Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-29T17:56:35.765Z Has data issue: false hasContentIssue false

Section 2 - Human Nervous System Development

Published online by Cambridge University Press:  07 August 2021

Mirna Lechpammer
Affiliation:
New York University School of Medicine
Marc Del Bigio
Affiliation:
University of Manitoba, Canada
Rebecca Folkerth
Affiliation:
New York University School of Medicine
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

O’Rahilly, RR, Müller, F. The Embryonic Human Brain: An Atlas of Developmental Stages 3rd edition. New York: Wiley; 2006. p. 358.Google Scholar
ten Donkelaar, HJ, Lammens, M, Hori, A. Clinical Neuroembryology. Development and Developmental Disorders of the Human Central Nervous System. 2nd edition. Berlin: Springer; 2014. p. 659.CrossRefGoogle Scholar
Bayer, SA, Altman, J. The Human Brain during the Early First Trimester. Boca Raton: CRC Press; 2007. p. 536.CrossRefGoogle Scholar
Bayer, SA, Altman, J. The Human Brain During the Late First Trimester. Boca Raton: CRC Press; 2006. p. 592CrossRefGoogle Scholar
Corner, GW. George Linius Streeter, 1873–1948. Nat Acad Sciences, Biographical Memoirs, Washington, DC. 1954;28:261–87.Google Scholar
Hopwood, N. A history of normal plates, tables and stages in vertebrate embryology. Int J Dev Biol. 2007;51(1):126.Google Scholar
O’Rahilly, R, Muller, F. Developmental stages in human embryos: revised and new measurements. Cells Tissues Organs. 2010;192(2):7384.CrossRefGoogle ScholarPubMed
Bayer, SA. Cellular aspects of brain development. Neurotoxicology. 1989;10:307–20.Google Scholar
Kahle, W. Studien über die Matrixphasen und die örtlichen Reifungsunterschiede im embryonalen menschlichen Gehirn. 1. Mitteilung. Die Matrixphasen im allgemeinen. Dtsch Z Nervenheilk. 1951;166:273302.CrossRefGoogle Scholar
Bystron, I, Blakemore, C, Rakic, P. Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci. 2008;9(2):110–22.Google Scholar
Meyer, G, Schaaps, JP, Moreau, L, Goffinet, AM. Embryonic and early fetal development of the human neocortex. J Neurosci. 2000;20(5):1858–68.Google Scholar
Zunic Isasegi, I, Rados, M, Krsnik, Z, Rados, M, Benjak, V, Kostovic, I. Interactive histogenesis of axonal strata and proliferative zones in the human fetal cerebral wall. Brain Struct Funct. 2018;223(9):3919–43.Google Scholar
Vashi, N, Justice, MJ. Treating Rett syndrome: from mouse models to human therapies. Mamm Genome. 2019;30(5–6):90–110.Google Scholar
O’Rahilly, R, Muller, F. Significant features in the early prenatal development of the human brain. Ann Anat. 2008;190(2):105–18.Google Scholar
Muller, F, O’Rahilly, R. The prechordal plate, the rostral end of the notochord and nearby median features in staged human embryos. Cells Tissues Organs. 2003;173(1):120.CrossRefGoogle ScholarPubMed
de Bree, K, de Bakker, BS, Oostra, RJ. The development of the human notochord. PLoS One. 2018;13(10):e0205752.CrossRefGoogle ScholarPubMed
O’Rahilly, R, Muller, F. The development of the neural crest in the human. J Anat. 2007;211(3):335–51.Google Scholar
O’Rahilly, R, Muller, F. The two sites of fusion of the neural folds and the two neuropores in the human embryo. Teratology. 2002;65(4):162–70.Google Scholar
O’Rahilly, R, Muller, F. Neurulation in the normal human embryo. Ciba Found Symp. 1994;181:7082.Google Scholar
O’Rahilly, R, Muller, F. Bidirectional closure of the rostral neuropore in the human embryo. Am J Anat. 1989;184(4):259–68.Google ScholarPubMed
O’Rahilly, R, Muller, F. The meninges in human development. J Neuropathol Exp Neurol. 1986;45(5):588608.CrossRefGoogle ScholarPubMed
Bystron, I, Rakic, P, Molnar, Z, Blakemore, C. The first neurons of the human cerebral cortex. Nat Neurosci. 2006;9(7):880–6.CrossRefGoogle ScholarPubMed
Muller, F, O’Rahilly, R. The first appearance of the future cerebral hemispheres in the human embryo at stage 14. Anat Embryol (Berl). 1988;177(6):495511.Google Scholar
Howard, B, Chen, Y, Zecevic, N. Cortical progenitor cells in the developing human telencephalon. Glia. 2006;53(1):5766.CrossRefGoogle ScholarPubMed
Zecevic, N. Specific characteristic of radial glia in the human fetal telencephalon. Glia. 2004;48(1):2735.Google Scholar
Muller, F, O’Rahilly, R. The amygdaloid complex and the medial and lateral ventricular eminences in staged human embryos. J Anat. 2006;208(5):547–64.CrossRefGoogle ScholarPubMed
Ambu, R, Vinci, L, Gerosa, C, Fanni, D, Obinu, E, Faa, A, et al. WT1 expression in the human fetus during development. Eur J Histochem. 2015;59(2):2499.Google Scholar
Muller, F, O’Rahilly, R. The initial appearance of the cranial nerves and related neuronal migration in staged human embryos. Cells Tissues Organs. 2011;193(4):215–38.CrossRefGoogle ScholarPubMed
Muller, F, O’Rahilly, R. The human brain at stage 16, including the initial evagination of the neurohypophysis. Anat Embryol (Berl). 1989;179(6):551–69.Google Scholar
Muller, F, O’Rahilly, R. Olfactory structures in staged human embryos. Cells Tissues Organs. 2004;178(2):93116.Google Scholar
Som, PM, Naidich, TP. Development of the skull base and calvarium: an overview of the progression from mesenchyme to chondrification to ossification. Neurographics. 2013;3:169–84.CrossRefGoogle Scholar
Andjelkovic, AV, Nikolic, B, Pachter, JS, Zecevic, N. Macrophages/microglial cells in human central nervous system during development: an immunohistochemical study. Brain Res. 1998;814:1325.Google Scholar
O’Rahilly, R, Muller, F. Ventricular system and choroid plexuses of the human brain during the embryonic period proper. Am J Anat. 1990;189(4):285302.Google Scholar
Muller, F, O’Rahilly, R. The human brain at stages 21–23, with particular reference to the cerebral cortical plate and to the development of the cerebellum. Anat Embryol (Berl). 1990;182(4):375400.Google Scholar
Muller, F, O’Rahilly, R. The human rhombencephalon at the end of the embryonic period proper. Am J Anat. 1990;189(2):127–45.CrossRefGoogle ScholarPubMed
O’Rahilly, R, Muller, F, Meyer, DB. The human vertebral column at the end of the embryonic period proper. 1. The column as a whole. J Anat. 1980;131(Pt 3):565–75.Google Scholar
Povlishock, JT. The fine structure of the axons and growth cones of the human fetal cerebral cortex. Brain Res. 1976;114(3):379–89.Google Scholar
Nemzek, WR, Brodie, HA, Hecht, ST, Chong, BW, Babcook, CJ, Seibert, JA. MR, CT, and plain film imaging of the developing skull base in fetal specimens. AJNR Am J Neuroradiol. 2000;21(9):1699–706.Google Scholar
Arnold, SE, Trojanowski, JQ. Human fetal hippocampal development: I. Cytoarchitecture, myeloarchitecture, and neuronal morphologic features. J Comp Neurol. 1996;367(2):274–92.Google Scholar
O’Rahilly, R, Müller, F. The Embryonic Human Brain: An Atlas of Developmental Stages. New York: Wiley-Liss; 1994. p. 342.Google Scholar
Jovanov-Milosevic, N, Culjat, M, Kostovic, I. Growth of the human corpus callosum: modular and laminar morphogenetic zones. Front Neuroanat. 2009;3:6.Google Scholar
Ren, T, Anderson, A, Shen, WB, Huang, H, Plachez, C, Zhang, J, et al. Imaging, anatomical, and molecular analysis of callosal formation in the developing human fetal brain. Anat Rec A Discov Mol Cell Evol Biol. 2006;288(2):191204.Google Scholar
Sarnat, HB, Born, DE. Synaptophysin immunocytochemistry with thermal intensification: a marker of terminal axonal maturation in the human fetal nervous system. Brain Dev. 1999;21(1):4150.Google Scholar
Shapiro, R, Robinson, F. The Embryogenesis of the Human Skull: An Anatomic and Radiographic Atlas. Cambridge, MA: Harvard University Press; 1980.Google Scholar
Rezaie, P, Dean, A, Male, D, Ulfig, N. Microglia in the cerebral wall of the human telencephalon at second trimester. Cereb Cortex. 2005;15(7):938–49.Google Scholar
Larsell, O. The development of the cerebellum in man in relation to its comparative anatomy. J Comp Neurol. 1947;87(2):85129.CrossRefGoogle ScholarPubMed
Rhodes, RH. A light microscopic study of the developing human neural retina. Am J Anat. 1979;154(2):195209.Google Scholar
Rakic, P, Yakovlev, PI. Development of the corpus callosum and cavum septi in man. J Comp Neurol. 1968;132(1):4572.Google Scholar
Prentiss, CW. A Laboratory Manual and Text-Book of Embryology. Philadelphia: W.B. Saunders; 1915.Google Scholar
Streeter, GL. The Development of the Nervous System (Chapter XIV). In: Keibel, F, Mall, FP, editors. Manual of Human Embryology Volume II. 2. Philadelphia: J.B. Lippencott Company; 1910. p. 1156.Google Scholar

References

Alvord, EC. Head circumference, brain weight, and tumor burden. J Child Neurol. 1986;1(3):240–50.CrossRefGoogle ScholarPubMed
Del Bigio, MR. Cell proliferation in human ganglionic eminence and suppression after prematurity-associated haemorrhage. Brain. 2011;134(Pt 5):1344–61.Google Scholar
Abraham, H, Tornoczky, T, Kosztolanyi, G, Seress, L. Cell formation in the cortical layers of the developing human cerebellum. Int J Dev Neurosci. 2001;19(1):5362.Google Scholar
Yakovlev, PI, Lecours, AR. The myelogenetic cycles of regional maturation of the brain. In: Minkowski, A, editor. Regional Development of the Brain in Early Life. Oxford: Blackwell Scientific Publications; 1967. p. 370.Google Scholar
Zhu, Y, Sousa, AMM, Gao, T, Skarica, M, Li, M, Santpere, G, et al. Spatiotemporal transcriptomic divergence across human and macaque brain development. Science. 2018;362(6420):eaat8077.Google Scholar
Breen, MS, Ozcan, S, Ramsey, JM, Wang, Z, Ma’ayan, A, Rustogi, N, et al. Temporal proteomic profiling of postnatal human cortical development. Transl Psychiatry. 2018;8(1):267.CrossRefGoogle ScholarPubMed
Bystron, I, Blakemore, C, Rakic, P. Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci. 2008;9(2):110–22.CrossRefGoogle ScholarPubMed
Malik, S, Vinukonda, G, Vose, LR, Diamond, D, Bhimavarapu, BB, Hu, F, et al. Neurogenesis continues in the third trimester of pregnancy and is suppressed by premature birth. J Neurosci. 2013;33(2):411–23.CrossRefGoogle ScholarPubMed
Ulfig, N. Ganglionic eminence of the human fetal brain-new vistas. Anat Rec. 2002;267(3):191–5.Google Scholar
Kinoshita, Y, Okudera, T, Tsuru, E, Yokota, A. Volumetric analysis of the germinal matrix and lateral ventricles performed using MR images of postmortem fetuses. Am J Neuroradiol. 2001;22(2):382–8.Google Scholar
Johansson, CB, Svensson, M, Wallstedt, L, Janson, AM, Frisen, J. Neural stem cells in the adult human brain. Exp Cell Res. 1999;253(2):733–6.Google Scholar
Sanai, N, Nguyen, T, Ihrie, RA, Mirzadeh, Z, Tsai, HH, Wong, M, et al. Corridors of migrating neurons in the human brain and their decline during infancy. Nature. 2011.CrossRefGoogle Scholar
Curtis, MA, Kam, M, Nannmark, U, Anderson, MF, Axell, MZ, Wikkelso, C, et al. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science. 2007;315(5816):1243–9.CrossRefGoogle Scholar
Guerrero-Cazares, H, Gonzalez-Perez, O, Soriano-Navarro, M, Zamora-Berridi, G, Garcia-Verdugo, JM, Quinones-Hinojosa, A. Cytoarchitecture of the lateral ganglionic eminence and rostral extension of the lateral ventricle in the human fetal brain. J Comp Neurol. 2011;519(6):1165–80.Google Scholar
Ma, T, Wang, C, Wang, L, Zhou, X, Tian, M, Zhang, Q, et al. Subcortical origins of human and monkey neocortical interneurons. Nat Neurosci. 2013;16(11):1588–97.Google Scholar
Zecevic, N, Chen, Y, Filipovic, R. Contributions of cortical subventricular zone to the development of the human cerebral cortex. J Comp Neurol. 2005;491(2):109–22.Google Scholar
Arshad, A, Vose, LR, Vinukonda, G, Hu, F, Yoshikawa, K, Csiszar, A, et al. Extended production of cortical interneurons into the third trimester of human gestation. Cereb Cortex. 2016;26(5):2242–56.CrossRefGoogle ScholarPubMed
Rakic, P, Sidman, RL. Telencephalic origin of pulvinar neurons in the fetal human brain. Z Anat Entwicklungsgesch. 1969;129(1):5382.Google Scholar
Letinic, K, Kostovic, I. Transient fetal structure, the gangliothalamic body, connects telencephalic germinal zone with all thalamic regions in the developing human brain. J Comp Neurol. 1997;384(3):373–95.Google Scholar
Hansen, DV, Lui, JH, Parker, PR, Kriegstein, AR. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature. 2010;464(7288):554–61.CrossRefGoogle ScholarPubMed
Alzu’bi, A, Clowry, GJ. Expression of ventral telencephalon transcription factors ASCL1 and DLX2 in the early fetal human cerebral cortex. J Anat. 2019;235(3):555–68.Google Scholar
Pollen, AA, Nowakowski, TJ, Chen, J, Retallack, H, Sandoval-Espinosa, C, Nicholas, CR, et al. Molecular identity of human outer radial glia during cortical development. Cell. 2015;163(1):5567.Google Scholar
Clowry, G, Molnar, Z, Rakic, P. Renewed focus on the developing human neocortex. J Anat. 2010;217(4):276–88.Google Scholar
Korzhevskii, DE, Otellin, VA. Initial stage of vascular bed development in telencephalon of human embryo. Bull Exp Biol Med. 2000;129(5):508–10.CrossRefGoogle ScholarPubMed
O’Rahilly, R, Muller, F. The meninges in human development. J Neuropathol Exp Neurol. 1986;45(5):588608.Google Scholar
Marin-Padilla, M. The human brain intracerebral microvascular system: development and structure. Front Neuroanat. 2012;6:38.Google Scholar
Bar, T. Patterns of vascularization in the developing cerebral cortex. Ciba Fdn Symp. 1983;100:2036.Google Scholar
Sweeney, MD, Zhao, Z, Montagne, A, Nelson, AR, Zlokovic, BV. Blood-brain barrier: from physiology to disease and back. Physiol Rev. 2019;99(1):2178.CrossRefGoogle ScholarPubMed
Obermeier, B, Daneman, R, Ransohoff, RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013;19(12):1584–96.Google Scholar
Yamazaki, T, Mukouyama, YS. Tissue specific origin, development, and pathological perspectives of pericytes. Front Cardiovasc Med. 2018;5:78.CrossRefGoogle ScholarPubMed
Dalkara, T, Gursoy-Ozdemir, Y, Yemisci, M. Brain microvascular pericytes in health and disease. Acta Neuropathol. 2011;122(1):19.CrossRefGoogle ScholarPubMed
Smyth, LCD, Rustenhoven, J, Scotter, EL, Schweder, P, Faull, RLM, Park, TIH, et al. Markers for human brain pericytes and smooth muscle cells. J Chem Neuroanat. 2018;92:4860.Google Scholar
Virgintino, D, Errede, M, Robertson, D, Capobianco, C, Girolamo, F, Vimercati, A, et al. Immunolocalization of tight junction proteins in the adult and developing human brain. Histochem Cell Biol. 2004;122(1):51–9.Google Scholar
Virgintino, D, Errede, M, Girolamo, F, Capobianco, C, Robertson, D, Vimercati, A, et al. Fetal blood-brain barrier P-glycoprotein contributes to brain protection during human development. J Neuropathol Exp Neurol. 2008;67(1):5061.CrossRefGoogle ScholarPubMed
Saunders, NR, Dziegielewska, KM, Mollgard, K, Habgood, MD. Physiology and molecular biology of barrier mechanisms in the fetal and neonatal brain. J Physiol. 2018;596(23):5723–56.Google Scholar
Mito, T, Konomi, H, Houdou, S, Takashima, S. Immunohistochemical study of the vasculature in the developing brain. Pediatr Neurol. 1991;7(1):1822.Google Scholar
Chang, H, Cho, KH, Hayashi, S, Kim, JH, Abe, H, Rodriguez-Vazquez, JF, et al. Site- and stage-dependent differences in vascular density of the human fetal brain. Childs Nerv Syst. 2014;30(3):399409.Google Scholar
Ballabh, P. Pathogenesis and prevention of intraventricular hemorrhage. Clin Perinatol. 2014;41(1):4767.Google Scholar
Kuban, KC, Gilles, FH. Human telencephalic angiogenesis. Ann Neurol. 1985;17(6):539–48.Google Scholar
Rhee, CJ, Fraser, CD, 3rd, Kibler, K, Easley, RB, Andropoulos, DB, Czosnyka, M, et al. The ontogeny of cerebrovascular pressure autoregulation in premature infants. J Perinatol. 2014;34(12):926–31.CrossRefGoogle ScholarPubMed
O’Rahilly, RR, Müller, F. The Embryonic Human Brain: An Atlas of Developmental Stages, 3rd edition. New York: Wiley; 2006. p. 358.Google Scholar
Yang, P, Zhang, J, Shi, H, Zhang, J, Xu, X, Xiao, X, et al. Developmental profile of neurogenesis in prenatal human hippocampus: an immunohistochemical study. Int J Dev Neurosci. 2014;38:19.Google Scholar
Hines, M. Studies in the growth and differentiation of the telencephalon in man. The fissura hippocampi. J Comp Neurol. 1922;34:73171.Google Scholar
Kostovic, I, Seress, L, Mrzljak, L, Judas, M. Early onset of synapse formation in the human hippocampus: a correlation with Nissl-Golgi architectonics in 15- and 16.5-week-old fetuses. Neuroscience. 1989;30(1):105–16.Google Scholar
Arnold, SE, Trojanowski, JQ. Human fetal hippocampal development: I. Cytoarchitecture, myeloarchitecture, and neuronal morphologic features. J Comp Neurol. 1996;367(2):274–92.Google ScholarPubMed
Zaidel, DW. Quantitative morphology of human hippocampus early neuron development. Anat Rec. 1999;254(1):8791.Google Scholar
Yang, P, Zhang, J, Zhao, L, Jiao, Q, Jin, H, Xiao, X, et al. Developmental distribution pattern of metabotropic glutamate receptor 5 in prenatal human hippocampus. Neurosci Bull. 2012;28(6):704–14.Google Scholar
Insausti, R, Cebada-Sanchez, S, Marcos, P. Postnatal development of the human hippocampal formation. Adv Anat Embryol Cell Biol. 2010;206:186.Google Scholar
Johnson, M, Perry, RH, Piggott, MA, Court, JA, Spurden, D, Lloyd, S, et al. Glutamate receptor binding in the human hippocampus and adjacent cortex during development and aging. Neurobiol Aging. 1996;17(4):639–51.CrossRefGoogle ScholarPubMed
Seress, L, Abraham, H, Tornoczky, T, Kosztolanyi, G. Cell formation in the human hippocampal formation from mid-gestation to the late postnatal period. Neuroscience. 2001;105(4):831–43.Google Scholar
Sorrells, SF, Paredes, MF, Cebrian-Silla, A, Sandoval, K, Qi, D, Kelley, KW, et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. 2018;555(7696):377–81.CrossRefGoogle ScholarPubMed
Cipriani, S, Ferrer, I, Aronica, E, Kovacs, GG, Verney, C, Nardelli, J, et al. Hippocampal radial glial subtypes and their neurogenic potential in human fetuses and healthy and Alzheimer’s disease adults. Cereb Cortex. 2018;28(7):2458–78.Google Scholar
Boldrini, M, Fulmore, CA, Tartt, AN, Simeon, LR, Pavlova, I, Poposka, V, et al. Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell. 2018;22(4):589–99.e5.Google Scholar
Dennis, CV, Suh, LS, Rodriguez, ML, Kril, JJ, Sutherland, GT. Human adult neurogenesis across the ages: An immunohistochemical study. Neuropathol Appl Neurobiol. 2016;42(7):621–38.Google Scholar
Kuhn, HG, Toda, T, Gage, FH. Adult hippocampal neurogenesis: a coming-of-age story. J Neurosci. 2018;38(49):10401–10.Google Scholar
Hevner, RF. Layer-specific markers as probes for neuron type identity in human neocortex and malformations of cortical development. J Neuropathol Exp Neurol. 2007;66(2):101–9.Google Scholar
Tichy, J, Zinke, J, Bunz, B, Meyermann, R, Harter, PN, Mittelbronn, M. Expression profile of sonic hedgehog pathway members in the developing human fetal brain. Biomed Res Int. 2015;2015:494269.Google Scholar
Fame, RM, MacDonald, JL, Macklis, JD. Development, specification, and diversity of callosal projection neurons. Trends Neurosci. 2011;34(1):4150.CrossRefGoogle ScholarPubMed
Bagasrawala, I, Memi, F, Radonjic NV, Zecevic N. N-methyl D-aspartate receptor expression patterns in the human fetal cerebral cortex. Cereb Cortex. 2017;27(11):5041–53.Google Scholar
Bar-Peled, O, Ben-Hur, H, Biegon, A, Groner, Y, Dewhurst, S, Furuta, A, et al. Distribution of glutamate transporter subtypes during human brain development. J Neurochem. 1997;69(6):2571–80.CrossRefGoogle ScholarPubMed
Letinic, K, Zoncu, R, Rakic, P. Origin of GABAergic neurons in the human neocortex. Nature. 2002;417(6889):645–9.Google Scholar
Tiu, SC, Yew, DT, Chan, WY. Development of the human cerebral cortex: a histochemical study. Prog Histochem Cytochem. 2003;38(1):3149.Google Scholar
Ulfig, N, Nickel, J, Bohl, J. Monoclonal antibodies SMI 311 and SMI 312 as tools to investigate the maturation of nerve cells and axonal patterns in human fetal brain. Cell Tissue Res. 1998;291(3):433–43.Google Scholar
Conel, JL. The Postnatal Development of the Human Cerebral Cortex. Volume III: The Cortex of the Three-Month Infant. Cambridge, MA: Harvard University Press; 1947. p. 158.Google Scholar
Duque, A, Krsnik, Z, Kostovic, I, Rakic, P. Secondary expansion of the transient subplate zone in the developing cerebrum of human and nonhuman primates. Proc Natl Acad Sci U S A. 2016;113(35):9892–7.Google Scholar
Bayatti, N, Moss, JA, Sun, L, Ambrose, P, Ward, JF, Lindsay, S, et al. A molecular neuroanatomical study of the developing human neocortex from 8 to 17 postconceptional weeks revealing the early differentiation of the subplate and subventricular zone. Cereb Cortex. 2008;18(7):1536–48.CrossRefGoogle ScholarPubMed
Kostovic, I, Sedmak, G, Vuksic, M, Judas, M. The relevance of human fetal subplate zone for developmental neuropathology of neuronal migration disorders and cortical dysplasia. CNS Neurosci Ther. 2015;21(2):7482.Google Scholar
Krsnik, Z, Majic, V, Vasung, L, Huang, H, Kostovic, I. Growth of thalamocortical fibers to the somatosensory cortex in the human fetal brain. Front Neurosci. 2017;11:233.CrossRefGoogle Scholar
Ulfig, N, Neudorfer, F, Bohl, J. Transient structures of the human fetal brain: Subplate, thalamic reticular complex, ganglionic eminence. Histol Histopathol. 2000;15(3):771–90.Google Scholar
Hoerder-Suabedissen, A, Molnar, Z. Development, evolution and pathology of neocortical subplate neurons. Nat Rev Neurosci. 2015;16(3):133–46.Google Scholar
Judas, M, Sedmak, G, Pletikos, M, Jovanov-Milosevic, N. Populations of subplate and interstitial neurons in fetal and adult human telencephalon. J Anat. 2010;217(4):381–99.Google Scholar
Wilkinson, M, Hume, R, Strange, R, Bell, JE. Glial and neuronal differentiation in the human fetal brain 9–23 weeks of gestation. Neuropathol Appl Neurobiol. 1990;16:193204.Google Scholar
Stagaard Janas, M, Nowakowski, RS, Mollgard, K. Glial cell differentiation in neuron-free and neuron-rich regions. II. Early appearance of S-100 protein positive astrocytes in human fetal hippocampus. Anat Embryol (Berl). 1991;184(6):559–69.Google Scholar
Wierzba-Bobrowicz, T, Lechowicz, W, Kosno-Kruszewska, E. A morphometric evaluation of morphological types of microglia and astroglia in human fetal mesencephalon. Folia Neuropathol. 1997;35(1):2935.Google Scholar
Roessmann, U, Gambetti, P. Astrocytes in the developing human brain. An immunohistochemical study. Acta Neuropathol. 1986;70(3–4):308–13.CrossRefGoogle Scholar
Sasaki, A, Hirato, J, Nakazato, Y, Ishida, Y. Immunohistochemical study of the early human fetal brain. Acta Neuropathol. 1988;76(2):128–34.Google Scholar
Reske-Nielsen, E, Oster, S, Reintoft, I. Astrocytes in the pretnatal central nervous system. From 5th to 28th week of gestation. An immunohistochemical study on paraffin-embedded material. Acta Pathol Microbiol Immunol Scand A. 1987;95(6):339–46.Google Scholar
Brazel, CY, Romanko, MJ, Rothstein, RP, Levison, SW. Roles of the mammalian subventricular zone in brain development. Prog Neurobiol. 2003;69(1):4969.Google Scholar
Ulfig, N, Neudorfer, F, Bohl, J. Distribution patterns of vimentin-immunoreactive structures in the human prosencephalon during the second half of gestation. J Anat. 1999;195 (Pt 1):87100.CrossRefGoogle ScholarPubMed
Miller, JA, Ding, SL, Sunkin, SM, Smith, KA, Ng, L, Szafer, A, et al. Transcriptional landscape of the prenatal human brain. Nature. 2014;508(7495):199206.Google Scholar
Reske-Nielsen, E, Gregersen, M, Lund, E. Astrocytes in the postnatal central nervous system. From birth to 14 years of age. An immunohistochemical study on paraffin-embedded material. Acta Pathol Microbiol Immunol Scand A. 1987;95(6):347–56.Google Scholar
Mota, B, Herculano-Houzel, S. Cortical folding scales universally with surface area and thickness, not number of neurons. Science. 2015;349(6243):74–7.CrossRefGoogle Scholar
Gilles, FH, Leviton, A, Dooling, EC. The Developing Human Brain: Growth And Epidemiologic Neuropathology. Littleton: John Wright-PSG; 1983. p. 349.Google Scholar
Dorovini-Zis, K, Dolman, CL. Gestational development of brain. Arch Pathol Lab Med. 1977;101(4):192–5.Google Scholar
Feess-Higgins, A, Larroche, J-C. Development of the Human Foetal Brain: An Anatomical Atlas. Paris: Institut national de la santé et de la recherche médicale (INSERM); 1987. p. 200.Google Scholar
Rajagopalan, V, Scott, J, Habas, PA, Kim, K, Corbett-Detig, J, Rousseau, F, et al. Local tissue growth patterns underlying normal fetal human brain gyrification quantified in utero. J Neurosci. 2011;31(8):2878–87.Google Scholar
Griffiths, PD, Naidich, TP, Fowkes, M, Jarvis, D. Sulcation and gyration patterns of the fetal brain mapped by surface models constructed from 3D MR image datasets. Neurographics. 2018;8(2):124–9.Google Scholar
Andescavage, NN, du Plessis, A, McCarter, R, Serag, A, Evangelou, I, Vezina, G, et al. Complex trajectories of brain development in the healthy human fetus. Cereb Cortex. 2016;27(11):5274–83.Google Scholar
Huang, H, Xue, R, Zhang, J, Ren, T, Richards, LJ, Yarowsky, P, et al. Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging. J Neurosci. 2009;29(13):4263–73.Google Scholar
Dubois, J, Lefevre, J, Angleys, H, Leroy, F, Fischer, C, Lebenberg, J, et al. The dynamics of cortical folding waves and prematurity-related deviations revealed by spatial and spectral analysis of gyrification. Neuroimage. 2019;185:934–46.Google Scholar

References

Buchet, D, Baron-Van Evercooren, A. In search of human oligodendroglia for myelin repair. Neurosci Lett. 2009 Jun 12;456(3):112–9.Google Scholar
Jakovcevski, I, Zecevic, N. Olig transcription factors are expressed in oligodendrocyte and neuronal cells in fetal CNS. J Neurosci 2005;25:1006410073.Google Scholar
Jakovcevski, I, Filipovic, R, Mo, Z, Rakic, S, Zecevic, N. Oligodendrocyte development and the onset of myelination in the human fetal brain. Frontiers in Neuroanatomy 2009;3 (book 5):115.Google Scholar
Back, SA, Luo, NL, Borenstein, NS, Levine, JM, Volpe, JJ, Kinney, HC. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci. 2001;21:13021312.CrossRefGoogle ScholarPubMed
Back, SA, Luo, NL, Borenstein, NS, Volpe, JJ, Kinney, HC. Arrested oligodendrocyte lineage progression during human cerebral white matter development: dissociation between the timing of progenitor differentiation and myelinogenesis. J Neuropathol Exp Neurol. 2002;61:197211.Google Scholar
Brody, BA, Kinney, HC, Kloman, AS, Gilles, FH. Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol. 1987 May;46(3):283301.Google Scholar
Kinney, HC, Brody, BA, Kloman, AS, Gilles, FH. Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J Neuropathol Exp Neurol. 1988 May;47(3):217–34.Google Scholar
Newville, J, Jantzie, LL, Cunningham, LA. Embracing oligodendrocyte diversity in the context of perinatal injury. Neuronal Regen Res. 2017;12(10):1575–85.Google Scholar
Billiards, SS, Haynes, RL, Folkerth, RD, Borenstein, NS, Trachtenberg, FL, Rowitch, DH, Ligon, KL, Volpe, JJ, Kinney, HC. Myelin abnormalities without oligodendrocyte loss in periventricular leukomalacia. Brain Pathol. 2008;18:153–63.Google Scholar

References

ten-Donkelaar, HJ, Lammens, M. Development of the human cerebellum and its disorders. Clin Perinatol 2009;36:513–30.Google Scholar
Millen, KJ, Gleeson, JG. Cerebellar development and disease. Curr Opin Neurobiol 2008;18:1219.Google Scholar
Butts, T, Green, MJ, Wingate, RJT. Development of the cerebellum: simple steps to make a ‘little brain’. Development 2014;141:4031–41.Google Scholar
Marzban, H, Del Bigio, MR, Alizadeh, J, Ghavami, S, Zachariah, RM, Rastegar, M. Cellular commitment in the developing cerebellum. Front Cell Neurosci 2015;8:126.Google Scholar
Fink, AJ, Englund, C, Daza, RA, Pham, D, Lau, C, Nivison, M, Kowalcyk, T, Hevner, RF. Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J Neurosci 2006;26:3066–76.Google Scholar
Leung, AW, Li, JYH. The molecular pathway regulating Bergmann glia and folia generation in the cerebellum. Cerebellum 2018;17:42–8.Google Scholar
Volpe, JJ. Cerebellum of the premature infant: Rapidly developing, vulnerable, clinically important. J Child Neurol 2009;24:1085–104.Google Scholar
Friede, RL. Developmental Neuropathology, 2nd ed. Switzerland: Springer, 1989, pp. 1214.Google Scholar

References

Dale, K, Martí, E. Introduction to the special section: spinal cord a model to understand CNS development and regeneration. Dev Biol. 2017;432(1):12.CrossRefGoogle Scholar
Molina, A, Pituello, F. Playing with the cell cycle to build the spinal cord. Dev Biol. 2017;432(1):1423.Google Scholar
Gard, C, Gonzalez Curto, G, Frarma, Y, Chollet, E, Duval, N et al. Pax3- and Pax7-mediated Dbx1 regulation orchestrates the patterning of intermediate spinal interneurons. Dev Biol. 2017;432(1):2433.Google Scholar
Darnell, D, Gilbert, SF. Neuroembryology. Wiley Interdiscip Rev Dev Biol. 2017;6(1):10.1002.Google Scholar
Pansky, B. Review of medical embryology. Hoboken: Prentice Hall; 1982.Google Scholar
Standring, S. Gray’s anatomy 40th ed. Amsterdam: Elsevier; 2008.Google Scholar
Sadler, T. Langman’s medical embryology. 12th ed. Philadelphia: LWW; 2011.Google Scholar
Del Corral, R, Breitkreuz, DN, Storey, KG. Onset of neuronal differentiation is regulated by paraxial mesoderm and requires attenuation of FGF signalling. Development. 2002;129(7):1681–91.Google Scholar
Yoon, H, Radulovic, M, Walters, G, Paulsen, A, Drucker, K, Starski, P et al. Protease activated receptor 2 controls myelin development, resiliency and repair. Glia. 2017;65(12):2070–86.Google Scholar

References

Pansky, B. Review of medical embryology. Hoboken: Prentice Hall; 1982.Google Scholar
Takeshi, E. Molecular mechanisms of skeletal muscle development, regeneration, and osteogenic conversion. Bone. 2015;80:213.Google Scholar
Chal, J, Pourquié, O. Making muscle: skeletal myogenesis in vivo and in vitro. Development. 2017;144(12):2104–22.Google Scholar
Darnell, D, Gilbert, SF. Neuroembryology. Wiley Interdiscip Rev Dev Biol. 2017;6(1):10.1002.CrossRefGoogle ScholarPubMed
Hernández-Hernández, JM, García-González, EG, Brun, CE, Rudnicki, MA. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Semin Cell Dev Biol. 2017;72:1018.Google Scholar
Kaplan, S, Odaci, E, Unal, B, Sahin, B, Fornaro, M. Development of the peripheral nerve. Int Rev Neurobiol. 2009;87:926.Google Scholar
O’Rahilly, R, Müller, F. The development of the neural crest in the human. J Anat. 2007;211(3):335–51.Google Scholar
Catala, M, Kubis, N. Gross anatomy and development of the peripheral nervous system. Handb Clin Neurol. 2013;115:2941.Google Scholar
Fidziańska, A. Electron microscopic study of the development of human foetal muscle, motor end-plate and nerve. Acta Neuropathol. 1971; 17: 234–47.Google Scholar

References

Barishak, YR. Embryology of the eye and its adnexae. Dev Ophthalmol. 1992;24:1142.Google Scholar
Torczynski, E. Normal and abnormal ocular development in man. Prog Clin Biol Res. 1982;82:3551.Google Scholar
Bilaniuk, LT, Farber, M. Imaging of developmental anomalies of the eye and the orbit. AJNR Am J Neuroradiol. 1992;13(2):793803.Google Scholar
Tortori-Donati, P, Rossi, A. Pediatric neuroradiology: the orbit. Springer-Verlag, Berlin; 2005.Google Scholar
Adler, R, Canto-Soler, M.V. Molecular mechanisms of optic vesicle development: complexities, ambiguities and controversies. Dev Biol. 2007;305(1):113.Google Scholar
Cook, CS, Ozanics, V, Jakobiec, FA. Prenatal development of the eye and its adnexa. In: Tasman, W, Jaeger, EA (eds.), Duane’s foundations of clinical ophthalmology, vol. 1. Lippincott, Philadelphia; 1994.Google Scholar
Kolb, H, Fernandez, E, Nelson, R, editors. Webvision (2019): The Organization of the Retina and Visual System. Retinal neurogenesis: early stages in the development of neurons and pathways. Available from: www.ncbi.nlm.nih.gov/books/NBK52777/.Google Scholar
Gilbert, SF. Developmental biology. 6th ed. Sinauer Associates, Sunderland, MA; 2000. Available from: www.ncbi.nlm.nih.gov/books/NBK10024/.Google Scholar
Pansky, B. Review of medical embryology. Prentice Hall, Hoboken; 1982.Google Scholar
Li, Y, Ding, Y. Embryonic development of the human lens. In: Liu, Y. (eds.), Pediatric lens diseases. Springer, Singapore; 2017.Google Scholar

References

Papageorghiou, AT, Ohuma, EO, Altman, DG, Todros, T, Cheikh Ismail, L, Lambert, A, et al. International standards for fetal growth based on serial ultrasound measurements: the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project. Lancet. 2014;384(9946):869–79.Google Scholar
Hua, X, Shen, M, Reddy, UM, Buck Louis, G, Souza, JP, Gulmezoglu, AM, et al. Comparison of the INTERGROWTH-21st, National Institute of Child Health and Human Development, and WHO fetal growth standards. Int J Gynaecol Obstet. 2018;143(2):156–63.Google Scholar
Villar, J, Papageorghiou, AT, Pang, R, Ohuma, EO, Cheikh Ismail, L, Barros, FC, et al. The likeness of fetal growth and newborn size across non-isolated populations in the INTERGROWTH-21st Project: the Fetal Growth Longitudinal Study and Newborn Cross-Sectional Study. Lancet Diabetes Endocrinol. 2014;2(10):781–92.Google Scholar
Xiao, WQ, Zhang, LF, He, JR, Shen, SY, Funk, AL, Lu, JH, et al. Comparison of the INTERGROWTH-21st standard and a new reference for head circumference at birth among newborns in Southern China. Pediatr Res. 2019;86(4):529–36.Google Scholar
Liu, S, Metcalfe, A, Leon, JA, Sauve, R, Kramer, MS, Joseph, KS, et al. Evaluation of the INTERGROWTH-21st project newborn standard for use in Canada. PLoS One. 2017;12(3):e0172910.Google Scholar
Department of Nutrition for Health and Development WHO. WHO Child Growth Standards. Growth Velocity Based on Weight, Length, and Head Circumference. Methods and Development. Geneva: WHO Press; 2009.Google Scholar
Guihard-Costa, AM, Larroche, JC. Growth velocity of some fetal parameters. I. Brain weight and brain dimensions. Biol Neonate. 1992;62(5):309–16.Google Scholar
Archie, JG, Collins, JS, Lebel, RR. Quantitative standards for fetal and neonatal autopsy. Am J Clin Pathol. 2006;126(2):256–65.Google Scholar
Hansen, K, Sung, CJ, Huang, C, Pinar, H, Singer, DB, Oyer, CE. Reference values for second trimester fetal and neonatal organ weights and measurements. Pediatr Dev Pathol. 2003;6(2):160–7.Google Scholar
Phillips, JB, Billson, VR, Forbes, AB. Autopsy standards for fetal lengths and organ weights of an Australian perinatal population. Pathology. 2009;41(6):515–26.Google Scholar
Gruenwald, P, Minh, HN. Evaluation of body and organ weights in perinatal pathology. I. Normal standards derived from autopsies. Am J Clin Pathol. 1960;34(3):247–53.Google Scholar
Guihard-Costa, AM, Larroche, JC. Differential growth between the fetal brain and its infratentorial part. Early Hum Dev. 1990;23(1):2740.Google Scholar
Siwe, SA. Das nervensystem. In: Peter, K, Wetzel, G, Heiderich, F, editors. Handbuch der Anatomie des Kindes Zweiter Band Lieferung 4. Berlin: Springer Verlag; 1931. p. 590728.Google Scholar
Guihard-Costa, AM, Menez, F, Delezoide, AL. Organ weights in human fetuses after formalin fixation: standards by gestational age and body weight. Pediatr Dev Pathol. 2002;5(6):559–78.Google Scholar
Maroun, LL, Graem, N. Autopsy standards of body parameters and fresh organ weights in nonmacerated and macerated human fetuses. Pediatr Dev Pathol. 2005;8(2):204–17.Google Scholar
Bamber, AR, Paine, S, Ridout, DA, Pryce, JW, Jacques, TS, Sebire, NJ. Brain weight in sudden unexpected death in infancy: experience from a large single centre cohort. Neuropathol Appl Neurobiol. 2016;42(4):344–51.CrossRefGoogle ScholarPubMed
Dekaban, AS, Sadowsky, D. Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights. Ann Neurol. 1978;4(4):345–56.Google Scholar
Alvord, EC. Head circumference, brain weight, and tumor burden. J Child Neurol. 1986;1(3):240–50.Google Scholar
Coppoletta, JM, Wolbach, SB. Body length and organ weights of infants and children: a study of the body length and normal weights of the more important vital organs of the body between birth and twelve years of age. Am J Pathol. 1933;9(1):5570.Google Scholar
Evetts, AM, Shkrum, MJ, Tugaleva, E. A new reference source for postmortem body measurements and organ weights in neonates and infants: a statistical analysis based on sudden death classification (Part 2). Am J Forensic Med Pathol. 2018;39(4):285303.Google Scholar
Fracasso, T, Vennemann, M, Pfeiffer, H, Bajanowski, T. Organ weights in cases of sudden infant death syndrome: a German study. Am J Forensic Med Pathol. 2009;30(3):231–4.Google Scholar
Kayser, K. Height and weight in human beings: autopsy report. Verlag für angewandte Wissenschaften: Munich Germany 1987:127.Google Scholar
Scheimberg, I, Ashal, H, Kotiloglu-Karaa, E, French, P, Kay, P, Cohen, MC. Weight charts of infants dying of sudden infant death in England. Pediatr Dev Pathol. 2014;17(4):271–7.Google Scholar
Schulz, DM, Giordano, DA, Schulz, DH. Weights of organs of fetuses and infants. Arch Pathol. 1962;74:244–50.Google Scholar
Siebert, JR, Haas, JE. Organ weights in sudden infant death syndrome. Pediatr Pathol. 1994;14(6):973–85.Google Scholar
Elliott, JA, Vink, R, Jensen, L, Byard, RW. Brain weight-body weight ratio in sudden infant death syndrome revisited. Med Sci Law. 2012;52(4):207–9.Google Scholar
Thompson, WS, Cohle, SD. Fifteen-year retrospective study of infant organ weights and revision of standard weight tables. J Forensic Sci. 2004;49(3):575–85.Google Scholar
Ho, KC, Roessmann, U, Hause, L, Monroe, G. Newborn brain weight in relation to maturity, sex, and race. Ann Neurol. 1981;10(3):243–6.CrossRefGoogle ScholarPubMed
Parekh, UC, Pherwani, A, Udani, PM, Mukherjee, S. Brain weight and head circumference in fetus, infant and children of different nutritional and socio-economic groups. Indian Pediatr. 1970;7(6):347–58.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×