Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-01T03:59:50.643Z Has data issue: false hasContentIssue false

Section 7 - Spinal and Neuromuscular Disorders

Published online by Cambridge University Press:  07 August 2021

Mirna Lechpammer
Affiliation:
New York University School of Medicine
Marc Del Bigio
Affiliation:
University of Manitoba, Canada
Rebecca Folkerth
Affiliation:
New York University School of Medicine
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Hall, JG, Agranovich, O, Pontén, E, van Bosse, HJP. Summary of the 2nd international symposium on arthrogryposis, St. Petersburg, Russia, September 17–19, 2014. Am J Med Genet A. 2015;167(6):1193–35.Google Scholar
Lowry, RB, Sibbald, B, Bedard, T, Hall, JG. Prevalence of multiple congenital contractures including arthrogryposis multiplex congenita in Alberta, Canada, and a strategy for classification and coding. Birth Defects Res A Clin Mol Teratol. 2010;88(12):1057–61.CrossRefGoogle Scholar
Hall, JG, Aldinger, KA, Tanaka, KI. Amyoplasia revisited. Am J Med Genet A. 2014;164(3):700–30.CrossRefGoogle Scholar
Chen, H. Arthrogryposis. Emedicine Journal, March 2, 2015. Available at: http://emedicine.medscape.com/article/941917-overview Accessed March 31, 2019.Google Scholar
Hall, JG. Arthrogryposis (multiple congenital contractures): diagnostic approach to etiology, classification, genetics, and general principles. Eur J Med Genet. 2014;57(8):464–72.CrossRefGoogle ScholarPubMed
Bamshad, M, Van Heest, AE, Pleasure, D. Arthrogryposis: a review and update. J Bone Joint Surg Am. 2009;91 Suppl 4:40–6.CrossRefGoogle ScholarPubMed
Fassier, A, Wicart, P, Dubousset, J, Seringe, R. Arthrogryposis multiplex congenita. Long-term follow-up from birth until skeletal maturity. J Child Orthop. 2009;3(5):383–90.CrossRefGoogle ScholarPubMed
Hall, JG. Oligohydramnios sequence revisited in relationship to arthrogryposis, with distinctive skin changes. Am J Med Genet A. 2014;164A(11):2775–92.Google ScholarPubMed
Hall, JG. Pena-Shokeir phenotype (Fetal akinesia deformation sequence) revisited. Birth Defects Res A Clin Mol Teratol. 2009;85(8):677–94.Google Scholar
Roscam Abbing, PJ, Hageman, G, Willemse, J. CT-scanning of skeletal muscle in arthrogryposis multiplex congenita. Brain Dev. 1985;7(5):484–91.CrossRefGoogle ScholarPubMed
Filges, I, Hall, JG. Failure to identify antenatal multiple congenital contractures and fetal akinesia – proposal of guidelines to improve diagnosis: Disorders of fetal movement – proposal of guidelines. Prenat Diagn. 2013;33(1):6174.Google Scholar
Vuopala, K, Leisti, J, Herva, R. Lethal arthrogryposis in Finland – a clinico-pathological study of 83 cases during thirteen years. Neuropediatrics. 1994;25(6):308–15.Google Scholar
Konya, MN, Elmas, M, Özdemir, Ç. Analysis of musculoskeletal dysmorphic abnormalities of 20 fetuses. Eklem Hastalik Cerrahisi. 2017;28(2):114–20.CrossRefGoogle ScholarPubMed
Dillon, ER, Bjornson, KF, Jaffe, KM, Hall, JG, Song, K. Ambulatory activity in youth with arthrogryposis: a cohort study. J Pediatr Orthop. 2009 Mar;29(2):214–17.CrossRefGoogle ScholarPubMed
Sells, JM, Jaffe, KM, Hall, JG. Amyoplasia, the most common type of arthrogryposis: the potential for good outcome. Pediatrics. 1996;97(2):225–31.Google Scholar
Bevan, WP, Hall, JG, Bamshad, M, Staheli, LT, Jaffe, KM, Song, K. Arthrogryposis multiplex congenita (amyoplasia): an orthopaedic perspective. J Pediatr Orthop. 2007;27(5):594600.Google Scholar
Ma, L, Yu, X. Arthrogryposis multiplex congenita: classification, diagnosis, perioperative care, and anesthesia. Front Med. 2017;11(1):4852.CrossRefGoogle ScholarPubMed

References

Verhaart, IEC, Robertson, A, Wilson, IJ, Aartsma-Rus, A, Cameron, S, Jones, CC, Cook, SF, Lochmüller, H. Prevalence, incidence and carrier frequency of 5q-linked spinal muscular atrophy – a literature review. Orphanet J Rare Dis 2017;12:124–39.CrossRefGoogle ScholarPubMed
Peeters, K, Chamova, T, Jordanova, A. Clinical and genetic diversity of SMN1-negative proximal spinal muscular atrophies. Brain 2014; 137:2879–96.CrossRefGoogle ScholarPubMed
Arnold, WD, Kassar, D, Kissel, JT. Spinal muscular atrophy: diagnosis and management in a new therapeutic era. Muscle Nerve. 2015 51(2):157–67.Google Scholar
Harding, BN. In: Developmental Neuropathology, 2nd edition, Adle-Biassette, H, Harding, BN, and Golden, JA, eds., John Wiley & Sons, 2018, pp. 469–75.Google Scholar
Prior, TW and Finanger, E. Spinal muscular atrophy. GeneReviews. Last updated December 22, 2016. www.ncbi.nlm.nih.gov/books/NBK1352/.Google Scholar
Darras, BT. Spinal muscular atrophies. Pediatr Clin North Am. 2015 62(3):743–66.Google Scholar
Finkel, RS, Mercuri, E, Darras, BT, Connolly, AM, Kuntz, NL, Kirschner, J, Chiriboga, CA, Saito, K, Servais, L, Tizzano, E, Topaloglu, H, Tulinius, M, Montes, J, Glanzman, AM, Bishop, K, Zhong, ZJ, Gheuens, S, Bennett, CF, Schneider, E, Farwell, W, De Vivo, DC, ENDEAR Study Group.Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med. 2017 377(18):1723–32.Google Scholar
Lowes, LP, Alfano, LN, Arnold, WD, Shell, R, Prior, TW, McColly, M, Lehman, KJ, Church, K, Sproule, DM, Nagendran, S, Menier, M, Feltner, DE, Wells, C, Kissel, JT, Al-Zaidy, S, Mendell, J. Impact of age and motor function in a phase 1/2a study of infants with SMA type 1 receiving single-dose gene replacement therapy. Pediatr Neurol. 2019;98:39–45.CrossRefGoogle Scholar

References

Rossor, AM, Tomaselli, PJ, Reilly, MM. Recent advances in the genetic neuropathies. Curr Opin Neurol. 2016;29(5):537–48.Google Scholar
Dowling, JJ, Gonorazky HD, , Cohn, RD, Campbell, C. Treating pediatric neuromuscular disorders: the future is now. Am J Med Genet A. 2018;176(4):804–41.CrossRefGoogle ScholarPubMed
Arnold, WD, Isfort, M, Roggenbuck, J, Hoyle, JC. The genetics of Charcot-Marie-Tooth disease: current trends and future implications for diagnosis and management. Appl Clin Genet. 2015;8:235–43.Google Scholar
Bird, TD. Charcot-Marie-Tooth (CMT) hereditary neuropathy overview. GeneReviews. (Initial posting: September 28, 1998; Last revision: January 24, 2019.) www.ncbi.nlm.nih.gov/books/NBK1358/.Google Scholar
Boerkoel, CF, Takashima, H, Stankiewicz, P, Garcia, CA, Leber, SM, Rhee-Morris, L, et al. Periaxin mutations cause recessive Dejerine-Sottas neuropathy. Am J Hum Genet. 2001;68(2):325–33.Google Scholar
Katona, I, Weis, J. Diseases of the peripheral nerves. Handb Clin Neurol. 2017;145:453–74.Google Scholar
Charnas, L, Trapp, B, Griffin, J. Congenital absence of peripheral myelin: abnormal Schwann cell development causes lethal arthrogryposis multiplex congenita. Neurology. 1988;38(6):966–74.Google Scholar
Lebo, RV. Prenatal diagnosis of Charcot-Marie-Tooth disease. Prenat Diagn. 1998;18(2):169–72.Google Scholar
Dello Russo, C, Padula, F, Di Giacomo, G, Mesoraca, A, Gabrielli, I, Bizzoco, D, Giorlandino, C. A new approach for next generation sequencing in prenatal diagnosis applied to a case of Charcot-Marie-Tooth syndrome. Prenat Diagn. 2015;35(10):1018–21.Google Scholar
Amato, AA, Russel, JA. Neuromuscular Disorders, 2nd edition. McGraw-Hill Education, New York; 2016.Google Scholar
Azmaipairashvili, Z, Riddle, EC, Scavina, M, Kumar, SJ. Correction of cavovarus foot deformity in Charcot-Marie-Tooth disease. J Pediatr Orthop. 2005;25(3):360–5.Google Scholar
Ghamdi, M, Armstrong, DL, Miller, G. Congenital hypomyelinating neuropathy: a reversible case. Pediatr Neurol. 1997;16(1):71–3.CrossRefGoogle ScholarPubMed
Levy, BK, Fenton, GA, Loaiza, S, Hayat, GR. Unexpected recovery in a newborn with severe hypomyelinating neuropathy. Pediatr Neurol. 1997;16(3):245–8.Google Scholar
Phillips, JP, Warner, LE, Lupski, JR, Garg, BP. Congenital hypomyelinating neuropathy: two patients with long-term follow-up. Pediatr Neurol. 1999;20(3):226–32.Google Scholar

References

Cruz, PMR, Palace, J, Beeson, D. The neuromuscular junction and wide heterogeneity of congenital myasthenic syndromes. Int J Mol Sci 2018; 19(6): 1677.Google Scholar
Abicht, A, Müller, J, Lochmüller, H. Congenital myasthenic syndromes. In: Adam, MP, Ardinger, HH, Pagon, RA, et al., editors., GeneReviews® [Internet]. Seattle: University of Washington; 1993–2019 (last updated July 14, 2016).Google Scholar
GeneTable of Neuromuscular Diseases; www.musclegenetable.frGoogle Scholar
Engel, AG, Shen, X-M, Selcen, D, Sine, SM. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol. 2016;14(4):420–34.Google Scholar
Engel, AG, Shen X-M, Selcen D. The unfolding landscape of the congenital myasthenic syndromes. Ann N Y Acad Sci. 2018;1413(1):2534.Google Scholar
Finsterer, J. Congenital myasthenic syndromes. Orphanet J Rare Dis. 2019 14(1):57.CrossRefGoogle ScholarPubMed
Szelinger S, Krate J, Ramsey K, Strom SP, Shieh PB, Lee H, Belnap N, Balak C, Siniard AL, Russell M, Richholt R, Both M, Claasen AM, Schrauwen I, Nelson SF, Huentelman MJ, Craig DW, Yang SP, Moore SA, Sivakumar K, Narayanan V, Rangasamy S; UCLA Clinical Genomics Center. Congenital myasthenic syndrome caused by a frameshift insertion mutation in GFPT1. Neurol Genet. 2020;6(4):e468.CrossRefGoogle Scholar

References

Bönnemann, CG, Wang, CH, Quijano-Roy, S, Deconinck, N, Bertini, E, Ferreiro, A, Muntoni, F, Sewry, C, Béroud, C, Mathews, KD, Moore, SA, Bellini, J, Rutkowski, A, North, KN, on behalf of Members of the International Standard of Care Committee for Congenital Muscular Dystrophies.Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord 2014:24(4):289311.Google Scholar
Dowling, JJ, Gonorazky, HD, Cohn, RD, Campbell, C. Treating pediatric muscular disorders: the future is now. Am J Med Genet 2018:176:804–41.Google Scholar
GeneTable of Neuromuscular Diseases; www.musclegenetable.fr/Google Scholar
Leung, DG. Magnetic resonance imaging patterns of muscle involvement in genetic muscle diseases: a systematic review. J Neurol 2017 July;264(7):1320–33.CrossRefGoogle ScholarPubMed
Amato, AA, Russell, JA. Neuromuscular Disorders, 2nd ed. New York: McGraw Hill Education, 2016.Google Scholar
Quijano-Roy, S, Sparks, SE, Rutkowski, A. LAMA2-related muscular dystrophy. GeneReviews. June 7, 2012. www.ncbi.nlm.nih.gov/books/NBK97333/.Google Scholar
Sellick, GS, Longman, C, Brockington, M, Mahjneh, I, Sagi, L, Bushby, K, Topaloğlu, H, Muntoni, F, Houlston, RS. Localisation of merosin-positive congenital muscular dystrophy to chromosome 4p16.3. Hum Genet. 2005 117(2–3):207–12.Google Scholar
Yurchenco, PD, McKee, KK, Reinhard, JR, Rüegg, MA. Laminin-deficient muscular dystrophy: Molecular pathogenesis and structural repair strategies. Matrix Biol. 2018;71–2:174–87.Google Scholar
Yoshida-Moriguchi, T, Campbell, KP. Matriglycan: a novel polysaccharide that links dystroglycan to the basement membrane. Glycobiology. 2015; 25(7):702–13.CrossRefGoogle ScholarPubMed
Bouchet-Séraphin, C, Vuillaumier-Barrot, S, Seta, N. Dystroglycanopathies: about numerous genes involved in glycosylation of one single glycoprotein. J Neuromuscul Dis. 2015;2(1):2738.Google Scholar
Devisme, L, Bouchet, C, Gonzalès, M, Alanio, E, Bazin, A, Bessières, B, Bigi, N, Blanchet, P, Bonneau, D, Bonnières, M, Bucourt, M, Carles, D, Clarisse, B, Delahaye, S, Fallet-Bianco, C, Figarella-Branger, D, Gaillard, D, Gasser, B, Delezoide, AL, Guimiot, F, Joubert, M, Laurent, N, Laquerrière, A, Liprandi, A, Loget, P, Marcorelles, P, Martinovic, J, Menez, F, Patrier, S, Pelluard, F, Perez, MJ, Rouleau, C, Triau, S, Attié-Bitach, T, Vuillaumier-Barrot, S, Seta N, Encha-Razavi F. Cobblestone lissencephaly: neuropathological subtypes and correlations with genes of dystroglycanopathies.Brain. 2012;135(Pt 2):469–82.Google Scholar
Godfrey, C, Foley, AR, Clement, E, Muntoni, F. Dystroglycanopathies: coming into focus. Curr Opin Genet Dev. 2011;21(3):278–85.CrossRefGoogle ScholarPubMed
Willer, T, Lee, H, Lommel, M, Yoshida-Moriguchi, T, de Bernabe, DB, Venzke, D, Cirak, S, Schachter, H, Vajsar, J, Voit, T, Muntoni, F, Loder, AS, Dobyns, WB, Winder, TL, Strahl, S, Mathews, KD, Nelson, SF, Moore, SA, Campbell, KP. ISPD loss-of-function mutations disrupt dystroglycan O-mannosylation and cause Walker-Warburg syndrome. Nat Genet. 2012;44(5):575–80.Google Scholar
Wallace, SE, Conta, JH, Winder, TL, Willer, T, Eskuri, JM, Haas, R, Patterson, K, Campbell, KP, Moore, SA, Gospe, SM Jr. A novel missense mutation in POMT1 modulates the severe congenital muscular dystrophy phenotype associated with POMT1 nonsense mutations. Neuromuscul Disord. 2014;24(4):312–20.Google Scholar
Chang, W, Winder, TL, LeDuc, CA, Simpson, LL, Millar, WS, Dungan, J, Ginsberg, N, Plaga, S, Moore, SA, Chung, WK. Founder Fukutin mutation causes Walker-Warburg syndrome in four Ashkenazi Jewish families. Prenat Diagn. 2009;29(6):560–9.Google ScholarPubMed
Lampe, AK, Flanigan, KM, Bushby, KM, Hicks, D. Collagen type VI-related disorders. GeneReviews, last updated August 9, 2012. www.ncbi.nlm.nih.gov/books/NBK1503/.Google Scholar
Bönnemann, CG. The collagen VI-related myopathies: muscle meets its matrix. Nat Rev Neurol. 2011;7(7):379–90.Google Scholar
Yonekawa, T, Nishino, I. Ullrich congenital muscular dystrophy: clinicopathological features, natural history and pathomechanism(s). J Neurol Neurosurg Psychiatry. 2015;86(3):280–7.CrossRefGoogle ScholarPubMed
Komaki, H, Hayashi, YK, Tsuburaya, R, Sugie, K, Kato, M, Nagai, T, Imataka, G, Suzuki, S, Saitoh, S, Asahina, N, Honke, K, Higuchi, Y, Sakuma, H, Saito, Y, Nakagawa, E, Sugai, K, Sasaki, M, Nonaka, I, Nishino, I. Inflammatory changes in infantile-onset LMNA-associated myopathy. Neuromuscul Disord. 2011;21(8):563–8.Google Scholar
Quijano-Roy, S, Mbieleu, B, Bönnemann, CG, Jeannet, PY, Colomer, J, Clarke, NF, Cuisset, JM, Roper, H, De Meirleir, L, D’Amico, A, Ben Yaou, R, Nascimento, A, Barois, A, Demay, L, Bertini, E, Ferreiro, A, Sewry, CA, Romero, NB, Ryan, M, Muntoni, F, Guicheney, P, Richard, P, Bonne, G, Estournet, B. De novo LMNA mutations cause a new form of congenital muscular dystrophy. Ann Neurol. 2008;64(2):177–86.Google Scholar

References

Cassandrini, et al. Congenital myopathies: clinical phenotypes and new diagnostic tools. Ital J Pediatr 2017:43:101.Google Scholar
Massalska, D, et al. Prenatal diagnosis of congenital myopathies and muscular dystrophies. Clin Genet 2016;90:199210.Google Scholar
GeneTable of Neuromuscular Diseases; www.musclegenetable.fr/Google Scholar
Jungbluth, H, Treves, S, Zorzato, F, Sarkozy, A, Ochala, J, Sewry, C, Phadke, R, Gautel, M, Muntoni, F. Congenital myopathies: disorders of excitation-contraction coupling and muscle contraction. Nat Rev Neurol. 2018;14(3):151–67.Google Scholar
Malicdan, MCV and Nishino, I. Central core disease. GeneReviews. Last updated December 4, 2014. www.ncbi.nlm.nih.gov/books/NBK1391/.Google Scholar
Pelin, K and Wallgren-Pettersson, C. Update on the genetics of congenital myopathies. Sem Ped Neurol 29:1222, 2019.Google Scholar
North, KN and Ryan, MM. Nemaline myopathy. GeneReviews. Last updated June 11, 2015. www.ncbi.nlm.nih.gov/books/NBK1288/.Google Scholar
Dowling, JJ, Lawlor, MW, and Das, S. X-linked myotubular myopathy. GeneReviews. Last updated August 23, 2018. www.ncbi.nlm.nih.gov/books/NBK1116/?term=MTM1.Google Scholar
Lawlor, MW, Beggs, AH, Buj-Bello, A, Childers, MK, Dowling, JJ, James, ES, Meng, H, Moore, SA, Prasad, S, Schoser, B, Sewry, CA. Skeletal muscle pathology in X-linked myotubular myopathy: review with cross-species comparisons. J Neuropathol Exp Neurol. 2016;75(2):102–10.Google Scholar
Leung, DG. Magnetic resonance imaging patterns of muscle involvement in genetic muscle diseases: a systematic review. J Neurol 2017;264:1320–33.Google Scholar

References

McNeil, SM, et al. Congenital inflammatory myopathy: a demonstrative case and proposed diagnostic classification. Muscle Nerve 2002;25(2):259–64.Google Scholar
Andre, LM, et al. Skeletal muscle myogenesis in DM. Frontiers in Neurology 2018;9:124.Google Scholar
Ho, G, et al. Congenital and childhood myotonic dystrophy: current aspects of disease and future directions. World J Clin Pediatr 2015;4(4):6680.Google Scholar
Shevell, M, et al. Congenital inflammatory myopathy. Neurology 1990;40(7):111–14.Google Scholar
Leung, DG. Magnetic resonance imaging patterns of muscle involvement in genetic muscle diseases: a systematic review. J Neurol 2017;264:1320–33.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×