 2015;2015(1):9.Google Scholar
Allen, SN. Urea cycle disorder. Mental Health Clinician 2013;2(12):398401.Google Scholar
Stone, WL, Basit, H, Adil, A. Glycogen storage disease [updated 2019 Apr 25]. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2019 Jan. Available from: www.ncbi.nlm.nih.gov/books/NBK459277/.Google Scholar
Guerrero, RB, Salazar, D, Tanpaiboon, P. Laboratory diagnostic approaches in metabolic disorders. Ann Transl Med 2018;6(24):470.Google Scholar
Vernon, HJ. Inborn errors of metabolism: advances in diagnosis and therapy. JAMA Pediatr 2015;169(8):778782.Google Scholar
Di Girolamo, F, Lante, I, Muraca, M, Putignani, L. The role of mass spectrometry in the “omics” era. Curr Org Chem 2013;17(23):2891–905.Google Scholar
Chace, DH, Kalas, TA, Naylor, EW. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin Chem 2003;49(11):177817.Google Scholar
Pourfarzam, M, Zadhoush, F. Newborn Screening for inherited metabolic disorders; news and views. J Res Med Sci 2013;18(9):801–8.Google Scholar
Mittal, RD. Tandem mass spectroscopy in diagnosis and clinical research. Indian J Clin Biochem 2015;30(2):121–3.Google Scholar
Tebani, A, Afonso, C, Marret, S, Bekri, S. Omics-based strategies in precision medicine: Toward a paradigm shift in inborn errors of metabolism investigations. Int J Mol Sci. 2016;17(9):1555.Google Scholar
Ozben, T. Expanded newborn screening and confirmatory follow-up testing for inborn errors of metabolism detected by tandem mass spectrometry. Clin Chem Lab Med 2013; 51(1): 157–76.Google Scholar
Therrell, BL Jr., Lloyd-Puryear, MA, Camp, KM, Mann, MY. Inborn errors of metabolism identified via newborn screening: Ten-year incidence data and costs of nutritional interventions for research agenda planning. Mol Genet Metab 2014;113(1–2):1426.Google Scholar

References

Felgate, PD. Methods of analysis – initial testing. In: Houck, MM, ed. Forensic toxicology. 1st ed. Elsevier, London; 2018:297314.Google Scholar
Polettini, A. Methods of analysis – confirmatory testing. In: Houck, MM, ed. Forensic toxicology. 1st ed. Elsevier, London; 2018:315–20.Google Scholar
Jones, GR. Postmortem specimens. In: Houck, MM, ed. Forensic toxicology. 1st ed. Elsevier, London; 2018:355360.Google Scholar
Dinis-Oliveira, RJ, Vieira, DN, Magalhães, T. Guidelines for collection of biological samples for clinical and forensic toxicological analysis. Forensic Sci Res. 2017;1(1):4251.Google Scholar
Moody, DE. Immunoassays in forensic toxicology. In: Mayers, RA, ed. Encyclopedia of analytical chemistry. Wiley, Hoboken; 2006:134.Google Scholar
Tagliaro, F, Pascali, JP, Lewis, SW. Capillary electrophoresis in forensic chemistry. In: Houck, MM, ed. Forensic toxicology. Elsevier, London; 2018:4551.Google Scholar
Ramautar, R. Capillary electrophoresis-mass spectrometry for clinical metabolomics. Adv Clin Chem. 2016;74:134.Google Scholar
Kočová Vlčková, H, Pilařová, V, Svobodová, P, Plíšek, J, Švec, F, Nováková, L. Current state of bioanalytical chromatography in clinical analysis. Analyst. 2018 Mar. 12;143(6):13051325.Google Scholar
Lewis, SW, Lenehan, CE. Liquid and thin-layer chromatography. In: Houck, MM, ed. Forensic toxicology. Elsevier, London; 2018:61–6.Google Scholar
Polettini, A. Systematic toxicological analysis of drugs and poisons in biosamples by hyphenated chromatographic and spectroscopic techniques. J Chromatogr B Biomed Sci Appl. 1999;733(1–2):4763.Google Scholar
Lim, KF, Lewis, SW. Spectroscopic Techniques. In: Houck, MM, ed. Forensic toxicology. Elsevier, London: 2018:9199.Google Scholar
Wu, Y, Zhang, L, Jung, YM, Ozaki, Y. Two-dimensional correlation spectroscopy in protein science, a summary for the past 20 years. Spectrochim Acta A Mol Biomol Spectrosc. 2018;189:291–9.Google Scholar
Mogollón, NGS, Quiroz-Moreno, CD, Prata, PS, de Almeida, JR, Cevallos, AS, Torres-Guiérrez, R, Augusto, F. New advances in toxicological forensic analysis using mass spectrometry techniques. J Anal Methods Chem. 2018;2018:4142527.CrossRefGoogle ScholarPubMed
Stauffer, E. Gas chromatography-mass spectrometry. In: Houck, MM, ed. Forensic Toxicology. Elsevier, London; 2018:7582.Google Scholar
Stone, JA, Fitzgerald, RL. Liquid chromatography-mass spectrometry education for clinical laboratory scientists. Clin Lab Med. 2018;38(3):527–37.Google Scholar

References

Cohen, MC, Scheimberg, I. The Pediatric and Perinatal Autopsy Manual: Cambridge University Press; 2014.Google Scholar
Gilbert-Barness, E, Spicer, DE, Steffensen, TS. Handbook of Pediatric Autopsy Pathology, 2nd ed.: Springer; 2014.Google Scholar
Khong, TY, Malcomson, RDG, editors. Keeling’s Fetal and Neonatal Pathology, 5th ed.: Springer; 2015.Google Scholar
Collins, KA, Byard, RW, editors. Forensic Pathology of Infancy and Childhood: Springer; 2014.Google Scholar
Vlasyuk, VV. Features of opening the skull and extracting the brain from the skull. In: Vlasyuk, VV, editor. Birth Trauma and Perinatal Brain Damage: Springer; 2019. pp. 137–45.Google Scholar
Vlasyuk, VV. The method of opening the skull and extraction of the brain in fetuses and newborns. EC Neurology. 2018;10:6.Google Scholar
Giannini, C, Okazaki, H. Nervous system. In: Waters, BL, editor. Handbook of Autopsy Practice, 4th ed.: Humana Press / Springer; 2009. pp.5168.Google Scholar
Ashmead, JW. Postmortem perinatal brain removal: the value of the posterior approach method. Pediatr Pathol. 1993;13(6):875–80.Google Scholar
Prahlow, JA, Ross, KF, Salzberger, L, Lott, EG, Guileyardo, JM, Barnard, JJ. Immersion technique for brain removal in perinatal autopsies. J Forensic Sci. 1998;43(5):1056–60.Google Scholar
Langley, FA. The perinatal postmortem examination. J Clin Pathol. 1971;24(2):159–69.Google Scholar
Sebire, NJ, Weber, MA, Thayyil, S, Mushtaq, I, Taylor, A, Chitty, LS. Minimally invasive perinatal autopsies using magnetic resonance imaging and endoscopic postmortem examination (“keyhole autopsy”): feasibility and initial experience. J Matern Fetal Neonatal Med. 2012;25(5):513–18.Google Scholar
Wainwright, HC. My approach to performing a perinatal or neonatal autopsy. J Clin Pathol. 2006;59(7):673–80.Google Scholar
Oehmichen, M, Auer, RN, König, HG. Forensic Neuropathology and Associated Neurology: Springer-Verlag; 2006.Google Scholar
Sarnat, HB, Flores-Sarnat, L, Trevenen, CL. Synaptophysin immunoreactivity in the human hippocampus and neocortex from 6 to 41 weeks of gestation. J Neuropathol Exp Neurol. 2010;69(3):234–45.Google Scholar
Start, RD, Layton, CM, Cross, SS, Smith, JH. Reassessment of the rate of fixative diffusion. J Clin Pathol. 1992;45(12):1120–21.Google Scholar
Dawe, RJ, Bennett, DA, Schneider, JA, Vasireddi, SK, Arfanakis, K. Postmortem MRI of human brain hemispheres: T2 relaxation times during formaldehyde fixation. Magn Reson Med. 2009;61(4):810–18.Google Scholar
Scott, IS, MacDonald, AW. An evaluation of overnight fixation to facilitate neuropathological examination in Coroner’s autopsies: our experience of over 200 cases. J Clin Pathol. 2013;66(1):50–3.Google Scholar
Adickes, ED, Folkerth, RD, Sims, KL. Use of perfusion fixation for improved neuropathologic examination. Arch Pathol Lab Med. 1997;121(11):1199–206.Google Scholar
Sharma, M, Grieve, JH. Rapid fixation of brains: a viable alternative? J Clin Pathol. 2006;59(4):393–5.Google Scholar
Barrett, C, Brett, F, Grehan, D, McDermott, MB. Heat-accelerated fixation and rapid dissection of the pediatric brain at autopsy: a pragmatic approach to the difficulties of organ retention. Pediatr Dev Pathol. 2004;7(6):595600.Google Scholar
Bass, T, Bergevin, MA, Werner, AL, Liuzzi, FJ, Scott, DE. In situ fixation of the neonatal brain and spinal cord. Pediatr Pathol. 1993;13(5):699705.Google Scholar
Cimmino, A, Parisi, G, Mastropasqua, MG, Ricco, R. A new technique for foetal brain fixation and extraction. Pathologica. 2002;94(6):320–4.Google Scholar
Nicholls, JM. Rapid method for fetal brain fixation. J Clin Pathol. 1988;41(9):1019–20.Google Scholar

References

Judkins, AR, Hood, IG, Mirchandani, HG, Rorke, LB. Rationale and technique for examination of nervous system in suspected infant victims of abuse. Am J Forensic Med Pathol 2004;25 (1):2932.Google Scholar
Peterson, JEG, Love, JC, Pinto, DC, Wolf, DA, Sandberg, G. A novel method for removing a spinal cord and attached cervical ganglia from a pediatric decedent. J Forensic Sci 2016:61;241–4.Google Scholar
Ali, Z, Fowler, DR. En bloc examination of the neck in pediatric homicide cases: a proper way for complete assessment of neck trauma. Acad Forensic Pathol 2016:6;622–37.Google Scholar

References

De Girolami, U, Frosch, M, Amato, AA. Biopsy of nerve and muscle. In Samuels, M, Feske, S (eds). Office Practice of Neurology, 2nd ed. Philadelphia: Harcourt Health Sciences, 2003, pp. 217–25.Google Scholar
Engel, AG. The muscle biopsy. In Engel, AG, Franzini-Armstrong, C (eds). Myology, 3rd ed. New York: McGraw-Hill, 2004, pp. 681–90.Google Scholar
Nix JS, Moore SA. What every neuropathologist needs to know: the muscle biopsy. J Neuropathol Exp Neurol. 79:719–733, 2020.Google Scholar
Carpenter, S, Karpati, G. Pathology of Skeletal Muscle, 2nd ed. New York: Oxford, 2001.Google Scholar

References

Lee, WR. “Autopsy eye” – the eye in systemic disease. In: Ophthalmic Histopathology. Springer, London. 2002; pp. 267–96.Google Scholar
Herwig-Carl, MC, Loeffler, KU, Müller, AM. Importance of investigation of fetal eyes: Supplement to fetal autopsy. [German] Pathologe. 2017;38(4):231–40.Google Scholar

References

Kovacs, GG, Budka, H. Current concepts of neuropathological diagnostics in practice: neurodegenerative diseases. Clin Neuropathol 2010;29(5):271–88.Google Scholar
Stefanitis, H, Budka, H, Kovacs, GG. Asymmetry of neurodegenerative disease-related pathologies: a cautionary note. Acta Neuropathol 2012;123(3):449–52.Google Scholar
Samarasekera, N, Al-Shahi Salman, R, Huitinga, I, Klioueva, N, McLean, CA, Kretzschmar, H, et al. Brain banking for neurological disorders. Lancet Neurol 2013;12(11):1096–105.Google Scholar
Vonsattel, JP, Del Amaya, MP, Keller, CE. Twenty-first-century brain banking. Processing brains for research: the Colombia University methods. Acta Neuropathol 2008;115(5):509–32.Google Scholar
Ernst, LM, Sondheimer, N, Deardorff, MA, Bennett, MJ, Pawel, BR. The value of the metabolic autopsy in the pediatric hospital setting. J Pediatr 2006;148(6):779–83.Google Scholar
Centers for Disease Control and Prevention. Sudden unexpected infant death and sudden infant death syndrome. Available at www.cdc.gov/sids/about/index.htm (page last reviewed: Dec. 31, 2018).Google Scholar
Folkerth, RD, Nunez, J, Georgievskaya, Z, McGuone, D. Neuropathologic examination in sudden unexpected deaths in infancy and childhood: Recommendations for highest diagnostic yield and cost-effectiveness in forensic settings. Acad Forensic Pathol 2017;7(2):182–99.Google Scholar

References

Prahlow, JA, Ross, KF, Salzberger, L, Lott, EG, Guileyardo, JM, Barnard, JJ. Immersion technique for brain removal in perinatal autopsies. J Forensic Sci 1998;43(5):1056–60.Google Scholar
Ernst, LM, Sondheimer, N, Deardorff, MA, Bennett, MJ, Pawel, BR. The value of the metabolic autopsy in the pediatric hospital setting. J Pediatr 2006;148(6):779–83.Google Scholar
Yamamoto, T, Nishio, H. Metabolic autopsy and molecular autopsy in sudden unexpected death in infancy. In: Ishikawa, T. (eds.) Forensic Medicine and Human Cell Research: Current Human Cell Research and Applications. Springer: Singapore; 2019. pp. 83103.Google Scholar
Olpin, SE. The metabolic investigation of sudden infant death. Ann Clin Biochem 2004;41(4):282–93.Google Scholar
Christodoulou, J, Wilcken, B. Perimortem laboratory investigation of genetic metabolic disorders. Semin Neonatol 2004;9(4):275–80.Google Scholar

References

Suvarna, SK, Layton, C, Bancroft, JD. Bancroft’s Theory and Practice of Histological Techniques. 8th edition: Elsevier; 2018.Google Scholar
Kiernan, JA. Histological and Histochemical Methods – Theory and Practice. 5th edition: Scion Publishing; 2015.Google Scholar
Puchtler, H, Waldrop, FS. On the mechanism of Verhoeff’s elastica stain: a convenient stain for myelin sheaths. Histochemistry. 1979;62(3):233–47.Google Scholar
Dingjan, T, Spendlove, I, Durrant, LG, Scott, AM, Yuriev, E, Ramsland, PA. Structural biology of antibody recognition of carbohydrate epitopes and potential uses for targeted cancer immunotherapies. Mol Immunol. 2015;67(2Pt A):7588.Google Scholar
Rekvig, OP. The anti-DNA antibody: origin and impact, dogmas and controversies. Nat Rev Rheumatol. 2015;11(9):530–40.Google Scholar
Chu, P, Weiss, L. Modern Immunohistochemistry, 2nd edition: Cambridge University Press; 2014.Google Scholar
Shi, SR, Shi, Y, Taylor, CR. Antigen retrieval immunohistochemistry: review and future prospects in research and diagnosis over two decades. J Histochem Cytochem. 2011;59(1):1332.Google Scholar
Jakovcevski, I, Mayer, N, Zecevic, N. Multiple origins of human neocortical interneurons are supported by distinct expression of transcription factors. Cereb Cortex. 2011;21(8):1771–82.Google Scholar
Schmued, LC, Stowers, CC, Scallet, AC, Xu, L. Fluoro-Jade C results in ultra high resolution and contrast labeling of degenerating neurons. Brain Res. 2005;1035(1):2431.Google Scholar
Spacek, J. Dynamics of the Golgi method: a time-lapse study of the early stages of impregnation in single sections. J Neurocytol. 1989;18(1):2738.Google Scholar
Humberstone, GC, Humberstone, FD. An elastic tissue stain. J Med Lab Technol. 1969;26(2):99101.Google Scholar
Clasen, RA, Simon, GR, Ayer, JP, Pandolfi, S, Laing, IR. A chemical basis for the staining of myelin sheaths by Luxol dye techniques; further observations. J Neuropathol Exp Neurol. 1967;26(1):153–4.Google Scholar
Kiernan, JA. Chromoxane cyanine R. II. Staining of animal tissues by the dye and its iron complexes. J Microsc. 1984;134(Pt 1):2539.Google Scholar
Kluver, H, Barrera, E. A method for the combined staining of cells and fibers in the nervous system. J Neuropathol Exp Neurol. 1953;12(4):400–3.Google Scholar
Lendrum, AC, Fraser, DS, Slidders, W, Henderson, R. Studies on the character and staining of fibrin. J Clin Pathol. 1962;15:401–13.Google Scholar
Grocott, RG. A stain for fungi in tissue sections and smears using Gomori’s methenamine-silver nitrate technic. Am J Clin Pathol. 1955;25(8):975–9.Google Scholar
Manlow, A, Munoz, DG. A non-toxic method for the demonstration of gliosis. J Neuropathol Exp Neurol. 1992;51:298302.Google Scholar
Rahaman, P, Del Bigio, MR. Histology of brain trauma and hypoxia-ischemia. Acad Forensic Pathol. 2018;8(3):539–54.Google Scholar
Byard, RW, Bellis, M. The effect of decalcifying solutions on hemosiderin staining. J Forensic Sci. 2010;55(5):1356–8.Google Scholar
Perls, M. Nachweis von Eisenoxyd in gewissen Pigmenten. Arch Pathol Anat Physiol Klin Med. 1867;39(1):42–8.Google Scholar
Reichard, RR, White, CL, Hladik, CL, Dolinak, D. Beta-amyloid precursor protein staining in nonhomicidal pediatric medicolegal autopsies. J Neuropathol Exp Neurol. 2003;62(3):237–47.Google Scholar
del Rio, MR, DeFelipe, J. Colocalization of calbindin D-28 k, calretinin, and GABA immunoreactivities in neurons of the human temporal cortex. J Comp Neurol. 1996;369(3):472–82.Google Scholar
Forutan, F, Mai, JK, Ashwell, KW, Lensing-Hohn, S, Nohr, D, Voss, T, et al. Organisation and maturation of the human thalamus as revealed by CD15. J Comp Neurol. 2001;437(4):476–95.Google Scholar
Gocht, A, Zeunert, G, Laas, R, Lohler, J. The carbohydrate epitope 3-fucosyl-N-acetyllactosamine is developmentally regulated in the human cerebellum. Anat Embryol (Berl). 1992;186(6):543–56.Google Scholar
Mai, JK, Krajewski, S, Reifenberger, G, Genderski, B, Lensing-Hohn, S, Ashwell, KW. Spatiotemporal expression gradients of the carbohydrate antigen (CD15) (Lewis X) during development of the human basal ganglia. Neuroscience. 1999;88(3):847–58.Google Scholar
Mo, Z, Moore, AR, Filipovic, R, Ogawa, Y, Kazuhiro, I, Antic, SD, et al. Human cortical neurons originate from radial glia and neuron-restricted progenitors. J Neurosci. 2007;27(15):4132–45.Google Scholar
Hendrickx, DAE, van Eden, CG, Schuurman, KG, Hamann, J, Huitinga, I. Staining of HLA-DR, Iba1 and CD68 in human microglia reveals partially overlapping expression depending on cellular morphology and pathology. J Neuroimmunol. 2017;309:1222.Google Scholar
Cho, KH, Cheong, JS, Kim, JH, Abe, H, Murakami, G, Cho, BH. Site-specific distribution of CD68-positive microglial cells in the brains of human midterm fetuses: a topographical relationship with growing axons. Biomed Res Int. 2013;2013:762303.Google Scholar
Del Bigio, MR. Ependymal cells: biology and pathology. Acta Neuropathol. 2010;119(1):5573.Google Scholar
Ng, HK, Tse, CC, Lo, ST. Meningiomas and arachnoid cells: an immunohistochemical study of epithelial markers. Pathology. 1987;19(3):253–7.Google Scholar
Esiri, MM, al Izzi, MS, Reading, MC. Macrophages, microglial cells, and HLA-DR antigens in fetal and infant brain. J Clin Pathol. 1991;44(2):102–6.Google Scholar
Supramaniam, V, Vontell, R, Srinivasan, L, Wyatt-Ashmead, J, Hagberg, H, Rutherford, M. Microglia activation in the extremely preterm human brain. Pediatr Res. 2013;73(3):301–9.Google Scholar
Cuylen, S, Blaukopf, C, Politi, AZ, Muller-Reichert, T, Neumann, B, Poser, I, et al. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature. 2016;535(7611):308–12.Google Scholar
Sarnat, HB, Nochlin, D, Born, DE. Neuronal nuclear antigen (NeuN): a marker of neuronal maturation in early human fetal nervous system. Brain Dev. 1998;20(2):8894.Google Scholar
Sternberger, LA, Sternberger, NH. Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci U S A. 1983;80(19):6126–30.Google Scholar
van Muijen, GN, Ruiter, DJ, van Leeuwen, C, Prins, FA, Rietsema, K, Warnaar, SO. Cytokeratin and neurofilament in lung carcinomas. Am J Pathol. 1984;116(3):363–9.Google Scholar
Ulfig, N, Nickel, J, Bohl, J. Monoclonal antibodies SMI 311 and SMI 312 as tools to investigate the maturation of nerve cells and axonal patterns in human fetal brain. Cell Tissue Res. 1998;291(3):433–43.Google Scholar
Pauly, MC, Dobrossy, MD, Nikkhah, G, Winkler, C, Piroth, T. Organization of the human fetal subpallium. Front Neuroanat. 2013;7:54.Google Scholar
Jakovcevski, I, Zecevic, N. Olig transcription factors are expressed in oligodendrocyte and neuronal cells in human fetal CNS. J Neurosci. 2005;25(44):10064–73.Google Scholar
Harter, PN, Baumgarten, P, Zinke, J, Schilling, K, Baader, S, Hartmetz, AK, et al. Paired box gene 8 (PAX8) expression is associated with sonic hedgehog (SHH)/wingless int (WNT) subtypes, desmoplastic histology and patient survival in human medulloblastomas. Neuropathol Appl Neurobiol. 2015;41(2):165–79.CrossRefGoogle ScholarPubMed
Bannykh, SI, Stolt, CC, Kim, J, Perry, A, Wegner, M. Oligodendroglial-specific transcriptional factor SOX10 is ubiquitously expressed in human gliomas. J Neurooncol. 2006;76(2):115–27.Google Scholar
Reiprich, S, Wegner, M. From CNS stem cells to neurons and glia: Sox for everyone. Cell Tissue Res. 2015;359(1):111–24.Google Scholar
Sarnat, HB, Flores-Sarnat, L, Trevenen, CL. Synaptophysin immunoreactivity in the human hippocampus and neocortex from 6 to 41 weeks of gestation. J Neuropathol Exp Neurol. 2010;69(3):234–45.Google Scholar
Mori, Y, Takamori, S. Molecular signatures underlying synaptic vesicle cargo retrieval. Front Cell Neurosci. 2017;11:422.Google Scholar
Ambu, R, Vinci, L, Gerosa, C, Fanni, D, Obinu, E, Faa, A, et al. WT1 expression in the human fetus during development. Eur J Histochem. 2015;59(2):2499.Google Scholar

References

Dragusin, R, Petcu, P, Lioma, C, Larsen, B et al. FindZebra: a search engine for rare diseases. International Journal of Medical Informatics. 2013;82:528–38. doi:10.1016/j.ijmedinf.2013.01.005Google Scholar
Svenstrup, D, et al. Rare disease diagnosis: a review of web search, social media and large-scale data-mining approaches. Rare Dis. 2015;3(1):e1083145. doi:10.1080/21675511.2015.1083145Google Scholar
Wadhwa, R, Park, DY, Natowicz, MR. The accuracy of computer-based diagnostic tools for the identification of concurrent genetic disorders. Am J Med Genet. 2018;176A:2704–709. doi:10.1002/ajmg.a.40651Google Scholar

References

Ernst, LM. A pathologist’s perspective on the perinatal autopsy. Semin Perinatol. 2015;39(1):5563.Google Scholar
Ellis, DW, Srigley, J. Does standardized structured reporting contribute to quality in diagnostic pathology? The importance of evidence-based datasets. Virchows Arch. 2016;468(1):51–9.Google Scholar
Hanzlick, RL. The autopsy lexicon: suggested headings for the autopsy report. Arch Pathol Lab Med. 2000;124(4):594603.Google Scholar

References

Sturner, WQ. Common errors in forensic pediatric pathology. Am J Forensic Med Pathol 1998;19:317–20.Google Scholar
Itabashi, HH, Andrews, JM, Sathyavagiswaran, L, Erlich, SS, Tomiyasu, U. Forensic Neuropathology: A Practical Review of the Fundamentals. Burlington: Academic Press, 2007.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×