Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-01T04:51:38.145Z Has data issue: false hasContentIssue false

Section 5 - Malformations

Published online by Cambridge University Press:  07 August 2021

Mirna Lechpammer
Affiliation:
New York University School of Medicine
Marc Del Bigio
Affiliation:
University of Manitoba, Canada
Rebecca Folkerth
Affiliation:
New York University School of Medicine
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Avagliano, L, Massa, V, George, TM, Qureshy, S, Bulfamante, GP, Finnell, RH. Overview on neural tube defects: From development to physical characteristics. Birth Defects Res. 2019 111(19):1455–67.CrossRefGoogle Scholar
O’Rahilly, RR, Müller, F. The Embryonic Human Brain: An Atlas of Developmental Stages, 3rd edition. New York: Wiley; 2006.Google Scholar
O’Rahilly, R, Muller, F. Bidirectional closure of the rostral neuropore in the human embryo. Am J Anat. 1989;184(4):259–68.Google Scholar
Copp, AJ, Stanier, P, Greene, ND. Neural tube defects: recent advances, unsolved questions, and controversies. Lancet Neurol. 2013;12(8):799810.Google Scholar
van Straaten, HWM, Janssen, HCJP, Peeters, MCE, Copp, AJ, Hekking, JWM. Neural tube closure in the chick embryo is multiphasic. Dev Dynamics. 1996;207:309–18.Google Scholar
van Allen, MI, Kalousek, DK, Chernoff, GF, Juriloff, D, Harris, M, McGillivray, BC, et al. Evidence for multi-site closure of the neural tube in humans. Am J Med Genet. 1993;47:723–43.Google Scholar
Ahmad, FU, Dwarakanath, S, Sharma, BS, Mahapatra, AK. Multiple neural tube defects: a clinical series of seven cases and their embryological basis. Pediatr Neurosurg. 2008;44(4):280–7.CrossRefGoogle ScholarPubMed
Golden, JA, Chernoff, GF. Multiple sites of anterior neural tube closure in humans: evidence from anterior neural tube defects (anencephaly). Pediatrics. 1995;95(4):506–10.Google Scholar
Mahalik, SK, Vaze, D, Kanojia, RP, Narasimhan, KL, Rao, KL. Multiple neural tube defects may not be very rare. Childs Nerv Syst. 2013;29(4):609–19.Google Scholar
O’Rahilly, R, Muller, F. The two sites of fusion of the neural folds and the two neuropores in the human embryo. Teratology. 2002;65(4):162–70.Google ScholarPubMed
de Bakker, BS, Driessen, S, Boukens, BJD, MJB, van den Hoff, Oostra, RJ. Single-site neural tube closure in human embryos revisited. Clin Anat. 2017;30(7):988–99.CrossRefGoogle ScholarPubMed
Copp, AJ, Harding, BN. Neural tube defects. In: Adle-Biassette, H, Harding, BN, Golden, JA, editors. Developmental Neuropathology, 2nd edition. Hoboken: John Wiley & Sons; 2018. p. 1328.Google Scholar
Nakatsu, T, Uwabe, C, Shiota, K. Neural tube closure in humans initiates at multiple sites: evidence from human embryos and implications for the pathogenesis of neural tube defects. Anat Embryol. 2000;201(6):455–66.CrossRefGoogle ScholarPubMed
van Straaten, HW, Peeters, MC, Hekking, JW, van der Lende T.Neurulation in the pig embryo. Anat Embryol (Berl). 2000;202(2):7584.CrossRefGoogle ScholarPubMed
O’Rahilly, R, Muller, F. The meninges in human development. J Neuropathol Exp Neurol. 1986;45(5):588608.CrossRefGoogle ScholarPubMed
Richtsmeier, JT, Flaherty, K. Hand in glove: brain and skull in development and dysmorphogenesis. Acta Neuropathol. 2013;125(4):469–89.CrossRefGoogle ScholarPubMed
Di Ieva, A, Bruner, E, Haider, T, Rodella, LF, Lee, JM, Cusimano, MD, et al. Skull base embryology: a multidisciplinary review. Childs Nerv Syst. 2014;30(6):9911000.Google Scholar
Shapiro, R, Robinson, F. The Embryogenesis of the Human Skull: An Anatomic and Radiographic Atlas. Cambridge, MA: Harvard University Press; 1980.Google Scholar
Som, PM, Naidich, TP. Development of the skull base and calvarium: an overview of the progression from mesenchyme to chondrification to ossification. Neurographics. 2013;3:169–84.Google Scholar
Mandarim-de-Lacerda, CA, Alves, MU. Growth of the cranial bones in human fetuses (2nd and 3rd trimesters). Surg Radiol Anat. 1992;14(2):125–9.Google Scholar
Mekonen, HK, Hikspoors, J, Mommen, G, Kruepunga, N, Kohler, SE, Lamers, WH. Closure of the vertebral canal in human embryos and fetuses. J Anat. 2017;231(2):260–74.Google Scholar
Morris, JK, Wald, NJ. Prevalence of neural tube defect pregnancies in England and Wales from 1964 to 2004. J Med Screen. 2007;14(2):55–9.Google Scholar
Nikkila, A, Rydhstrom, H, Kallen, B. The incidence of spina bifida in Sweden 1973–2003: the effect of prenatal diagnosis. Eur J Public Health. 2006;16(6):660–2.CrossRefGoogle ScholarPubMed
Khoshnood, B, Loane, M, de Walle, H, Arriola, L, Addor, MC, Barisic, I, et al. Long term trends in prevalence of neural tube defects in Europe: population based study. BMJ. 2015;351:h5949.Google Scholar
Nikolopoulou, E, Galea, GL, Rolo, A, Greene, ND, Copp, AJ. Neural tube closure: cellular, molecular and biomechanical mechanisms. Development. 2017;144(4):552–66.Google Scholar
Greene, ND, Copp, AJ. Neural tube defects. Annu Rev Neurosci. 2014;37:221–42.CrossRefGoogle ScholarPubMed
Yamaguchi, Y, Miura, M. How to form and close the brain: insight into the mechanism of cranial neural tube closure in mammals. Cell Mol Life Sci. 2013;70(17):3171–86.Google Scholar
Bower, C, Stanley, FJ, Nicol, DJ. Maternal folate status and the risk for neural tube defects. The role of dietary folate. Ann N Y Acad Sci. 1993;678:146–55.Google Scholar
Williams, J, Mai, CT, Mulinare, J, Isenburg, J, Flood, TJ, Ethen, M, et al. Updated estimates of neural tube defects prevented by mandatory folic acid fortification – United States, 1995–2011. MMWR Morb Mortal Wkly Rep. 2015;64(1):15.Google ScholarPubMed
Kancherla, V, Wagh, K, Johnson, Q, Oakley, GP, Jr. A 2017 global update on folic acid-preventable spina bifida and anencephaly. Birth Defects Res. 2018;110(14):1139–47.Google Scholar
Au, KS, Findley, TO, Northrup, H. Finding the genetic mechanisms of folate deficiency and neural tube defects-Leaving no stone unturned. Am J Med Genet A. 2017;173(11):3042–57.CrossRefGoogle ScholarPubMed
Lupo, PJ, Agopian, AJ, Castillo, H, Castillo, J, Clayton, GH, Dosa, NP, et al. Genetic epidemiology of neural tube defects. J Pediatr Rehabil Med. 2017;10(3–4):189–94.Google Scholar
Ishida, M, Cullup, T, Boustred, C, James, C, Docker, J, English, C, et al. A targeted sequencing panel identifies rare damaging variants in multiple genes in the cranial neural tube defect, anencephaly. Clin Genet. 2018;93(4):870–9.Google Scholar
Amouee, A, Memarzadeh, M, Ashrafi, M, Farid, M, Sanei, MH, Soroori, S, et al. The effects of amniotic fluid on the histopathologic changes of exposed spinal cord in fetal sheep. Arch Iran Med. 2009;12(1):3540.Google Scholar
Agarwal, R, Thornton, ME, Fonteh, AN, Harrington, MG, Chmait, RH, Grubbs, BH. Amniotic fluid levels of phospholipase A2 in fetal rats with retinoic acid induced myelomeningocele: the potential “second hit” in neurologic damage. J Matern Fetal Neonatal Med. 2016;29(18):3003–8.CrossRefGoogle Scholar
Hoving, EW. Nasal encephaloceles. Childs Nerv Syst. 2000;16(10–11):702–6.Google Scholar
Ibrahim, AW, Ashoor, AZ, Satti, MB. Frontal encephalocele and the nasal cavity. Neurochirurgia (Stuttg). 1988;31(1):35–7.Google ScholarPubMed
Turgut, M, Ozcan, OE, Benli, K, Ozgen, T, Gurcay, O, Saglam, S, et al. Congenital nasal encephalocele: a review of 35 cases. J Craniomaxillofac Surg. 1995;23(1):15.CrossRefGoogle ScholarPubMed
Kurban, Y, Sahin, I, Uyar, I, Deveci, S, Gul, D. Heterotopic brain tissue on the face and neck in a neonate: a rare case report and literature review. J Matern Fetal Neonatal Med. 2013;26(6):619–21.CrossRefGoogle Scholar
Tonni, G, Lituania, M, Bonasoni, MP, De Felice, C. Prenatal ultrasound and histological diagnosis of fetal nasal glioma (heterotopic central nervous system tissue): report of a new case and review of the literature. Arch Gynecol Obstet. 2011;283 Suppl 1:55–9.Google Scholar
Hedlund, G. Congenital frontonasal masses: developmental anatomy, malformations, and MR imaging. Pediatr Radiol. 2006;36(7):647–62.Google Scholar
Penner, CR, Thompson, L. Nasal glial heterotopia: a clinicopathologic and immunophenotypic analysis of 10 cases with a review of the literature. Ann Diagn Pathol. 2003;7(6):354–9.Google Scholar
Yeoh, GP, Bale, PM, de Silva, M. Nasal cerebral heterotopia: the so-called nasal glioma or sequestered encephalocele and its variants. Pediatr Pathol. 1989;9(5):531–49.CrossRefGoogle ScholarPubMed
de Villiers, JC, Cluver, PF, Peter, JC. Lipoma of the corpus callosum associated with frontal and facial anomalies. Acta Neurochir Suppl (Wien). 1991;53:16.Google Scholar
Caviness, VS, Jr., Evarard, P. Occipital encephalocele: a pathologic and anatomic analysis. Acta Neuropathol. 1975;32(3):245–55.CrossRefGoogle ScholarPubMed
Karch, SB, Urich, H. Occipital encephalocele – morphological study. J Neurol Sci. 1972;15(1):89112.Google Scholar
Leong, AS, Shaw, CM. The pathology of occipital encephalocoele and a discussion of the pathogenesis. Pathology. 1979;11(2):223–34.Google Scholar
Lorber, J. The prognosis of occipital encephalocele. Dev Med Child Neurol. 1967; Suppl 13:7586.Google Scholar
Alexiev, BA, Lin, X, Sun, CC, Brenner, DS. Meckel-Gruber syndrome: pathologic manifestations, minimal diagnostic criteria, and differential diagnosis. Arch Pathol Lab Med. 2006;130(8):1236–8.CrossRefGoogle ScholarPubMed
Hartill, V, Szymanska, K, Sharif, SM, Wheway, G, Johnson, CA. Meckel-Gruber syndrome: an update on diagnosis, clinical management, and research advances. Front Pediatr. 2017;5:244.CrossRefGoogle ScholarPubMed
Fields, HW, Jr., Metzner, L, Garol, JD, Kokich, VG. The craniofacial skeleton in anencephalic human fetuses. I. Cranial floor. Teratology. 1978;17(1):5765.Google Scholar
Garol, JD, Fields, HW, Jr., Metzner, L, Kokich, VG. The craniofacial skeleton in anencephalic human fetuses. II. Calvarium. Teratology. 1978;17(1):6773.Google Scholar
Kjaer, I, Keeling, JW, Graem, N. Cranial base and vertebral column in human anencephalic fetuses. J Craniofac Genet Dev Biol. 1994;14(4):235–44.Google Scholar
Saraga-Babic, M, Saraga, M. Role of the notochord in the development of cephalic structures in normal and anencephalic human fetuses. Virchows Arch A Pathol Anat Histopathol. 1993;422(2):161–8.Google Scholar
Saraga-Babic, M. Development of the notochord in normal and malformed human embryos and fetuses. Int J Dev Biol. 1991;35(3):345–52.Google Scholar
Bell, JE, Green, RJ. Studies on the area cerebrovasculosa of anencephalic fetuses. J Pathol. 1982;137(4):315–28.Google Scholar
Chaurasia, BD. Forebrain in human anencephaly. Anat Anz. 1977;142(5):471–8.Google Scholar
Kashani, AH, Hutchins, GM. Meningeal-cutaneous relationships in anencephaly: evidence for a primary mesenchymal abnormality. Hum Pathol. 2001;32(5):553–8.CrossRefGoogle ScholarPubMed
Ganchrow, D, Ornoy, A. Possible evidence for secondary degeneration of central nervous system in the pathogenesis of anencephaly and brain dysraphia. A study in young human fetuses. Virchows Arch A Pathol Anat Histol. 1979;384(3):285–94.Google Scholar
Vogel, FS, McClenahan, JL. Anomalies of major cerebral arteries associated with congenital malformations of the brain, with special reference to the pathogenesis of anencephaly. Am J Pathol. 1952;28(4):701–23.Google Scholar
Emery, JL, Kalhan, SC. The pathology of exencephalus. Dev Med Child Neurol Suppl. 1970;Suppl 22:51–64.Google Scholar
Wilkins-Haug, L, Freedman, W. Progression of exencephaly to anencephaly in the human fetus–an ultrasound perspective. Prenat Diagn. 1991;11(4):227–33.Google Scholar
Smith, MT, Huntington, HW. Morphogenesis of experimental anencephaly. J Neuropathol Exp Neurol. 1981;40(1):2031.CrossRefGoogle ScholarPubMed
Urich, H, Herrick, MK. The amniotic band syndrome as a cause of anencephaly. Report of a case. Acta Neuropathol. 1985;67(3–4):190–4.Google Scholar
Biswas, BP, Chatterjee, G, Biswas, S. Morbid adhesion of placenta on the head of an anencephalic monster. J Indian Med Assoc. 1985;83(6):207–8.Google Scholar
Chaurasia, BD. Amniochorionic bands and adhesions with fetal deformities. Anat Anz. 1978;144(2):158–62.Google ScholarPubMed
Tseng, JH, Kuo, MF, Kwang, Tu Y, Tseng, MY. Outcome of untethering for symptomatic spina bifida occulta with lumbosacral spinal cord tethering in 31 patients: analysis of preoperative prognostic factors. Spine J. 2008;8(4):630–8.Google Scholar
Coskun, A, Kiran, G, Ozdemir, O. Craniorachischisis totalis: a case report and review of the literature. Fetal Diagn Ther. 2009;25(1):21–5.Google Scholar
Saraga-Babic, M, Sapunar, D, Stefanovic, V. Histological features of axial structures during embryonic and fetal stages of human craniorachischisis. Acta Neuropathol. 1993;86(3):289–94.CrossRefGoogle ScholarPubMed
Joo, JG, Beke, A, Papp, C, Szigeti, Z, Csaba, A, Papp, Z. Major diagnostic and pathological features of iniencephaly based on twenty-four cases. Fetal Diagn Ther. 2008;24(1):16.Google Scholar
Rorke-Adams, LB. Pathology of Chiari I and II malformations. In: Tubbs, RS, Oakes, WJ, editors. The Chiari Malformations. New York: Springer; 2013. pp. 103–19.Google Scholar
Masters, CL. Pathogenesis of the Arnold-Chiari malformation: the significance of hydrocephalus and aqueduct stenosis. J Neuropathol Exp Neurol. 1978;37(1):5674.Google Scholar
Barry, A, Patten, BM, Stewart, BH. Possible factors in the development of the Arnold-Chiari malformation. J Neurosurg. 1957;14(3):285301.Google Scholar
Ogryzlo, MA. The Arnold-Chiari malformation. Arch Neurol Psychiatr. 1942;48(1):3046.Google Scholar
Moldenhauer, JS, Flake, AW. Open fetal surgery for neural tube defects. Best Pract Res Clin Obstet Gynaecol. 2019;58:121–32.Google Scholar
Nese, N, Bulbul, Y. Diagnostic value of perinatal autopsies: analysis of 486 cases. J Perinat Med. 2018;46(2):175–81.Google Scholar
Pinar, H, Tatevosyants, N, Singer, DB. Central nervous system malformations in a perinatal/neonatal autopsy series. Pediatr Dev Pathol. 1998;1(1):42–8.Google Scholar
Nielsen, LA, Maroun, LL, Broholm, H, Laursen, H, Graem, N. Neural tube defects and associated anomalies in a fetal and perinatal autopsy series. APMIS. 2006;114(4):239–46.Google Scholar
Hartge, DR, Gembicki, M, Rody, A, Weichert, J. Neural tube defects in embryonic life: lessons learned from 340 early pregnancy failures. J Ultrasound Med. 2018;37(12):2841–7.Google Scholar
Kar, A, Kar, T, Kanungo, S, Guru, L, Rath, J, Dehuri, P. Risk factors, organ weight deviation and associated anomalies in neural tube defects: A prospective fetal and perinatal autopsy series. Indian J Pathol Microbiol. 2015;58(3):285–91.Google Scholar
Sadovnick, AD, Baird, PA. Congenital malformations associated with anencephaly in liveborn and stillborn infants. Teratology. 1985;32(3):355–61.Google Scholar
Antonsson, P, Sundberg, A, Kublickas, M, Pilo, C, Ghazi, S, Westgren, M, et al. Correlation between ultrasound and autopsy findings after 2nd trimester terminations of pregnancy. J Perinat Med. 2008;36(1):5969.Google Scholar
Shelmerdine, SC, Arthurs, OJ, Gilpin, I, Norman, W, Jones, R, Taylor, AM, et al. Is traditional perinatal autopsy needed after detailed fetal ultrasound and post-mortem MRI? Prenat Diagn. 2019; 39(9):818–829.CrossRefGoogle Scholar
ten Donkelaar, HJ, Mullaart, RA, Hori, A, Shiota, K. Neurulation and neural tube defects. In: ten Donkelaar, HJ, Lammens, M, Hori, A, editors. Clinical Neuroembryology Development and Developmental Disorders of the Human Central Nervous System, 2nd edition. Berlin: Springer; 2014. pp. 145–90.Google Scholar

References

O’Rahilly, RR, Müller, F. The Embryonic Human Brain: An Atlas of Developmental Stages 3rd edition. New York: Wiley; 2006.Google Scholar
Fallet-Bianco, C. Neuropathology of holoprosencephaly. Am J Med Genet C Semin Med Genet. 2018;178(2):214–28.Google Scholar
Sarnat, HB, Yu, W. Maturation and dysgenesis of the human olfactory bulb. Brain Pathol. 2016;26(3):301–18.Google Scholar
Maione, L, Benadjaoud, S, Eloit, C, Sinisi, AA, Colao, A, Chanson, P, et al. Computed tomography of the anterior skull base in Kallmann syndrome reveals specific ethmoid bone abnormalities associated with olfactory bulb defects. J Clin Endocrinol Metab. 2013;98(3):E537–E46.Google Scholar
Yi, L, Liu, Z, Deng, C, Li, X, Wang, K, Deng, K, et al. Epidemiological characteristics of holoprosencephaly in China, 2007–2014: A retrospective study based on the national birth defects surveillance system. PLoS One. 2019;14(6):e0217835.CrossRefGoogle Scholar
Summers, AD, Reefhuis, J, Taliano, J, Rasmussen, SA. Nongenetic risk factors for holoprosencephaly: an updated review of the epidemiologic literature. Am J Med Genet C Semin Med Genet. 2018;178(2):151–64.Google Scholar
Ong, S, Tonks, A, Woodward, ER, Wyldes, MP, Kilby, MD. An epidemiological study of holoprosencephaly from a regional congenital anomaly register: 1995–2004. Prenat Diagn. 2007;27(4):340–7.Google Scholar
Orioli, IM, Castilla, EE. Epidemiology of holoprosencephaly: Prevalence and risk factors. Am J Med Genet C Semin Med Genet. 2010;154 C(1):1321.Google Scholar
Heinke, D, Nestoridi, E, Hernandez-Diaz, S, Williams, PL, Rich-Edwards, JW, Lin, AE, et al. Risk of stillbirth for fetuses with specific birth defects. Obstet Gynecol. 2020 135(1):133–140 CrossRefGoogle Scholar
Abe, Y, Kruszka, P, Martinez, AF, Roessler, E, Shiota, K, Yamada, S, et al. Clinical and demographic evaluation of a holoprosencephaly cohort from the Kyoto Collection of Human Embryos. Anat Rec. 2018;301(6):973–86.Google Scholar
Shiota, K, Yamada, S. Early pathogenesis of holoprosencephaly. Am J Med Genet C Semin Med Genet. 2010;154C(1):22–8.Google Scholar
Vaz, SS, Chodirker, B, Prasad, C, Seabrook, JA, Chudley, AE, Prasad, AN. Risk factors for nonsyndromic holoprosencephaly: a Manitoba case-control study. Am J Med Genet A. 2012;158A(4):751–8.Google Scholar
Grinblat, Y, Lipinski, RJ. A forebrain undivided: Unleashing model organisms to solve the mysteries of holoprosencephaly. Dev Dyn. 2019;248(8):626–33.Google Scholar
Kruszka, P, Muenke, M. Syndromes associated with holoprosencephaly. Am J Med Genet C Semin Med Genet. 2018;178C(2):229–37.Google Scholar
Hu, T, Kruszka, P, Martinez, AF, Ming, JE, Shabason, EK, Raam, MS, et al. Cytogenetics and holoprosencephaly: A chromosomal microarray study of 222 individuals with holoprosencephaly. Am J Med Genet C Semin Med Genet. 2018;178C(2):175–86.Google Scholar
Roessler, E, Muenke, M. The molecular genetics of holoprosencephaly. Am J Med Genet C Semin Med Genet. 2010;154C(1):5261.Google Scholar
Bendavid, C, Dupe, V, Rochard, L, Gicquel, I, Dubourg, C, David, V. Holoprosencephaly: An update on cytogenetic abnormalities. Am J Med Genet C Semin Med Genet. 2010;154C(1):8692.Google Scholar
Roessler, E, Hu, P, Marino, J, Hong, S, Hart, R, Berger, S, et al. Common genetic causes of holoprosencephaly are limited to a small set of evolutionarily conserved driver genes of midline development coordinated by TGF-beta, hedgehog, and FGF signaling. Hum Mutat. 2018;39(10):1416–27.CrossRefGoogle ScholarPubMed
Kim, A, Savary, C, Dubourg, C, Carre, W, Mouden, C, Hamdi-Roze, H, et al. Integrated clinical and omics approach to rare diseases: novel genes and oligogenic inheritance in holoprosencephaly. Brain. 2019;142(1):3549.Google Scholar
Monuki, ES. The morphogen signaling network in forebrain development and holoprosencephaly. J Neuropathol Exp Neurol. 2007;66(7):566–75.Google Scholar
Chi, L, Fan, B, Feng, D, Chen, Z, Liu, Z, Hui, Y, et al. The dorsoventral patterning of human forebrain follows an activation/transformation model. Cereb Cortex. 2017;27(5):2941–54.Google Scholar
Gulacsi, A, Anderson, SA. Shh maintains Nkx2.1 in the MGE by a Gli3-independent mechanism. Cereb Cortex. 2006;16 Suppl 1:i89–I95.Google Scholar
Radonjic, NV, Memi, F, Ortega, JA, Glidden, N, Zhan, H, Zecevic, N. The role of sonic hedgehog in the specification of human cortical progenitors in vitro. Cereb Cortex. 2016;26(1):131–43.Google Scholar
Volpe, JJ. Normal and abnormal human brain development. Clin Perinatol. 1977;4(1):330.CrossRefGoogle ScholarPubMed
Calloni, SF, Caschera, L, Triulzi, FM. Disorders of ventral induction / spectrum of holoprosencephaly. Neuroimaging Clin N Am. 2019;29(3):411–21.Google Scholar
Volpe, P, Campobasso, G, De Robertis, V, Rembouskos, G. Disorders of prosencephalic development. Prenat Diagn. 2009;29(4):340–54.Google Scholar
von Boletzky, S. On the lay-out of the midgut rudiment in Loligo pealei (LeSueur). Experientia. 1970;26(8):880–1.Google Scholar
Dale, L, Slack, JM. Regional specification within the mesoderm of early embryos of Xenopus laevis. Development. 1987;100(2):279–95.Google Scholar
Spencer, R. Theoretical and analytical embryology of conjoined twins: part I: embryogenesis. Clin Anat. 2000;13(1):3653.Google Scholar
Spencer, R. Theoretical and analytical embryology of conjoined twins: part II: adjustments to union. Clin Anat. 2000;13(2):97120.Google Scholar
Spitz, L. Conjoined twins. Prenat Diagn. 2005;25(9):814–9.Google Scholar
Weber, MA, Sebire, NJ. Genetics and developmental pathology of twinning. Semin Fetal Neonatal Med. 2010;15(6):313–8.Google Scholar
Boer, LL, Schepens-Franke, AN, Oostra, RJ. Two is a crowd: on the enigmatic etiopathogenesis of conjoined twinning. Clin Anat. 2019;32(5):722–41.Google Scholar
McNamara, HC, Kane, SC, Craig, JM, Short, RV, Umstad, MP. A review of the mechanisms and evidence for typical and atypical twinning. Am J Obstet Gynecol. 2016;214(2):172–91.Google Scholar
Wells, LJ. A case of iliothoracopagus (dicephalus tribea chius tripus) with a consideration of the “budding” and “fission” theories of twinning. Anat Rec. 1945;92(1):121.Google Scholar
Zizic Mitrecic, M, Mitrecic, D, Pochet, R, Kostovic-Knezevic, L, Gajovic, S. The mouse gene Noto is expressed in the tail bud and essential for its morphogenesis. Cells Tissues Organs. 2010;192(2):8592.Google Scholar
Corallo, D, Trapani, V, Bonaldo, P. The notochord: structure and functions. Cell Mol Life Sci. 2015;72(16):29893008.Google Scholar
Barr, M, Jr. Facial duplication: case, review, and embryogenesis. Teratology. 1982;25(2):153–9.Google Scholar
Lee, JD, Anderson, KV. Morphogenesis of the node and notochord: the cellular basis for the establishment and maintenance of left-right asymmetry in the mouse. Dev Dyn. 2008;237(12):3464–76.Google Scholar
de Bree, K, de Bakker, BS, Oostra, RJ. The development of the human notochord. PLoS One. 2018;13(10):e0205752.Google Scholar
Yamanaka, Y, Tamplin, OJ, Beckers, A, Gossler, A, Rossant, J. Live imaging and genetic analysis of mouse notochord formation reveals regional morphogenetic mechanisms. Dev Cell. 2007;13(6):884–96.Google Scholar
Wu, J, Staffenberg, DA, Mulliken, JB, Shanske, AL. Diprosopus: a unique case and review of the literature. Teratology. 2002;66(6):282–7.Google Scholar
Sur, A, Sardar, SK, Paria, A. Caudal duplication syndrome. J Clin Neonatol. 2013;2(2):101–2.Google Scholar
Slavotinek, A, Parisi, M, Heike, C, Hing, A, Huang, E. Craniofacial defects of blastogenesis: duplication of pituitary with cleft palate and orophgaryngeal tumors. Am J Med Genet A. 2005;135(1):1320.Google Scholar
Machin, GA. Conjoined twins: implications for blastogenesis. Birth Defects Orig Artic Ser. 1993;29(1):141–79.Google Scholar
Levin, M, Roberts, DJ, Holmes, LB, Tabin, C. Laterality defects in conjoined twins. Nature. 1996;384(6607):321.Google Scholar
Maruotti, GM, Paladini, D, Napolitano, R, Mazzarelli, LL, Russo, T, Quarantelli, M, et al. Prenatal 2D and 3D ultrasound diagnosis of diprosopus: case report with post-mortem magnetic resonance images (MRI) and review of the literature. Prenat Diagn. 2009;29(10):992–4.Google Scholar
Bidondo, MP, Groisman, B, Tardivo, A, Tomasoni, F, Tejeiro, V, Camacho, I, et al. Diprosopus: Systematic review and report of two cases. Birth Defects Res A Clin Mol Teratol. 2016;106(12):9931007.Google Scholar
Carles, D, Weichhold, W, Alberti, EM, Leger, F, Pigeau, F, Horovitz, J. Diprosopia revisited in light of the recognized role of neural crest cells in facial development. J Craniofac Genet Dev Biol. 1995;15(2):90–7.Google Scholar
Slager, UT, Anderson, VM, Handmaker, SD. Cephalothoracopagus janiceps malformation. A contribution to the pathogenesis of cerebral malformation. Arch Neurol. 1981;38(2):103–8.Google Scholar
Muller, F, O’Rahilly, R. The development of the human brain, the closure of the caudal neuropore, and the beginning of secondary neurulation at stage 12. Anat Embryol (Berl). 1987;176(4):413–30.Google Scholar
Muller, F, O’Rahilly, R. The development of the human brain from a closed neural tube at stage 13. Anat Embryol (Berl). 1988;177(3):203–24.Google Scholar
Muller, F, O’Rahilly, R. The primitive streak, the caudal eminence and related structures in staged human embryos. Cells Tissues Organs. 2004;177(1):220.Google Scholar
Pang, D, Dias, MS, Ahab-Barmada, M. Split cord malformation: Part I: A unified theory of embryogenesis for double spinal cord malformations. Neurosurgery. 1992;31(3):451–80.Google Scholar
Yang, HJ, Lee, DH, Lee, YJ, Chi, JG, Lee, JY, Phi, JH, et al. Secondary neurulation of human embryos: morphological changes and the expression of neuronal antigens. Childs Nerv Syst. 2014;30(1):7382.Google Scholar
Dias, MS, Pang, D. Split cord malformations. Neurosurg Clin N Am. 1995;6(2):339–58.Google Scholar
Saraga-Babic, M, Stefanovic, V, Wartiovaara, J, Lehtonen, E. Spinal cord-notochord relationship in normal human embryos and in a human embryo with double spinal cord. Acta Neuropathol. 1993;86(5):509–14.Google Scholar
Dominguez, R, Rott, J, Castillo, M, Pittaluga, RR, Corriere, JN, Jr. Caudal duplication syndrome. Am J Dis Child. 1993;147(10):1048–52.Google Scholar
Bajpai, M, Das, K, Gupta, AK. Caudal duplication syndrome: more evidence for theory of caudal twinning. J Pediatr Surg. 2004;39(2):223–5.Google Scholar
Wilder, HH. The morphology of cosmobia; speculations concerning the significance of certain types of monsters. Am J Anat. 1908;8(4):355440.Google Scholar

References

Rekate, HL. A contemporary definition and classification of hydrocephalus. Semin Pediatr Neurol. 2009;16(1):915.Google Scholar
Nagra, G, Del Bigio, MR. Pathology of pediatric hydrocephalus. In: Cinalli, G, Özek, MM, Sainte-Rose, C, editors. Pediatric Hydrocephalus, 2nd edition. New York: Springer; 2019. pp. 359–77.Google Scholar
Hannon, T, Tennant, PW, Rankin, J, Robson, SC. Epidemiology, natural history, progression, and postnatal outcome of severe fetal ventriculomegaly. Obstet Gynecol. 2012;120(6):1345–53.Google Scholar
Weller, RO. Microscopic morphology and histology of the human meninges. Morphologie. 2005;89(284):2234.Google Scholar
Johnston, M, Zakharov, A, Papaiconomou, C, Salmasi, G, Armstrong, D. Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res. 2004;1(1):2.Google Scholar
Fox, RJ, Walji, AH, Mielke, B, Petruk, KC, Aronyk, KE. Anatomic details of intradural channels in the parasagittal dura: a possible pathway for flow of cerebrospinal fluid. Neurosurgery. 1996;39(1):8490.Google Scholar
Papaiconomou, C, Bozanovic-Sosic, R, Zakharov, A, Johnston, M. Does neonatal cerebrospinal fluid absorption occur via arachnoid projections or extracranial lymphatics? Am J Physiol Regul Integr Comp Physiol. 2002;283(4):R869–R76.Google Scholar
Rekate, HL. A consensus on the classification of hydrocephalus: its utility in the assessment of abnormalities of cerebrospinal fluid dynamics. Childs Nerv Syst. 2011;27(10):1535–41.Google Scholar
Schroth, G, Klose, U. Cerebrospinal fluid flow. I. Physiology of cardiac-related pulsation. Neuroradiology. 1992;35(1):19.Google Scholar
Wagshul, ME, Eide, PK, Madsen, JR. The pulsating brain: A review of experimental and clinical studies of intracranial pulsatility. Fluids Barriers CNS. 2011;8(1):5.Google Scholar
Cardoso, ER, Del Bigio, MR, Schroeder, G. Age-dependent changes of cerebral ventricular size. Part I: Review of intracranial fluid collections. Acta Neurochir (Wien). 1989;97(1–2):40–6.Google Scholar
Del Bigio, MR. Ependymal cells: biology and pathology. Acta Neuropathol. 2010;119(1):5573.Google Scholar
Nigri, F, Gobbi, GN, da Costa Ferreira Pinto, PH, Simoes, EL, Caparelli-Daquer, EM. Hydrocephalus caused by unilateral foramen of Monro obstruction: A review on terminology. Surg Neurol Int. 2016;7(Suppl 12):S307–S13.Google Scholar
Oi, S, Matsumoto, S. Pathophysiology of nonneoplastic obstruction of the foramen of Monro and progressive unilateral hydrocephalus. Neurosurgery. 1985;17(6):891–6.Google Scholar
Nishio, S, Morioka, T, Suzuki, S, Fukui, M. Tumours around the foramen of Monro: clinical and neuroimaging features and their differential diagnosis. J Clin Neurosci. 2002;9(2):137–41.CrossRefGoogle ScholarPubMed
Kondziolka, D, Bilbao, JM. An immunohistochemical study of neuroepithelial (colloid) cysts. J Neurosurg. 1989;71(1):91–7.Google Scholar
Lach, B, Scheithauer, BW. Colloid cyst of the third ventricle: a comparative ultrastructural study of neuraxis cysts and choroid plexus epithelium. Ultrastruct Pathol. 1992;16(3):331–49.Google Scholar
Uematsu, Y, Komai, N, Hirano, A, Shimizu, M, Tanaka, Y, Naka, D, et al. Cytokeratin immunohistochemical study of epithelial cysts in the central nervous system: with special reference to origins of colloid cyst of the third ventricle and Rathke’s cleft cyst in the sella. Noshuyo Byori. 1993;10(1):4352.Google Scholar
Durfee, SM, Kim, FM, Benson, CB. Postnatal outcome of fetuses with the prenatal diagnosis of asymmetric hydrocephalus. J Ultrasound Med. 2001;20(3):263–8.Google Scholar
Dott, NM. A case of left unilateral hydrocephalus in an infant. Operation—cure. Brain. 1927;50(3–4):548–61.Google Scholar
Emery, JL, Staschak, MC. The size and form of the cerebral aqueduct in children. Brain. 1972;95(3):591–8.Google Scholar
Cinalli, G, Spennato, P, Nastro, A, Aliberti, F, Trischitta, V, Ruggiero, C, et al. Hydrocephalus in aqueductal stenosis. Childs Nerv Syst. 2011;27(10):1621–42.Google Scholar
Jellinger, K, Schwingshackl, A. Birth injury of the spinal cord. Report of two necropsy cases with several weeks survival. Neuropaediatrie. 1973;4:111–23.Google Scholar
Russell, DS. Observations on the pathology of hydrocephalus. Med Res Council Special Report Ser. 1949;265:1138.Google Scholar
Jellinger, G. Anatomopathology of non-tumoral aqueductal stenosis. J Neurosurg Sci. 1986;30(1–2):116.Google Scholar
Parker, HL, Kernohan, JW. Stenosis of the aqueduct of Sylvius. Arch Neurol Psychiatr. 1933;29(3):538–60.Google Scholar
Beckett, RS, Netsky, MG, Zimmerman, HM. Developmental stenosis of the aqueduct of Sylvius. Am J Pathol. 1950;26(5):755–87.Google Scholar
Turnbull, IM, Drake, CG. Membranous occlusion of the aqueduct of Sylvius. J Neurosurg. 1966;24(1):2434.Google Scholar
Yamamoto, H, Maruo, T, Majima, T, Ishizaki, H, Tanaka-Okamoto, M, Miyoshi, J, et al. Genetic deletion of afadin causes hydrocephalus by destruction of adherens junctions in radial glial and ependymal cells in the midbrain. PLoS One. 2013;8(11):e80356.Google Scholar
Paez, P, Batiz, LF, Roales-Bujan, R, Rodriguez-Perez, LM, Rodriguez, S, Jimenez, AJ, et al. Patterned neuropathologic events occurring in hyh congenital hydrocephalic mutant mice. J Neuropathol Exp Neurol. 2007;66(12):1082–92.Google Scholar
Wagner, C, Batiz, LF, Rodriguez, S, Jimenez, AJ, Paez, P, Tome, M, et al. Cellular mechanisms involved in the stenosis and obliteration of the cerebral aqueduct of hyh mutant mice developing congenital hydrocephalus. J Neuropathol Exp Neurol. 2003;62(10):1019–40.Google Scholar
Ma, X, Bao, J, Adelstein, RS. Loss of cell adhesion causes hydrocephalus in nonmuscle myosin II-B-ablated and mutated mice. Mol Biol Cell. 2007;18(6):2305–12.Google Scholar
Adle-Biassette, H, Saugier-Veber, P, Fallet-Bianco, C, Delezoide, AL, Razavi, F, Drouot, N, et al. Neuropathological review of 138 cases genetically tested for X-linked hydrocephalus: evidence for closely related clinical entities of unknown molecular bases. Acta Neuropathol. 2013;126(3):427–42.Google Scholar
Siyahhan, B, Knobloch, V, de Zelicourt, D, Asgari, M, Schmid Daners, M, Poulikakos, D, et al. Flow induced by ependymal cilia dominates near-wall cerebrospinal fluid dynamics in the lateral ventricles. J R Soc Interface. 2014;11(94):20131189.Google Scholar
Lee, L. Riding the wave of ependymal cilia: Genetic susceptibility to hydrocephalus in primary ciliary dyskinesia. J Neurosci Res. 2013;91(9):1117–32.Google Scholar
Raimondi, AJ, Clark, SJ, McLone, DG. Pathogenesis of aqueductal occlusion in congenital murine hydrocephalus. J Neurosurg. 1976;45(1):6677.Google Scholar
Olbrich, H, Schmidts, M, Werner, C, Onoufriadis, A, Loges, NT, Raidt, J, et al. Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am J Human Genet. 2012;91(4):672–84.Google Scholar
Vieira, JP, Lopes, P, Silva, R. Primary ciliary dyskinesia and hydrocephalus with aqueductal stenosis. J Child Neurol. 2012;27(7):938–41.Google Scholar
Greenstone, MA, Jones, RWA, Dewar, A, Neville, BGR, Cole, PJ. Hydrocephalus and primary ciliary dyskinesia. Arch Dis Child. 1984;59(5):481–2.Google Scholar
Kosaki, K, Ikeda, K, Miyakoshi, K, Ueno, M, Kosaki, R, Takahashi, D, et al. Absent inner dynein arms in a fetus with familial hydrocephalus-situs abnormality. Am J Med Genet. 2004;129A(3):308–11.Google Scholar
Milhorat, TH, Kotzen, RM, Anzil, AP. Stenosis of central canal of spinal cord in man: incidence and pathological findings in 232 autopsy cases. J Neurosurg. 1994;80(4):716–22.Google Scholar
Alvarez, LA, Kato, T, Llena, JF, Hirano, A. Ependymal foldings and other related ependymal structures in the cerebral aqueduct and fourth ventricle of man. Acta Anat (Basel). 1987;129(4):305–9.Google Scholar
Friede, RL. Surface structures of the aqueduct and the ventricular walls: a morphologic, comparative and histochemical study. J Comp Neurol. 1961;116:229–47.Google Scholar
Luteijn, JM, Brown, MJ, Dolk, H. Influenza and congenital anomalies: a systematic review and meta-analysis. Hum Reprod. 2014;29(4):809–23.Google Scholar
Rorke, LB. Pathology of Perinatal Brain Injury. New York: Raven Press; 1982. p. 146.Google Scholar
Gunn, TR, Mora, JD, Becroft, DM. Congenital hydrocephalus secondary to prenatal intracranial haemorrhage. Aust N Z J Obstet Gynaecol. 1988;28(3):197200.Google Scholar
Lategan, B, Chodirker, BN, Del Bigio, MR. Fetal hydrocephalus caused by cryptic intraventricular hemorrhage. Brain Pathol. 2010;20(2):391–8.Google Scholar
Cavallo, C, Farago, G, Broggi, M, Ferroli, P, Acerbi, F. Developmental venous anomaly as a rare cause of obstructive hydrocephalus. J Neurosurg Sci. 2019;63(5):600–6.CrossRefGoogle Scholar
Matsushima, T, Rhoton, AL, Lenkey, C. Microsurgery of the fourth ventricle: Part.1. Microsurgical anatomy. Neurosurgery. 1982;11(5):631–67.Google Scholar
Christian, EA, Jin, DL, Attenello, F, Wen, T, Cen, S, Mack, WJ, et al. Trends in hospitalization of preterm infants with intraventricular hemorrhage and hydrocephalus in the United States, 2000–2010. J Neurosurg Pediatr. 2016 17(3):260–9.Google Scholar
Dolecek, TA, Propp, JM, Stroup, NE, Kruchko, C. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol. 2012;14 Suppl 5:149.Google Scholar
Louis, DN, Perry, A, Reifenberger, G, von Deimling, A, Figarella-Branger, D, Cavenee, WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.Google Scholar
Johnson, KJ, Cullen, J, Barnholtz-Sloan, JS, Ostrom, QT, Langer, CE, Turner, MC, et al. Childhood brain tumor epidemiology: a brain tumor epidemiology consortium review. Cancer Epidemiol Biomarkers Prev. 2014;23(12):2716–36.CrossRefGoogle ScholarPubMed
Starke, RM, Cappuzzo, JM, Erickson, NJ, Sherman, JH. Pineal cysts and other pineal region malignancies: determining factors predictive of hydrocephalus and malignancy. J Neurosurg. 2017 127(2):249–254.Google Scholar
Mottolese, C, Szathmari, A, Beuriat, PA. Incidence of pineal tumours. A review of the literature. Neurochirurgie. 2015;61(2–3):65–9.Google Scholar
Cesmebasi, A, Loukas, M, Hogan, E, Kralovic, S, Tubbs, RS, Cohen-Gadol, AA. The Chiari malformations: a review with emphasis on anatomical traits. Clinical Anatomy. 2015;28(2):184–94.Google Scholar
Caviness, VS. The Chiari malformations of the posterior fossa and their relation to hydrocephalus. Dev Med Child Neurol. 1976;18(1):103–16.Google Scholar
Bell, JE, Gordon, A, Maloney, AFJ. The association of hydrocephalus and Arnold-Chiari malformation with spina bifida in the fetus. Neuropathol Appl Neurobiol. 1980;6(1):2939.Google Scholar
Elgamal, EA. Natural history of hydrocephalus in children with spinal open neural tube defect. Surg Neurol Int. 2012;3:112.Google Scholar
Lichtenstein, BW. Distant neuroanatomic complications of spina bifida (spinal dysraphism): Hydrocephalus, Arnold-Chiari deformity, stenosis of the aqueduct of Sylvius, etc.; pathogenesis and pathology. Arch Neurol Psychiatr. 1942;47(2):195214.Google Scholar
Russell, DS, Donald, C. The mechanism of internal hydrocephalus in spina bifida. Brain. 1935;58:203–15.Google Scholar
Emery, JL, MacKenzie, N. Medullo-cervical dislocation deformity (Chiari II deformity) related to neurospinal dysraphism (meningomyelocele). Brain. 1973;96(1):155–62.Google Scholar
Emery, JL. Deformity of the aqueduct of Sylvius in children with hydrocephalus and myelomeningocele. Dev Med Child Neurol. 1974;16 Suppl 32(6):40–8.Google Scholar
Gilbert, JN, Jones, KL, Rorke, LB, Chernoff, GF, James, HE. Central nervous system anomalies associated with meningomyelocele, hydrocephalus, and the Arnold-Chiari malformation: reappraisal of theories regarding the pathogenesis of posterior neural tube closure defects. Neurosurgery. 1986;18(5):559–64.Google Scholar
MacFarlane, A, Maloney, AF. The appearance of the aqueduct and its relationship to hydrocephalus in the Arnold-Chiari malformation. Brain. 1957;80(4):479–91.Google Scholar
Masters, CL. Pathogenesis of the Arnold-Chiari malformation: the significance of hydrocephalus and aqueduct stenosis. J Neuropathol Exp Neurol. 1978;37(1):5674.Google Scholar
Tulipan, N, Wellons, JC, Thom, EA, Gupta, N, Sutton, LN, Burrows, PK, et al. Prenatal surgery for myelomeningocele and the need for cerebrospinal fluid shunt placement. J Neurosurg Pediatr. 2015;16(6):613–20.Google Scholar
Sival, DA, Guerra, M, den Dunnen, WF, Batiz, LF, Alvial, G, Castaneyra-Perdomo, A, et al. Neuroependymal denudation is in progress in full-term human foetal spina bifida aperta. Brain Pathol. 2011;21(2):163–79.Google Scholar
Barr, ML. Observations on the foramen of Magendie in a series of human brains. Brain. 1948;71(3):281–9.Google Scholar
Spennato, P, Mirone, G, Nastro, A, Buonocore, MC, Ruggiero, C, Trischitta, V, et al. Hydrocephalus in Dandy-Walker malformation. Childs Nerv Syst. 2011;27(10):1665–81.Google Scholar
Taggart, JK, Walker, AE. Congenital atresia of the foramens of Luschka and Magendie. Arch Neuro Psychiatr. 1942;48(4):583612.Google Scholar
Hart, MN, Malamud, N, Ellis, WG. The Dandy-Walker syndrome. A clinicopathological study based on 28 cases. Neurology. 1972;22(8):771–80.Google Scholar
Logan, CV, Abdel-Hamed, Z, Johnson, CA. Molecular genetics and pathogenic mechanisms for the severe ciliopathies: insights into neurodevelopment and pathogenesis of neural tube defects. Mol Neurobiol. 2011;43(1):1226.Google Scholar
Cincinnati, P, Neri, ME, Valentini, A. Dandy-Walker anomaly in Meckel-Gruber syndrome. Clin Dysmorphol. 2000;9(1):35–8.Google Scholar
Ahdab-Barmada, M, Claassen, D. A distinctive triad of malformations of the central nervous system in the Meckel-Gruber syndrome. J Neuropath Exp Neurol. 1990;49(6):610–20.Google Scholar
Docherty, JG, Daly, JC, Carachi, R. Encephaloceles – a review 1971–1990. Eur J Pediatr Surg. 1991;1:11–3.Google Scholar
Caviness, VS, Evrard, P. Occipital encephalocele: a pathologic and anatomic analysis. Acta Neuropathol. 1975;32(3):245–55.Google Scholar
Karch, SB, Urich, H. Occipital encephalocele – morphological study. J Neurol Sci. 1972;15(1):89112.Google Scholar
Nauta, HJW, Dolan, E, Yasargil, MG. Microsurgical anatomy of spinal subarachnoid space. Surg Neurol. 1983;19(5):431–7.Google Scholar
Adeeb, N, Deep, A, Griessenauer, CJ, Mortazavi, MM, Watanabe, K, Loukas, M, et al. The intracranial arachnoid mater: a comprehensive review of its history, anatomy, imaging, and pathology. Childs Nerv Syst. 2013;29(1):1733.Google Scholar
Alcolado, R, Weller, RO, Parrish, EP, Garrod, D. The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol Appl Neurobiol. 1988;14(1):117.Google Scholar
Kida, S, Yamashima, T, Kubota, T, Ito, H, Yamamoto, S. A light and electron microscopic and immunohistochemical study of human arachnoid villi. J Neurosurg. 1988;69:429–35.Google Scholar
Tubbs, RS, Hansasuta, A, Stetler, W, Kelly, DR, Blevins, D, Humphrey, R, et al. Human spinal arachnoid villi revisited: immunohistological study and review of the literature. J Neurosurg Spine. 2007;7(3):328–31.Google Scholar
Gomez, DG, DiBenedetto, AT, Pavese, AM, Firpo, A, Hershan, DB, Potts, DG. Development of arachnoid villi and granulations in man. Acta Anat (Basel). 1982;111(3):247–58.Google Scholar
Symss, NP, Oi, S. Theories of cerebrospinal fluid dynamics and hydrocephalus: historical trend. J Neurosurg Pediatr. 2013;11(2):170–7.Google Scholar
Bucchieri, F, Farina, F, Zummo, G, Cappello, F. Lymphatic vessels of the dura mater: a new discovery? J Anat. 2015;227(5):702–3.Google Scholar
Squier, W, Lindberg, E, Mack, J, Darby, S. Demonstration of fluid channels in human dura and their relationship to age and intradural bleeding. Childs Nerv Syst. 2009;25(8):925–31.Google Scholar
Bakker, EN, Bacskai, BJ, Arbel-Ornath, M, Aldea, R, Bedussi, B, Morris, AW, et al. Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol. 2016;36(2):181–94.Google Scholar
Chatterjee, S, Chatterjee, U. Overview of post-infective hydrocephalus. Childs Nerv Syst. 2011;27(10):1693–8.Google Scholar
Massicotte, EM, Del Bigio, MR. Human arachnoid villi response to subarachnoid hemorrhage: possible relationship to chronic hydrocephalus. J Neurosurg. 1999;91(1):80–4.Google Scholar
Gilles, FH, Davidson, RI. Communicating hydrocephalus associated with deficient dysplastic parasagittal arachnoidal granulations. J Neurosurg. 1971;35:421–6.Google Scholar
Gutierrez, Y, Friede, RL, Kaliney, WJ. Agenesis of arachnoid granulations and its relationship to communicating hydrocephalus. J Neurosurg. 1975;43(5):553–8.Google Scholar
Portnoy, HD, Branch, C, Castro, ME. The relationship of intracranial venous pressure to hydrocephalus. Childs Nerv Syst. 1994;10(1):2935.Google Scholar
Sainte-Rose, C, LaCombe, J, Pierre-Kahn, A, Reiner, D, Hirsch, JF. Intracranial venous sinus hypertension: cause or consequence of hydrocephalus in infants? J Neurosurg. 1984;60:727–36.Google Scholar
Steinbok, P, Hall, J, Flodmark, O. Hydrocephalus in achondroplasia: the possible role of intracranial venous hypertension. J Neurosurg. 1989;71(1):42–8.Google Scholar
Taylor, WJ, Hayward, RD, Lasjaunias, P, Britto, JA, Thompson, DN, Jones, BM, et al. Enigma of raised intracranial pressure in patients with complex craniosynostosis: the role of abnormal intracranial venous drainage. J Neurosurg. 2001;94(3):377–85.Google Scholar
McLaughlin, JF, Loeser, JD, Roberts, TS. Acquired hydrocephalus associated with superior vena cava syndrome in infants. Childs Nerv Syst. 1997;13:5963.Google Scholar
Rosman, NP, Shands, KN. Hydrocephalus caused by increased intracranial venous pressure: a clinicopathological study. Ann Neurol. 1978;3(5):445–50.Google Scholar
Del Bigio, MR. Neuropathological changes caused by hydrocephalus. Acta Neuropathol (Berl). 1993;85(6):573–85.Google Scholar
Del Bigio, MR. Ependymal reactions to injury. A review. J Neuropathol Exp Neurol. 1995;54(3):405–6.Google Scholar
Del Bigio, MR. Future directions for therapy of childhood hydrocephalus: a view from the laboratory. Pediatr Neurosurg. 2001;34(4):172–81.Google Scholar
Del Bigio, MR. Pathophysiologic consequences of hydrocephalus. Neurosurg Clin N Am. 2001;12(4):639–49.Google Scholar
Del Bigio, MR. Neuropathology and structural changes in hydrocephalus. Dev Disabil Res Rev. 2010;16(1):1622.Google Scholar
Del Bigio, MR. Neuropathology of human hydrocephalus. In: Rigamonti, D, editor. Adult Hydrocephalus. Cambridge: Cambridge University Press; 2014. pp. 1427.Google Scholar
Del Bigio, MR. Cellular damage and prevention in childhood hydrocephalus. Brain Pathol. 2004;14(3):317–24.Google Scholar
Del Bigio, MR, Khan, OH, da Silva Lopes, L, Juliet, PA. Cerebral white matter oxidation and nitrosylation in young rodents with kaolin-induced hydrocephalus. J Neuropathol Exp Neurol. 2012;71(4):274–88.Google Scholar
Miyan, JA, Nabiyouni, M, Zendah, M. Development of the brain: a vital role for cerebrospinal fluid. Can J Physiol Pharmacol. 2003;81(4):317–28.Google Scholar
Di Curzio, DL, Buist, RJ, Del Bigio, MR. Reduced subventricular zone proliferation and white matter damage in juvenile ferrets with kaolin-induced hydrocephalus. Exp Neurol. 2013;248:112–28.Google Scholar
Del Bigio, MR. Glial linings of the brain. In: Walz, W, editor. The Neuronal Environment: Brain Homeostasis in Health and Disease. Totowa: Humana Press Inc.; 2002. pp. 341–75.Google Scholar
Wilkins, RH, Odom, GL. Ependymal-choroidal cells in cerebrospinal fluid. Increased incidence in hydrocephalic infants. J Neurosurg. 1974;41(5):555–60.Google Scholar
Gadsdon, DR, Variend, S, Emery, JL. The effect of hydrocephalus upon the myelination of the corpus callosum. Z Kinderchir. 1978;25:311–9.Google Scholar
Del Bigio, MR, Wilson, MJ, Enno, T. Chronic hydrocephalus in rats and humans: white matter loss and behavior changes. Ann Neurol. 2003;53(3):337–46.Google Scholar
Hanlo, PW, Gooskens, RJHM, Vanschooneveld, M, Tulleken, CAF, Vanderknaap, MS, Faber, JAJ, et al. The effect of intracranial pressure on myelination and the relationship with neurodevelopment in infantile hydrocephalus. Dev Med Child Neurol. 1997;39(5):286–91.Google Scholar
Williams, VJ, Juranek, J, Stuebing, KK, Cirino, PT, Dennis, M, Bowman, RM, et al. Postshunt lateral ventricular volume, white matter integrity, and intellectual outcomes in spina bifida and hydrocephalus. J Neurosurg Pediatr. 2015 15(4):410–9.Google Scholar
Humphreys, P, Muzumdar, DP, Sly, LE, Michaud, J. Focal cerebral mantle disruption in fetal hydrocephalus. Pediatr Neurol. 2007;36(4):236–43.Google Scholar
Torkildsen, A. Spontaneous rupture of the cerebral ventricles. J Neurosurg. 1948;5(4):327–39.Google Scholar
Limbrick, DD, Jr., Baird, LC, Klimo, P, Jr., Riva-Cambrin, J, Flannery, AM, Pediatric Hydrocephalus Systematic R, et al. Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 4: Cerebrospinal fluid shunt or endoscopic third ventriculostomy for the treatment of hydrocephalus in children. J Neurosurg Pediatr. 2014;14 Suppl 1:30–4.Google Scholar
Eid, S, Iwanaga, J, Oskouian, RJ, Loukas, M, Oakes, WJ, Tubbs, RS. Ventriculosubgaleal shunting – a comprehensive review and over two-decade surgical experience. Childs Nerv Syst. 2018;34(11):1639–42.Google Scholar
Del Bigio, MR. Biological reactions to cerebrospinal fluid shunt devices: a review of the cellular pathology. Neurosurgery. 1998;42(2):319–25.CrossRefGoogle ScholarPubMed
Harris, CA, McAllister, JP, 2nd. What we should know about the cellular and tissue response causing catheter obstruction in the treatment of hydrocephalus. Neurosurgery. 2012;70(6):1589–601.Google Scholar
Ellis, MJ, Kazina, CJ, Del Bigio, MR, McDonald, PJ. Treatment of recurrent ventriculoperitoneal shunt failure associated with persistent cerebrospinal fluid eosinophilia and latex allergy by use of an “extracted” shunt. J Neurosurg Pediatr. 2008;1(3):237–9.Google Scholar

References

Pilz, D, Stoodley, N, Golden, JA. Neuronal migration, cerebral cortical development, and cerebral cortical anomalies. J Neuropathol Exp Neurol. 2002;61(1):111.Google Scholar
Gleeson, JG, Walsh, CA. Neuronal migration disorders: from genetic diseases to developmental mechanisms. Trends Neurosci. 2000;23(8):352–9.Google Scholar
McManus, MF, Golden, JA. Neuronal migration in developmental disorders. J Child Neurol. 2005;20(4):280–6.Google Scholar
Stouffer, MA, Golden, JA, Francis, F. Neuronal migration disorders: Focus on the cytoskeleton and epilepsy. Neurobiol Dis. 2016;92(Pt A):18–45.Google Scholar
Uher, BF, Golden, JA. Neuronal migration defects of the cerebral cortex: a destination debacle. Clin Genet. 2000;58(1):1624.Google Scholar
Moffat, JJ, Ka, M, Jung, EM, Kim, WY. Genes and brain malformations associated with abnormal neuron positioning. Mol Brain. 2015;8(1):72.Google Scholar
Harding, BN, Golden, JA. Malformations. In: Love, S, Budka, H, Ironside, JW, Perry, A. (eds.), Greenfield’s Neuropathology, 9th edition. Boca Raton: Taylor & Francis; 2015.Google Scholar
Guerrini, R, Dobyns, WB. Malformations of cortical development: clinical features and genetic causes. Lancet Neurol 2014;13:710–26.Google Scholar
Poza, JJ. The genetics of focal epilepsies. Handb Clin Neurol. 2012;107:153–61.Google Scholar
Vajsar, J, Schachter, H. Walker-Warburg syndrome. Orphanet J Rare Dis. 2006;1:29.Google Scholar
Fuchs-Telem, D, Stewart, H, Rapaport, D, Nousbeck, J, Gat, A, Gini, M, et al. CEDNIK syndrome results from loss-of-function mutations in SNAP29. Br J Dermatol. 2011;164(3):610–16.Google Scholar
Jansen, A, Andermann, E. Genetics of the polymicrogyria syndromes. J Med Genet. 2005;42(5):369–78.Google Scholar
Reinstein, E, Chang, BS, Robertson, SP, Rimoin, DL, Katzir, T. Filamin A mutation associated with normal reading skills and dyslexia in a family with periventricular heterotopia. Am J Med Genet A. 2012;158A(8):1897–901.Google Scholar
Prayson, RA. Classification and pathological characteristics of the cortical dysplasias. Childs Nerv Syst. 2014;30(11):1805–12.Google Scholar
Taylor, DC, Falconer, MA, Bruton, CJ, Corsellis, JA. Focal dysplasia of the cerebral cortex in epilepsy. J Neurol Neurosurg Psychiatry. 1971;34:369–87.Google Scholar
Blümcke, I, Mühlebner, A. Neuropathological work-up of focal cortical dysplasias using the new ILAE consensus classification system – practical guideline article invited by the Euro-CNS Research Committee. Clin Neuropathol. 2011;30(4):164–77.Google Scholar
Cotter, D, Honavar, M, Lovestone, S, Raymond, L, Kerwin, R, Anderton, B, et al. Disturbance of Notch-1 and Wnt signalling proteins in neuroglial balloon cells and abnormal large neurons in focal cortical dysplasia in human cortex. Acta Neuropathol. 1999;98(5):465–72.Google Scholar
Biesecker, LG, Spinner, NB. A genomic view of mosaicism and human disease. Nat Rev Genet. 2013;14(5):307–20.Google Scholar
Baek, ST, Gibbs, EM, Gleeson, JG, Mathern, GW. Hemimegalencephaly, a paradigm for somatic postzygotic neurodevelopmental disorders. Curr Opin Neurol. 2013;26(2):122–7.Google Scholar
Mirzaa, GM, Campbell, CD, Solovieff, N, Goold, C, Jansen, LA, Menon, S, et al. Association of mTOR mutations with developmental brain disorders, including megalencephaly, focal cortical dysplasia, and pigmentary mosaicism. JAMA Neurol. 2016;73(7):836–45.Google Scholar
National Institute of Neurological Disorders and Stroke. Neuronal Migration Disorders. www.ninds.nih.gov/Disorders/All-Disorders/Neuronal-Migration-Disorders-Information-Page, last modified March 27, 2019.Google Scholar

References

Saldarriaga, W, Tassone, F, Gonzalez-Teshima, L, Forero-Forero, J, Ayala-Zapata, S, Hagerman, RJ. Fragile X syndrome. Colomb Med (Cali) 2014;45:190–8.Google Scholar
Bagni, C, Tassone, F, Neri, G, Hagerman, RJ. Fragile X syndrome: causes, diagnosis, mechanisms, and therapeutics. J Clin Invest 2012;122:4314–22.Google Scholar
Hagerman, RJ, Hagerman, PJ. Fragile X-associated tremor/ataxia syndrome – features, mechanisms and management. Nat Rev Neurol 2016;12:403–12.Google Scholar
Coffey, S, Cook, K, Tartaglia, N, Tassone, F, Nguyen, DV, Pan, R, et al. Expanded clinical phenotype of women with the FMR1 premutation. Am J Med Genet A 2008;146A:1009–16.Google Scholar
Hunter, J, Rivero-Arias, O, Angelov, A, Kim, E, Fotheringham, I, Leal, J. Epidemiology of fragile X syndrome: A systematic review and meta-analysis. Am J Med Genet A 2014;164(7):1648–58.Google Scholar
Devys, D, Lutz, Y, Rouyer, N, Bellocq, J-P, Mandel, J-L. The FMR-1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation. Nat Genet 1993;4(4):335–40.Google Scholar
Lozano, R, Rosero, CA, Hagerman, RJ. Fragile X spectrum disorders. Intractable Rare Dis Res 2014;3(4):134–46.Google Scholar
Hagerman, RJ, Berry-Kravis, E, Hazlett, HC, Bailey, DB, Moine, H, Kooy, RF, et al. Fragile X syndrome. Nat Rev Dis Primers 2017;3:17065.Google Scholar
Bailey, DB, Raspa, M, Bishop, E, Holiday, D. No change in the age of diagnosis for fragile X syndrome: findings from a national parent survey. Pediatrics 2009;124(2):527–33.Google Scholar
Antar, LN, Dictenberg, JB, Plociniak, M, Afroz, R, Bassell, GJ. Localization of FMRP-associated mRNA granules and requirement of microtubules for activity-dependent trafficking in hippocampal neurons. Genes Brain Behav 2005;4(6):350–9.Google Scholar
Bailey, DB, Raspa, M, Holiday, D, Bishop, E, Olmsted, M. Functional skills of individuals with fragile X syndrome: A lifespan cross-sectional analysis. Am J Intellect Dev Disabil 2009;114(4):289303.Google Scholar
Hagerman, PJ, Stafstrom, CE. Origins of epilepsy in fragile X syndrome. Epilepsy Curr 2009;9(4):108–12.Google Scholar
Hatton, DD, Wheeler, A, Sideris, J, Sullivan, K, Reichardt, A, Roberts, J, et al. Developmental trajectories of young girls with Fragile X Syndrome. Am J Intellect Dev Disabil 2009;114(3):161–71.Google Scholar
Greco, CM, Berman, RF, Martin, RM, Tassone, F, Schwartz, PH, Chang, A, et al. Neuropathology of fragile X-associated tremor/ataxia syndrome (FXTAS). Brain 2006;129(1):243–55.Google Scholar
Martínez-Cerdeño, V, Lechpammer, M, Lott, A, Schneider, A, Hagerman, RJ. Fragile X-associated tremor/ataxia syndrome in a man in his 30’s. JAMA Neurol 2015;72:1070–3.Google Scholar
Hagerman, RJ, Leehey, M, Heinrichs, W, Tassone, F, Wilson, R, Hills, J, et al. Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 2001;57:127–30.Google Scholar
Lechpammer, M, Martínez Cerdeńo, V, Hunsaker, MR, Hah, M, Gonzales, H, Tisch, S, Joffe, R, Pamphlett, R, Tassone, F, Hagerman, PJ, Bolitho, SJ, Hagerman, RJ. Concomitant occurrence of FXTAS and clinically defined sporadic inclusion body myositis: report of two cases. Croat Med J 2017;58(4):310–15.Google Scholar
Brunberg, JA, Jacquemont, S, Hagerman, RJ, Berry-Kravis, EM, Grigsby, J, Leehey, MA, et al. Fragile X premutation carriers: characteristic MRI findings of adult male patients with progressive cerebellar and cognitive dysfunction. Am J Neuroradiol 2002;23(10):1757–66.Google Scholar
Hallahan, BP, Craig, MC, Toal, F, Daly, EM, Moore, CJ, Ambikapathy, A, Robertson, D, Murphy, KC, Murphy, DG. In vivo brain anatomy of adult males with Fragile X syndrome: an MRI study. Neuroimage 2011;54(1):1624.Google Scholar
Wang, JY, Hessl, D, Hagerman, RJ, Simon, TJ, Tassone, F, Ferrer, E, et al. Abnormal trajectories in cerebellum and brainstem volumes in carriers of the fragile X premutation. Neurobiol Aging 2017;55:1119.Google Scholar
Bruno, J, Shelly, E, Quintin, E-M, Rostami, M, Patnaik, S, Spielman, D, et al. Aberrant basal ganglia metabolism in fragile X syndrome: a magnetic resonance spectroscopy study. J Neurodev Disord 2013;5(1):20.Google Scholar
Sherman, S, Pletcher, BA, Driscoll, DA. Fragile X syndrome: diagnostic and carrier testing. Genet Med 2005;7(8):584–7.Google Scholar
LaFauci, G, Adayev, T, Kascsak, R, Brown, WT. Detection and quantification of the fragile X mental retardation protein 1 (FMRP). Genes (Basel) 2016;7(12):pii:E121.Google Scholar
Greco, CM, Hagerman, RJ, Tassone, F, Chudley, AE, Del Bigio, MR, Jacquemont, S, et al. Neuronal intranuclear inclusions in a new cerebellar tremor/ataxia syndrome among fragile X carriers. Brain 2002;125(8):1760–71.Google Scholar
Salcedo-Arellano, MJ, Hagerman, RJ, Martínez-Cerdeño, V. Síndrome de temblor y ataxia asociado al X frágil: presentación clínica, patología y tratamiento. Rev Neurol 2019;68(5):199206.Google Scholar
Ariza, J, Rogers, H, Hartvigsen, A, Snell, M, Dill, M, Judd, D, Hagerman, P, Martínez-Cerdeño, V. Iron accumulation and dysregulation in the putamen in fragile X-associated tremor/ataxia syndrome. Mov Disord 2017;32(4):585–91.Google Scholar
Martínez Cerdeño, V, Hong, T, Amina, S, Lechpammer, M, Ariza, J, Tassone, F, Noctor, SC, Hagerman, P, Hagerman, R. Microglial cell activation and senescence are characteristic of the pathology FXTAS. Mov Disord 2018;33(12):1887–94.Google Scholar
Hayward, BE, Kumari, D, Usdin, K. Recent advances in assays for the fragile X-related disorders. Hum Genet 2017;136(10):1313–27.Google Scholar
Martínez-Cerdeño, V, Lechpammer, M, Noctor, S, Ariza, J, Hagerman, P, Hagerman, R. FMR1 premutation with Prader-Willi phenotype and fragile X-associated tremor/ataxia syndrome. Clin Case Rep 2017;5:625–9.Google Scholar
Jalnapurkar, I, Cochran, DM, Frazier, JA. New therapeutic options for fragile X syndrome. Curr Treat Options Neurol 2019;21(3):12.Google Scholar

References

Hickey, F, Hickey, E, Summar, KL. Medical update for children with Down syndrome for the pediatrician and family practitioner. Adv Pediatr. 2012;59(1):137–57.Google Scholar
Ergaz-Shaltiel, Z, Engel, O, Erlichman, I, Naveh, Y, Schimmel, MS, Tenenbaum, A. Neonatal characteristics and perinatal complications in neonates with Down syndrome. Am J Med Gene. 2017;173(5):1279–86.Google Scholar
ACOG Practice Bulletin No. 88. Invasive prenatal testing for aneuploidy. Obstet Gynecol. 2007;110(6):1459–67.Google Scholar
Agarwal Gupta, N, Kabra, M. Diagnosis and management of Down syndrome. Indian J Pediatr. 2014;81(6):560–7.Google Scholar
Ostermaier, KK. Down syndrome: Clinical features and diagnosis. UpToDate. 2018 Available from: www.uptodate.com/contents/down-syndrome-clinical-features-and-diagnosis.Google Scholar
Bull, MJ, Committee on genetics. Health supervision for children with Down syndrome. Pediatrics. 2011;128(2):393406.Google Scholar
Myers, BA, Pueschel, SM. Psychiatric disorders in persons with Down syndrome. J Nerv Ment Dis. 1991;179(10):609–13.Google Scholar
Kent, L, Evans, J, Paul, M, Sharp, M. Comorbidity of autistic spectrum disorders in children with Down syndrome. Dev Med Child Neurol. 1999;41(3):153–8.Google Scholar
Lai, F, Williams, RS. A prospective study of Alzheimer disease in Down syndrome. Arch Neurol. 1989;46(8):849–53.Google Scholar
Visser, FE, Aldenkamp, AP, van Huffelen, AC, Kuilman, M, Overweg, J, van Wijk, J. Prospective study of the prevalence of Alzheimer-type dementia in institutionalized individuals with Down syndrome. Am J Ment Retard. 1997;101(4):400–12.Google Scholar
Geggel, RL, O’Brien, JE, Feingold, M. Development of valve dysfunction in adolescents and young adults with Down syndrome and no known congenital heart disease. J Pediatr. 1993;122:821–3.Google Scholar
Hamada, T, Gejyo, F, Koshino, Y, Murata, T, Omori, M, Nishio, M, et al. Echocardiographic evaluation of cardiac valvular abnormalities in adults with Down’s syndrome. Tohoku J Exp Med. 1998;185(1):31–5.Google Scholar
Bush, D, Galambos, C, Ivy, DD, Abman, SH, Wolter-Warmerdam, K, Hickey, F. Clinical characteristics and risk factors for developing pulmonary hypertension in children with Down syndrome. J Pediatr. 2018;202:212–19.Google Scholar
Thomas, K, Bourke, J, Girdler, S, Bebbington, A, Jacoby, P, Leonard, H. Variation over time in medical conditions and health service utilization of children with Down syndrome. J Pediatr. 2011;158(2):194–200.e1.Google Scholar
McDowell, KM, Craven, DI. Pulmonary complications of Down syndrome during childhood. J Pediatr. 2011;158(2):319–25.Google Scholar
Roizen, NJ, Mets, MB, Blondis, TA. Ophthalmic disorders in children with Down syndrome. Dev Med Child Neurol. 1994;36(7):594600.Google Scholar
Tedeschi, AS, Roizen, NJ, Taylor, HG, Murray, G, Curtis, CA, Parikh, AS. The prevalence of congenital hearing loss in neonates with Down syndrome. J Pediatr. 2015;166(1):168–71.Google Scholar
Shott, SR, Joseph, A, Heithaus, D. Hearing loss in children with Down syndrome. Int J Pediatr Otorhinolaryngol. 2001;61(3):199205.Google Scholar
Tüysüz, B, Beker, DB. Thyroid dysfunction in children with Down’s syndrome. Acta Paediatr. 2001;90(12):1389–93.Google Scholar
Van Goor, JC, Massa, GG, Hirasing, R. Increased incidence and prevalence of diabetes mellitus in Down’s syndrome. Arch Dis Child. 1997;77(2):186.Google Scholar
Fabia, J, Drolette, M. Malformations and leukemia in children with Down’s syndrome. Pediatrics. 1970;45(1):6070.Google Scholar
Mercer, ES, Broecker, B, Smith, EA, Kirsch, AJ, Scherz, HC, Massad C.Urological manifestations of Down syndrome. J Urol. 2004;171(3):1250–53.Google Scholar
Pinter, JD, Eliez, S, Schmitt, JE, Capone, GT, Reiss, AL. Neuroanatomy of Down’s syndrome: a high-resolution MRI study. Am J Psychiatry. 2001;158(10):1659–65.Google Scholar
Fujii, Y, Aida, N, Niwa, T, Enokizono, M, Nozawa, K, Inoue, T. A small pons as a characteristic finding in Down syndrome: a quantitative MRI study. Brain Dev. 2017;39(4):298305.Google Scholar
Ieshima, A, Kisa, T, Yoshino, K, Takashima, S, Takeshita, K. A morphometric CT study of Down’s syndrome showing small posterior fossa and calcification of basal ganglia. Neuroradiology. 1984;26(6):493–8.Google Scholar
Blaser, S, Propst, EJ, Martin, D, Feigenbaum, A, James, AL, Shannon, P, et al. Inner ear dysplasia is common in children with Down syndrome (trisomy 21). Laryngoscope. 2006;116(12):2113–19.Google Scholar
Hobson-Rohrer, WL, Samson-Fang, L. Down syndrome. Pediatr Rev. 2013;34(12):573–4.Google Scholar
Spencer, K, Souter, V, Tul, N, Snijders, R, Nicolaides, KH. A screening program for trisomy 21 at 10–14 weeks using fetal nuchal translucency, maternal serum free β-human chorionic gonadotropin and pregnancy-associated plasma protein-A: First-trimester screening for Down’s syndrome. Ultrasound Obstet and Gynecol. 1999;13(4):231–7.Google Scholar
Wisniewski, KE. Down syndrome children often have brain with maturation delay, retardation of growth, and cortical dysgenesis. Am J Med Genet Suppl. 1990;7:274–81.Google Scholar
Wisniewski, KE, Schmidt-Sidor, B. Postnatal delay of myelin formation in brains from Down syndrome infants and children. Clin Neuropathol. 1989;8(2):5562.Google Scholar
Yarom, R, Sagher, U, Havivi, Y, Peled, IJ, Wexler, MR. Myofibers in tongues of Down’s syndrome. J Neuro Sci. 1986;73(3):279–87.Google Scholar
Godridge, H, Reynolds, GP, Czudek, C, Calcutt, NA, Benton, M. Alzheimer-like neurotransmitter deficits in adult Down’s syndrome brain tissue. J Neurol Neurosurg Psychiatry. 1987;50(6):775–8.Google Scholar
Inagaki, T, Morita, N, Cureoglu, S, Schachern, PA, Nomiya, S, Nomiya, R, et al. Peripheral vestibular system in Down syndrome: quantitative assessment of vestibular histopathology. Otolaryngol Head Neck Surg. 2011;144(2):280–3.Google Scholar
Abbott, M-A, Benn, P. Prenatal genetic diagnosis of Down’s syndrome. Expert Rev Mol Diagn. 2002;2(6):605–15.Google Scholar
Presson, AP, Partyka, G, Jensen, KM, Devine, OJ, Rasmussen, SA, McCabe, LL, et al. Current estimate of Down syndrome population prevalence in the United States. Journal Pediatr. 2013;163(4):1163–8.Google Scholar

References

Richmond, C. John Hilton Edwards. BMJ. 2007;335(7632):1269.Google Scholar
Mudaliyar, US, Mudaliyar, SU. Strawberry skull in Edwards’ syndrome. BJR Case Rep. 2017;3(4):20170045.Google Scholar
Weber, WW. Survival and the sex ratio in trisomy 17–18. Am J Hum Genet. 1967; 19 (3 Pt 2): 369–77.Google Scholar
Savva, GM, Walker, K, Morris, JK. The maternal age-specific live birth prevalence of trisomies 13 and 18 compared to trisomy 21 (Down syndrome). Prenat Diagn. 2010;30(1):5764.Google Scholar
Cereda, A, Carey, JC. The trisomy 18 syndrome. Orphanet J Rare Dis. 2012;7:81.Google Scholar
Carey, JC, Kosho, T. Perspectives on the care and advances in the management of children with trisomy 13 and 18. Am J Med Genet C Semin Med Genet. 2016;172(3):249–50.Google Scholar
Epelman, M, Daneman, A, Blaser, SI, Ortiz-Neira, C, Konen, O, Jarrín, J, et al. Differential diagnosis of intracranial cystic lesions at head US: correlation with CT and MR imaging. Radiographics. 2006;26(1):173–96.Google Scholar
Ostlere, SJ, Irving, HC, Lilford, RJ. Fetal choroid plexus cysts: a report of 100 cases. Radiology. 1990;175(3):753–5.Google Scholar
Kinoshita, M, Nakamura, Y, Nakano, R, Morimatsu, M, Fukuda, S, Nishimi, Y, Hashimoto, T. Thirty-one autopsy cases of trisomy 18: clinical features and pathological findings. Pediatr Pathol. 1989;9(4):445–57.Google Scholar
Irving, C, Richmond, S, Wren, C, Longster, C, Embleton, ND. Changes in fetal prevalence and outcome for trisomies 13 and 18: a population-based study over 23 years. J Matern Fetal Neonatal Med. 2011;24(1):137–41.Google Scholar
Breathnach, FM, Malone, FD, Lambert-Messerlian, G, Cuckle, HS, Porter, TF, Nyberg, DA, et al. First- and second-trimester screening: detection of aneuploidies other than Down syndrome. Obstet Gynecol. 2007;110(3):651–7.Google Scholar
Staples, AJ, Robertson, EF, Ranieri, E, Ryall, RG, Haan, EA. A maternal serum screen for trisomy 18: an extension of maternal serum screening for Down syndrome. Am J Hum Genet. 1991;49(5):1025–33.Google Scholar
Sumi, SM. Brain malformations in the trisomy 18 syndrome. Brain. 1970;93(4):821–30.Google Scholar
Miyata, H, Miyata, M, Ohama, E. Pyramidal tract abnormalities in the human fetus and infant with trisomy 18 syndrome. Neuropathology. 2014;34(3):219–26.Google Scholar
Taylor-Phillips, S, Freeman, K, Geppert, J, Agbebiyi, A, Uthman, OA, Madan, J, et al. Accuracy of non-invasive prenatal testing using cell-free DNA for detection of Down, Edwards and Patau syndromes: a systematic review and meta-analysis. BMJ Open. 2016;6(1):e010002.Google Scholar
Andrews, SE, Downey, AG, Showalter, DS, Fitzgerald, H, Showalter, VP, Carey, JC, Hulac, P. Shared decision making and the pathways approach in the prenatal and postnatal management of the trisomy 13 and trisomy 18 syndromes. Am J Med Genet C Semin Med Genet. 2016;172(3):257–63.Google Scholar
Yamagishi, H. Cardiovascular surgery for congenital heart disease associated with trisomy 18. Gen Thorac Cardiovasc Surg. 2010;58(5):217–19.Google Scholar

References

Levy, PA, Marion, R. Trisomies. Pediatr Rev. 2018;39(2):104–6.Google Scholar
Patau, K, Smith, DW, Therman, E, Inhorn, SL, Wagner, HP. Multiple congenital anomaly caused by an extra autosome. Lancet. 1960;1(7128):790–3.Google Scholar
Hook, EB. Rates of 47, + 13 and 46 translocation D/13 Patau syndrome in live births and comparison with rates in fetal deaths and at amniocentesis. Am J Hum Genet. 1980;32(6):849–58.Google Scholar
Huether, CA, Martin, RLM, Stoppelman, SM, D’Souza, S, Bishop, JK, Torfs, CP, et al. Sex ratios in fetuses and liveborn infants with autosomal aneuploidy. Am J Med Genet. 1996;63(3):492500.Google Scholar
Petry, P, Polli, JB, Mattos, VF, Rosa, RC, Zen, PR, Graziadio, C, Paskulin, GA, Rosa, RF. Clinical features and prognosis of a sample of patients with trisomy 13 (Patau syndrome) from Brazil. Am J Med Genet A. 2013;161A(6):1278–83.Google Scholar
Goff, RD, Soares, BP. Neuroradiological findings of trisomy 13 in a rare long-term survivor. Neuroradiol J. 2018;31(4):412–14.Google Scholar
Ong, S, Tonks, A, Woodward, ER, Wyldes, MP, Kilby, MD. An epidemiological study of holoprosencephaly from a regional congenital anomaly register: 1995–2004. Prenat Diagn. 2007;27(4):340–7Google Scholar
Bindra, R, Heath, V, Liao, A, Spencer, K, Nicolaides, KH. One-stop clinic for assessment of risk for trisomy 21 at 11–14 weeks: a prospective study of 15,030 pregnancies. Ultrasound Obstet Gynecol. 2002;20(3):219–25.Google Scholar
Shiefa, S, Amargandhi, M, Bhupendra, J, Moulali, S, Kristine, T. First trimester maternal serum screening using biochemical markers PAPP-A and free β-hCG for Down syndrome, Patau syndrome and Edward syndrome. Indian J Clin Biochem. 2013;28(1):312.Google Scholar
Watson, WJ, Miller, RC, Wax, JR, Hansen, WF, Yamamura, Y, Polzin, WJ. Sonographic detection of trisomy 13 in the first and second trimesters of pregnancy. J Ultrasound Med. 2007;26(9):1209–14.Google Scholar
Springett, A, Wellesley, D, Greenlees, R, Loane, M, Addor, MC, Arriola, L, et al. Congenital anomalies associated with trisomy 18 or trisomy 13: A registry-based study in 16 European countries, 2000–2011. Am J Med Genet A. 2015;167A(12):3062–9.Google Scholar
Gomi, K, Sato, Y, Tanaka, M, Ijiri, R, Kato, K, Aoki, I, et al. Specificity of splenopancreatic field abnormality in trisomy 13 syndrome: macroscopic and histological analysis in 21 autopsy cases. Pathol Int. 2009;59(3):147–51.Google Scholar
Taylor-Phillips, S, Freeman, K, Geppert, J, Agbebiyi, A, Uthman, OA, Madan, J, et al. Accuracy of non-invasive prenatal testing using cell-free DNA for detection of Down, Edwards and Patau syndromes: a systematic review and meta-analysis. BMJ Open. 2016;6(1):e010002.Google Scholar
Meyer, RE, Liu, G, Gilboa, SM, Ethen, MK, Aylsworth, AS, Powell, CM, et al. Survival of children with trisomy 13 and trisomy 18: a multi-state population-based study. Am J Med Genet A. 2016;170A(4):825–37.Google Scholar
Andrews, SE, Downey, AG, Showalter, DS, Fitzgerald, H, Showalter, VP, Carey, JC, Hulac, P. Shared decision making and the pathways approach in the prenatal and postnatal management of the trisomy 13 and trisomy 18 syndromes. Am J Med Genet C Semin Med Genet. 2016;172(3):257–63.Google Scholar

References

von Recklinghausen, F. Die Lymphelfasse und ihre Beziehung zum Bindegewebe. Berlin: A. Hirschwald; 1862.Google Scholar
Hong, C-H, Tu, H-P, Lin, J-R, Lee, C-H. An estimation of the incidence of tuberous sclerosis complex in a nationwide retrospective cohort study (1997–2010). Br J Dermatol. 2016;174(6):1282–9.Google Scholar
Lam, H, Nijmeh, J, Henske, E. New developments in the genetics and pathogenesis of tumours in tuberous sclerosis complex. J Pathol. 2017;241(2):219–25.Google Scholar
Li, J, Kim, S, Blenis, J. Rapamycin: one drug, many effects. Cell Metabolism. 2014;19(3):373379.Google Scholar
Northrup, H, Krueger, D. The International Tuberous Sclerosis Complex Consensus Group. Tuberous Sclerosis Complex Diagnostic Criteria Update: Recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol. 2013; 49:243–54.Google Scholar
Krueger, D, Northrup, H, Northrup, H, Krueger, D, Roberds, S, Smith, K et al. Tuberous Sclerosis Complex Surveillance and Management: Recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol. 2013;49(4):255–65.Google Scholar
Kalantari, BN, Salamon, N. Neuroimaging of tuberous sclerosis: spectrum of pathologic findings and frontiers in imaging. JR Am J Roentgenol. 2008;190(5):W304–9.Google Scholar
Sharp, D, Robertson, DM. Tuberous sclerosis in an infant of 28 weeks gestational age. Can J Neurol Sci. 1983;10:5962.Google Scholar
Harding, BN, Golden, JA. Malformations. In: Love, S, Budka, H, Ironside, JW, Perry, A. (Eds.) Greenfield’s Neuropathology. 9th ed. Boca Raton: Taylor & Francis; 2015.Google Scholar
Hirano, A, Tuazon, R, Zimmerman, HM. Neurofibrillary changes, granulovacuolar bodies and argentophilic globules observed in tuberous sclerosis. Acta Neuropathol (Berl). 1968;11:257–61.Google Scholar
Hsieh, DT, Whiteway, SL, Rohena, LO, Thiele, EA. Tuberous sclerosis complex: five new things. Neurol Clin Pract. 2016;6(4):339–47.Google Scholar
de Vries, PJ, Whittemore, VH, Leclezio, L, et al. Tuberous sclerosis associated neuropsychiatric disorders (TAND) and the TAND checklist. Pediatr Neurol 2015;52:2535.Google Scholar

References

Patterson, M, Levy, M, Dashe, J. Sturge-Weber syndrome [Internet]. Uptodate.com; 2019 [cited 20 Nov 2018]. Available from: www.uptodate.com/contents/sturge-weber-syndrome.Google Scholar
Comi, A. Current therapeutic options in Sturge-Weber syndrome. Semin Pediatr Neurol. 2015;22(4):295301.Google Scholar
Islam, MP, Roach, ES. Handbook of clinical neurology: neurocutaneous syndromes. Elsevier; 2015;132:2330.Google Scholar
Shirley, MD, Tang, H, Gallione, CJ, Baugher, JD, Frelin, LP, Cohen, BA et al. Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl J Med. 2013;368(21):1971–79.Google Scholar
Comi, A. Presentation, diagnosis, pathophysiology, and treatment of the neurological features of Sturge-Weber syndrome. Neurologist; 2011;17(4):179–84.Google Scholar
Pinto, A, Chen, L, Friedman, R, Grant, P, Poduri, A, Takeoka, M et al. Sturge-Weber syndrome: brain magnetic resonance imaging and neuropathology findings. Pediatr Neurol. 2016;58:2530.Google Scholar
Zallmann, M, Leventer, R, Mackay, M, Ditchfield, M, Bekhor, P, Su, J. Screening for Sturge-Weber syndrome: a state-of-the-art review. Pediatr Dermatol. 2017;35(1):3042.Google Scholar
Blumcke, I, Thom, M, Aronica, E, Armstrong, DD, Vinters, HV, Palmini, A, et al. The clinicopathologic spectrum of focal cortical dysplasias: A consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia. 2011;52:158–74.Google Scholar
Comi, A, Sahin, M, Hammill, A, Kaplan, EH, Juhasz, C, North, P., et al. Leveraging a Sturge-Weber gene discovery: An agenda for future research. Pediatr Neurol. 2016;58:1224.Google Scholar
De la Torre, A, Luat, A, Juhász, C, Ho, M, Argersinger, D, Cavuoto, K et al. A multidisciplinary consensus for clinical care and research needs for Sturge-Weber syndrome. Pediatr Neurol. 2018;84:1120.Google Scholar

References

Kadonaga, J, Frieden, I. Neurocutaneous melanosis: definition and review of the literature. J Amer Acad Dermatol. 1991;24(5):747–55.Google Scholar
Etchevers, H. Neurocutaneous melanocytosis. [Internet]. Orphanet encyclopedia; 2012 Feb. Available from: www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=en&Expert=2481.Google Scholar
Thomas, S., Patel, B., Varghese, S. and Backianathan, S. Neurocutaneous melanosis with leptomeningeal melanoma involving supratentorium and infratentorium. Cureus. 2018;10(9):16.Google Scholar
Chen, L, Zhai, L, Al-Kzayer, LFY, Sarsam, SN, Liu, T, Alzakar, RH et al. Neurocutaneous melanosis in association with large congenital melanocytic nevi in children: a report of 2 cases with clinical, radiological, and pathogenetic evaluation. Front Neurol. 2019;10(79):16.Google Scholar
Islam, MP, Roach, ES. Handbook of Clinical Neurology. Neurocutaneous Syndromes. Elsevier; 2015;132:2330.Google Scholar
Jakchairoongruang, K, Khakoo, Y, Beckwith, M, Barkovich, A. New insights into neurocutaneous melanosis. Pediatr Radiol. 2018;48(12):1786–96.Google Scholar
Ruggieri, M, Praticò, A. Mosaic neurocutaneous disorders and their causes. Semin Pediatr Neur. 2015;22(4):207–33.Google Scholar
Belysheva, T, Vishnevskaya, Y, Nasedkina, T, Emelyanova, M, Abramov, I, Orlova, K et al. Melanoma arising in a giant congenital melanocytic nevus: two case reports. Diagn Pathol. 2019;14(1):19.Google Scholar
Küsters-Vandevelde, H, Küsters, B, van Engen-van Grunsven, A, Groenen, P, Wesseling, P, Blokx, W. Primary melanocytic tumors of the central nervous system: a review with focus on molecular aspects. Brain Pathol. 2015;25(2):209–26.Google Scholar
Basu, D, Salgado, C, Bauer, B, Khakoo, Y, Patel, J, Hoehl, R et al. The dual PI3K/mTOR inhibitor omipalisib/GSK2126458 inhibits clonogenic growth in oncogenically-transformed cells from neurocutaneous melanocytosis. Cancer Genomics Proteomics. 2018;15(4):239–48.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×