Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-29T15:11:50.831Z Has data issue: false hasContentIssue false

Section 11 - Forensic Neuropathology

Published online by Cambridge University Press:  07 August 2021

Mirna Lechpammer
Affiliation:
New York University School of Medicine
Marc Del Bigio
Affiliation:
University of Manitoba, Canada
Rebecca Folkerth
Affiliation:
New York University School of Medicine
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Ashton-Miller, JA, Delancey, JO. On the biomechanics of vaginal birth and common sequelae. Annu Rev Biomed Eng. 2009;11:163–76.Google Scholar
Moloy, HC. Studies on head molding during labor. Am J Obstetr Gynecol. 1942;44(5):762–82.Google Scholar
Sorbe, B, Dahlgren, S. Some important factors in the molding of the fetal head during vaginal delivery–a photographic study. Int J Gynaecol Obstet. 1983;21(3):205–12.Google Scholar
Rempen, A, Kraus, M. Pressures on the fetal head during normal labor. J Perinat Med. 1991;19(3):199206.Google Scholar
Svenningsen, L, Lindemann, R, Eidal, K. Measurements of fetal head compression pressure during bearing down and their relationship to the condition of the newborn. Acta Obstet Gynecol Scand. 1988;67(2):129–33.Google Scholar
Ami, O, Maran, JC, Gabor, P, Whitacre, EB, Musset, D, Dubray, C, et al. Three-dimensional magnetic resonance imaging of fetal head molding and brain shape changes during the second stage of labor. PLoS One. 2019;14(5):e0215721.Google Scholar
Bamberg, C, Deprest, J, Sindhwani, N, Teichgraberg, U, Guttler, F, Dudenhausen, JW, et al. Evaluating fetal head dimension changes during labor using open magnetic resonance imaging. J Perinat Med. 2017;45(3):305–8.CrossRefGoogle ScholarPubMed
Buchmann, EJ, Libhaber, E. Sagittal suture overlap in cephalopelvic disproportion: blinded and non-participant assessment. Acta Obstet Gynecol Scand. 2008;87(7):731–7.Google Scholar
De Souza, SW, Ross, J, Milner, RDG. Alterations in head shape of newborn infants after caesarean section or vaginal delivery. Arch Dis Child. 1976;51(8):624–7.CrossRefGoogle Scholar
Kriewall, TJ, Stys, SJ, McPherson, GK. Neonatal head shape after delivery: an index of molding. J Perinat Med. 1977;5(6):260–7.Google Scholar
Hobson, S, Cassell, K, Windrim, R, No, Cargill Y.. 381-assisted vaginal birth. J Obstet Gynaecol Can. 2019;41(6):870–82.Google Scholar
Doumouchtsis, SK, Arulkumaran, S. Head trauma after instrumental births. Clin Perinatol. 2008;35(1):6983.Google Scholar
Wen, SW, Liu, S, Kramer, MS, Marcoux, S, Ohlsson, A, Sauve, R, et al. Comparison of maternal and infant outcomes between vacuum extraction and forceps deliveries. Am J Epidemiol. 2001;153(2):103–7.CrossRefGoogle ScholarPubMed
McQuivey, RW. Vacuum-assisted delivery: a review. J Matern Fetal Neonatal Med. 2004;16(3):171–80.Google Scholar
Ehrenfest, H. The causation of intracranial hemorrhages in the new-born. Am J Dis Child. 1923;26(6):503–14.Google Scholar
Vlasyuk, VV. Birth Trauma and Perinatal Brain Damage. Cham, Switzerland: Springer; 2019. p. 283.Google Scholar
Lipschuetz, M, Cohen, SM, Ein-Mor, E, Sapir, H, Hochner-Celnikier, D, Porat, S, et al. A large head circumference is more strongly associated with unplanned cesarean or instrumental delivery and neonatal complications than high birthweight. Am J Obstet Gynecol. 2015;213(6):833 e112.CrossRefGoogle ScholarPubMed
Lipschuetz, M, Cohen, SM, Israel, A, Baron, J, Porat, S, Valsky, DV, et al. Sonographic large fetal head circumference and risk of cesarean delivery. Am J Obstet Gynecol. 2018;218(3):339 e17.CrossRefGoogle ScholarPubMed
Hughes, CA, Harley, EH, Milmoe, G, Bala, R, Martorella, A. Birth trauma in the head and neck. Arch Otolaryngol Head Neck Surg. 1999;125(2):193–9.Google Scholar
O’Mahony, F, Settatree, R, Platt, C, Johanson, R. Review of singleton fetal and neonatal deaths associated with cranial trauma and cephalic delivery during a national intrapartum-related confidential enquiry. BJOG. 2005;112(5):619–26.Google ScholarPubMed
Pollanen, MS. Subdural hemorrhage in infancy: keep an open mind. Forensic Sci Med Pathol. 2011;7(3):298300.Google Scholar
Patonay, BC, Oliver, WR. Can birth trauma be confused for abuse? J Forensic Sci. 2010;55(4):1123–5.CrossRefGoogle ScholarPubMed
Lear-Kaul, KC. Manifestations of birth trauma at the forensic pediatric autopsy. Acad Forensic Pathol. 2012;2(4):309–17.CrossRefGoogle Scholar
Tolhurst, DE, Carstens, MH, Greco, RJ, Hurwitz, DJ. The surgical anatomy of the scalp. Plast Reconstr Surg. 1991;87(4):603–12.CrossRefGoogle ScholarPubMed
Tremolada, C, Candiani, P, Signorini, M, Vigano, M, Donati, L. The surgical anatomy of the subcutaneous fascial system of the scalp. Ann Plast Surg. 1994;32(1):814.CrossRefGoogle ScholarPubMed
Sundaresan, M, Wright, M, Price, AB. Anatomy and development of the fontanelle. Arch Dis Child. 1990;65(4 Spec No):386–7.Google Scholar
D’Antoni, AV, Donaldson, OI, Schmidt, C, Macchi, V, De Caro, R, Oskouian, RJ, et al. A comprehensive review of the anterior fontanelle: embryology, anatomy, and clinical considerations. Childs Nerv Syst. 2017;33(6):909–14.Google Scholar
Manzanares, MC, Goret-Nicaise, M, Dhem, A. Metopic sutural closure in the human skull. J Anat. 1988;161:203–15.Google Scholar
Silau, AM, Fischer Hansen, B, Kjaer, I. Normal prenatal development of the human parietal bone and interparietal suture. J Craniofac Genet Dev Biol. 1995;15(2):81–6.Google Scholar
Di Ieva, A, Bruner, E, Davidson, J, Pisano, P, Haider, T, Stone, SS, et al. Cranial sutures: a multidisciplinary review. Childs Nerv Syst. 2013;29(6):893905.Google Scholar
Dasgupta, K, Jeong, J. Developmental biology of the meninges. Genesis. 2019;57(5):e23288.Google Scholar
Alexander, JM, Leveno, KJ, Hauth, J, Landon, MB, Thom, E, Spong, CY, et al. Fetal injury associated with cesarean delivery. Obstet Gynecol. 2006;108(4):885–90.CrossRefGoogle ScholarPubMed
Amar, AP, Aryan, HE, Meltzer, HS, Levy, ML. Neonatal subgaleal hematoma causing brain compression: report of two cases and review of the literature. Neurosurgery. 2003;52(6):1470–4.CrossRefGoogle ScholarPubMed
Pachman, DJ. Massive hemorrhage in the scalp of the newborn infant: hemorrhagic caput succedaneum. Pediatrics. 1962;29:907–10.Google Scholar
Wigglesworth, JS, Husemeyer, RP. Intracranial birth trauma in vaginal breech delivery: the continued importance of injury to the occipital bone. Br J Obstet Gynaecol. 1977;84(9):684–91.Google Scholar
Heise, RH, Srivatsa, PJ, Karsell, PR. Spontaneous intrauterine linear skull fracture: a rare complication of spontaneous vaginal delivery. Obstet Gynecol. 1996;87(5 Pt 2):851–4.Google Scholar
Cho, SM, Kim, HG, Yoon, SH, Chang, KH, Park, MS, Park, YH, et al. Reappraisal of neonatal greenstick skull fractures caused by birth injuries: comparison of 3-dimensional reconstructed computed tomography and simple skull radiographs. World Neurosurg. 2018;109:e305–e12.Google Scholar
Dupuis, O, Silveira, R, Dupont, C, Mottolese, C, Kahn, P, Dittmar, A, et al. Comparison of “instrument-associated” and “spontaneous” obstetric depressed skull fractures in a cohort of 68 neonates. Am J Obstet Gynecol. 2005;192(1):165–70.Google Scholar
Josephsen, JB, Kemp, J, Elbabaa, SK, Al-Hosni, M. Life-threatening neonatal epidural hematoma caused by precipitous vaginal delivery. Am J Case Rep. 2015;16:50–2.Google Scholar
Kroon, E, Bok, LA, Halbertsma, F. Spontaneous perinatal epidural haemorrhage in a newborn. BMJ Case Rep. 2012;pii:bcr0920114735.Google Scholar
Heyman, R, Heckly, A, Magagi, J, Pladys, P, Hamlat, A. Intracranial epidural hematoma in newborn infants: clinical study of 15 cases. Neurosurgery. 2005;57(5):924–9.Google Scholar
Takagi, T, Nagai, R, Wakabayashi, S, Mizawa, I, Hayashi, K. Extradural hemorrhage in the newborn as a result of birth trauma. Childs Brain. 1978;4(5):306–18.Google Scholar
Mack, J, Squier, W, Eastman, JT. Anatomy and development of the meninges: implications for subdural collections and CSF circulation. Pediatr Radiol. 2009;39(3):200–10.CrossRefGoogle ScholarPubMed
Squier, W, Lindberg, E, Mack, J, Darby, S. Demonstration of fluid channels in human dura and their relationship to age and intradural bleeding. Childs Nerv Syst. 2009;25(8):925–31.Google Scholar
O’Rahilly, R, Muller, F. The meninges in human development. J Neuropathol Exp Neurol. 1986;45(5):588608.Google Scholar
Clarke, AG. The anatomy of the meninges. Postgrad Med J. 1944;20(220):74–8.Google Scholar
Sakka, L. Anatomy of the cranial and spinal meninges. In: Cinalli, G, Özek, MM, Sainte-Rose, C, editors. Pediatric Hydrocephalus, 2nd edition. New York: Springer; 2019. pp. 197237.Google Scholar
Rascol, MM, Izard, JY. The subdural neurothelium of the cranial meninges in man. Anat Rec. 1976;186(3):429–36.Google Scholar
Haines, DE. On the question of a subdural space. Anat Rec. 1991;230(1):321.Google Scholar
Haines, DE, Harkey, HL, al-Mefty, O. The “subdural” space: a new look at an outdated concept. Neurosurgery. 1993;32(1):111–20.Google Scholar
Cheshire, EC, Malcomson, RDG, Sun, P, Mirkes, EM, Amoroso, JM, Rutty, GN. A systematic autopsy survey of human infant bridging veins. Int J Legal Med. 2018;132(2):449–61.Google Scholar
Kibayashi, K, Shojo, H, Sumida, T. Dural hemorrhage of the tentorium on postmortem cranial computed tomographic scans in children. Forensic Sci Int. 2005;154(2–3):206–9.Google Scholar
Geddes, JF, Tasker, RC, Hackshaw, AK, Nickols, CD, Adams, GG, Whitwell, HL, et al. Dural haemorrhage in non-traumatic infant deaths: does it explain the bleeding in “shaken baby syndrome”? Neuropathol Appl Neurobiol. 2003;29(1):1422.Google Scholar
Byard, RW, Blumbergs, P, Rutty, G, Sperhake, J, Banner, J, Krous, HF. Lack of evidence for a causal relationship between hypoxic-ischemic encephalopathy and subdural hemorrhage in fetal life, infancy, and early childhood. Pediatr Dev Pathol. 2007;10(5):348–50.Google Scholar
Punt, J, Bonshek, RE, Jaspan, T, McConachie, NS, Punt, N, Ratcliffe, JM. The “unified hypothesis” of Geddes et al. is not supported by the data. Pediatr Rehabil. 2004;7(3):173–84.Google Scholar
Cheshire, EC, Biggs, MJP, Hollingbury, FE, Fitzpatrick-Swallow, VL, Prickett, TRA, Malcomson, RDG. Frequency of macroscopic intradural hemorrhage with and without subdural hemorrhage in early childhood autopsies. Forensic Sci Med Pathol. 2019;15(2):184–90.CrossRefGoogle ScholarPubMed
Cohen, MC, Scheimberg, I. Histology of the dural membrane supports the theoretical considerations of its role in the pathophysiology of subdural collections in nontraumatic circumstances. Pediatr Radiol. 2009;39(8):880–1.Google Scholar
Cohen, MC, Peres, LC, Al-Adnani, M, Zapata-Vazquez, R. Increased number of fetal nucleated red blood cells in the placentas of term or near-term stillborn and neonates correlates with the presence of diffuse intradural hemorrhage in the perinatal period. Pediatr Dev Pathol. 2014;17(1):19.Google Scholar
Cohen, MC, Scheimberg, I. Evidence of occurrence of intradural and subdural hemorrhage in the perinatal and neonatal period in the context of hypoxic Ischemic encephalopathy: an observational study from two referral institutions in the United Kingdom. Pediatr Dev Pathol. 2009;12(3):169–76.Google Scholar
Cohen, MC, Sprigg, A, Whitby, EH. Subdural hemorrhage, intradural hemorrhage and hypoxia in the pediatric and perinatal post mortem: are they related? An observational study combining the use of post mortem pathology and magnetic resonance imaging. Forensic Sci Int. 2010;200(1–3):100–7.Google Scholar
Scheimberg, I, Cohen, MC, Zapata Vazquez, RE, Dilly, S, Adnani, MA, Turner, K, et al. Nontraumatic intradural and subdural hemorrhage and hypoxic-ischemic encephalopathy in fetuses, infants, and children up to three years of age: analysis of two audits of 636 cases from two referral centers in the United Kingdom. Pediatr Dev Pathol. 2013;16(3):149–59.Google Scholar
Sirgiovanni, I, Avignone, S, Groppo, M, Bassi, L, Passera, S, Schiavolin, P, et al. Intracranial haemorrhage: an incidental finding at magnetic resonance imaging in a cohort of late preterm and term infants. Pediatr Radiol. 2014;44(3):289–96.CrossRefGoogle Scholar
Holden, KR, Titus, MO, Van Tassel, P. Cranial magnetic resonance imaging examination of normal term neonates: a pilot study. J Child Neurol. 1999;14(11):708–10.Google Scholar
Kelly, P, Hayman, R, Shekerdemian, LS, Reed, P, Hope, A, Gunn, J, et al. Subdural hemorrhage and hypoxia in infants with congenital heart disease. Pediatrics. 2014;134(3):773–81.Google Scholar
Looney, CB, Smith, JK, Merck, LH, Wolfe, HM, Chescheir, NC, Hamer, RM, et al. Intracranial hemorrhage in asymptomatic neonates: prevalence on MR images and relationship to obstetric and neonatal risk factors. Radiology. 2007;242(2):535–41.Google Scholar
Ludwig, B, Becker, K, Rutter, G, Bohl, J, Postmortem, Brand M. CT and autopsy in perinatal intracranial hemorrhage. AJNR Am J Neuroradiol. 1983;4(1):2736.Google Scholar
Rooks, VJ, Eaton, JP, Ruess, L, Petermann, GW, Keck-Wherley, J, Pedersen, RC. Prevalence and evolution of intracranial hemorrhage in asymptomatic term infants. AJNR Am J Neuroradiol. 2008;29(6):1082–9.Google Scholar
Tavani, F, Zimmerman, RA, Clancy, RR, Licht, DJ, Mahle, WT. Incidental intracranial hemorrhage after uncomplicated birth: MRI before and after neonatal heart surgery. Neuroradiology. 2003;45(4):253–8.Google Scholar
Leviton, A, Gilles, FH, Dooling, EC. The epidemiology of subarachnoid hemorrhages. In: Gilles, FH, Leviton, A, Dooling, EC, editors. The Developing Human Brain Growth and Epidemiologic Neuropathology. Boston: John Wright Inc.; 1983. pp. 217–26.Google Scholar
Del Bigio, MR, Phillips, SM. Retroocular and subdural hemorrhage or hemosiderin deposits in pediatric autopsies. J Neuropathol Exp Neurol. 2017;76(4):313–22.Google Scholar
Wigglesworth, JS, Pape, KE. Pathophysiology of intracranial haemorrhage in the newborn. J Perinat Med. 1980;8(3):119–33.Google Scholar
Towbin, A. Central nervous system damage in the human fetus and newborn infant. Am J Dis Child. 1970;119:529–42.Google Scholar
Brouwer, AJ, Groenendaal, F, Koopman, C, Nievelstein, RJ, Han, SK, de Vries, LS. Intracranial hemorrhage in full-term newborns: a hospital-based cohort study. Neuroradiology. 2010;52(6):567–76.Google Scholar
Gradnitzer, E, Urlesberger, B, Maurer, U, Riccabona, M, Muller, W. Hirnblutung beim reifen Neugeborenen–eine Analyse von 10 Jahren (1989–1999). Wien Med Wochenschr. 2002;152(1–2):913.CrossRefGoogle ScholarPubMed
Jhawar, BS, Ranger, A, Steven, D, Del Maestro, RF. Risk factors for intracranial hemorrhage among full-term infants: a case-control study. Neurosurgery. 2003;52(3):581–90.Google Scholar
Huang, AH, Robertson, RL. Spontaneous superficial parenchymal and leptomeningeal hemorrhage in term neonates. AJNR Am J Neuroradiol. 2004;25(3):469–75.Google Scholar
Ou-Yang, MC, Huang, CB, Huang, HC, Chung, MY, Chen, CC, Chen, FS, et al. Clinical manifestations of symptomatic intracranial hemorrhage in term neonates: 18 years of experience in a medical center. Pediatr Neonatol. 2010;51(4):208–13.Google Scholar
Roessmann, U, Miller, RT. Thrombosis of the middle cerebral artery associated with birth trauma. Neurology. 1980;30(8):889–92.Google Scholar
Baumert, M, Brozek, G, Paprotny, M, Walencka, Z, Sodowska, H, Cnota, W, et al. Epidemiology of peri/intraventricular haemorrhage in newborns at term. J Physiol Pharmacol. 2008;59 Suppl 4:6775.Google Scholar
Terplan, KL. Histopathologic brain changes in 1152 cases of the perinatal and early infancy period. Biol Neonat. 1967;11:348–66.Google Scholar
Pettersson, K, Ajne, J, Yousaf, K, Sturm, D, Westgren, M, Ajne, G. Traction force during vacuum extraction: a prospective observational study. BJOG. 2015;122(13):1809–16.Google Scholar
Vialle, R, Pietin-Vialle, C, Vinchon, M, Dauger, S, Ilharreborde, B, Glorion, C. Birth-related spinal cord injuries: a multicentric review of nine cases. Childs Nerv Syst. 2008;24(1):7985.Google Scholar
Bresnan, MJ, Abroms, IF. Neonatal spinal cord transection secondary to intrauterine hyperextension of the neck in breech presentation. J Pediatr. 1974;84(5):734–7.Google Scholar
MacKinnon, JA, Perlman, M, Kirpalani, H, Rehan, V, Sauve, R, Kovacs, L. Spinal cord injury at birth: diagnostic and prognostic data in twenty-two patients. J Pediatr. 1993;122(3):431–7.Google Scholar
Pollard, JJ, Nebesar, RA. Spinal-cord injury at birth. Jama. 1964;188:1078–9.Google Scholar
Menticoglou, SM, Perlman, M, Manning, FA. High cervical spinal cord injury in neonates delivered with forceps: report of 15 cases. Obstet Gynecol. 1995;86(4 Pt 1):589–94.Google Scholar
Babyn, PS, Chuang, SH, Daneman, A, Davidson, GS. Sonographic evaluation of spinal cord birth trauma with pathologic correlation. AJR Am J Roentgenol. 1988;151(4):763–6.Google Scholar
Piatt, JH, Jr. Progressive syringomyelia controlled by treatment of associated hydrocephalus in an infant with birth injury. Case report. J Neurosurg. 2005;103(2 Suppl):198202.Google Scholar
Yamano, T, Fujiwara, S, Matsukawa, S, Aotani, H, Maruo, Y, Shimada, M. Cervical cord birth injury and subsequent development of syringomyelia: a case report. Neuropediatrics. 1992;23(6):327–8.Google Scholar
Del Bigio, MR, Deck, JH, MacDonald, JK. Syrinx extending from conus medullaris to basal ganglia: a clinical, radiological, and pathological correlation. Can J Neurol Sci. 1993;20(3):240–6.Google Scholar
Morota, N, Sakamoto, K, Kobayashi, N. Traumatic cervical syringomyelia related to birth injury. Childs Nerv Syst. 1992;8(4):234–6.Google Scholar
Maekawa, K, Masaki, T, Kokubun, Y. Fetal spinal-cord injury secondary to hyperextension of the neck: no effect of caesarean section. Dev Med Child Neurol. 1976;18(2):229–32.Google Scholar
Young, RS, Towfighi, J, Marks, KH. Focal necrosis of the spinal cord in utero. Arch Neurol. 1983;40(10):654–5.Google Scholar
Sladky, JT, Rorke, LB. Perinatal hypoxic/ischemic spinal cord injury. Pediatr Pathol. 1986;6(1):87101.Google Scholar
Caird, MS, Reddy, S, Ganley, TJ, Drummond, DS. Cervical spine fracture-dislocation birth injury: prevention, recognition, and implications for the orthopaedic surgeon. J Pediatr Orthop. 2005;25(4):484–6.Google Scholar
Tekes, A, Pinto, PS, Huisman, TA. Birth-related injury to the head and cervical spine in neonates. Magn Reson Imaging Clin N Am. 2011;19(4):777–90.Google Scholar
Hiss, J, Kahana, T, Burshtein, I. Accidental fetal decapitation: a case of medical and ethical mishap. Am J Forensic Med Pathol. 2011;32(3):245–7.Google Scholar
Richman, F. Retinal haemorrhages in the newborn. Proc R Soc Med. 1937;30(3):277–80.Google Scholar
Hughes, LA, May, K, Talbot, JF, Parsons, MA. Incidence, distribution, and duration of birth-related retinal hemorrhages: a prospective study. J AAPOS. 2006;10(2):102–6.Google Scholar
Jayanthi, K, Aurora, AL. Retinal haemorrhages in the newborn (an autopsy study). Indian J Ophthalmol. 1978;26(1):1216.Google Scholar
Laghmari, M, Skiker, H, Handor, H, Mansouri, B, Ouazzani Chahdi, K, Lachkar, R, et al. Hemorragies retiniennes liees a l’accouchement chez le nouveau-ne : frequence et relation avec les facteurs maternels, neonataux et obstetricaux. Etude prospective de 2031 cas. J Fr Ophtalmol. 2014;37(4):313–19.Google Scholar
Sezen, F. Retinal haemorrhages in newborn infants. Br J Ophthalmol. 1971;55(4):248–53.Google Scholar
Ehlers, N, Jensen, IK, Hansen, KB. Retinal haemorrhages in the newborn: comparison of delivery by forceps and by vacuum extractor. Acta Ophthalmol. 1974;52(1):7382.Google Scholar
Svenningsen, L, Eidal, K. Retinal hemorrhages and traction forces in vacuum extraction. Early Hum Dev. 1988;16(2–3):263–9.Google Scholar
Lalka, A, Gralla, J, Sibbel, SE. Brachial plexus birth injury: epidemiology and birth weight impact on risk factors. J Pediatr Orthop. 2020 40(6):e460–e465.CrossRefGoogle Scholar
Clark, LP, Taylor, AS, Prout, TP. A study on brachial nerve birth palsy. Am J Med Sci. 1905;130(4):670707.Google Scholar
Taylor, PE. Traumatic intradural avulsion of the nerve roots of the brachial plexus. Brain. 1962;85:579602.Google Scholar
Sever, JW. Obstetric paralysis – its cause and treatment. Can Med Assoc J. 1920;10(2):141–61.Google Scholar
Alvord, EC, Jr., Austin, EJ, Larson, CP. Neuropathologic observations in congenital phrenic nerve palsy. J Child Neurol. 1990;5(3):205–9.Google Scholar
Buterbaugh, KL, Shah, AS. The natural history and management of brachial plexus birth palsy. Curr Rev Musculoskelet Med. 2016;9(4):418–26.Google Scholar
Schaakxs, D, Bahm, J, Sellhaus, B, Weis, J. Clinical and neuropathological study about the neurotization of the suprascapular nerve in obstetric brachial plexus lesions. J Brachial Plex Peripher Nerve Inj. 2009;4:15.Google Scholar
Malessy, MJ, Pondaag, W. Nerve surgery for neonatal brachial plexus palsy. J Pediatr Rehabil Med. 2011;4(2):141–8.Google Scholar
Nicholson, L. Caput succedaneum and cephalohematoma: the Cs that leave bumps on the head. Neonatal Netw. 2007;26(5):277–81.Google Scholar
Wisser, M, Rothschild, MA, Schmolling, JC, Banaschak, S. Caput succedaneum and facial petechiae–birth-associated injuries in healthy newborns under forensic aspects. Int J Legal Med. 2012;126(3):385–90.Google Scholar
Levin, G, Elchalal, U, Yagel, S, Eventov-Friedman, S, Ezra, Y, Sompolinsky, Y, et al. Risk factors associated with subgaleal hemorrhage in neonates exposed to vacuum extraction. Acta Obstet Gynecol Scand. 2019. 98(11):1464–1472.Google Scholar
Swanson, AE, Veldman, A, Wallace, EM, Malhotra, A. Subgaleal hemorrhage: risk factors and outcomes. Acta Obstet Gynecol Scand. 2012;91(2):260–3.Google Scholar
Wang, S, Drake, J, Kulkarni, AV. Management and outcome of spontaneous subaponeurotic fluid collections in infants: the Hospital for Sick Children experience and review of the literature. J Neurosurg Pediatr. 2016;18(4):442–7.Google Scholar

References

Tardieu, A. Étude médico-légale sur les sévices et mauvais traitements exercés sur des enfant. Annales d’Hygiène Publique et de Médicine Légale, 1860.Google Scholar
Kempe, CH, Silverman, FN, Steele, BF, Droguemueller, W, Silver, HK. The battered-child syndrome. JAMA. 1962;181:1724.Google Scholar
Guthkelch, AN. Infantile subdural haematoma and its relationship to whiplash injuries. Br Med J. 1971 2(5759):430–1.Google Scholar
Caffey, J. On the theory and practice of shaking infants. Its potential residual effects of permanent brain damage and mental retardation. Am J Dis Child. 1972;124(2):161–9.Google Scholar
Duhaime, AC, Gennarelli, TA, Thibault, LE, Bruce, DA, Margulies, SS, Wiser, R. The shaken baby syndrome: a clinical, pathological, and biomechanical study. J Neurosurg. 1987;66(3):409–15.Google Scholar
Christian, CW, Block, R, Committee on Child Abuse and Neglect, American Academy of Pediatrics. Abusive head trauma in infants and children. Pediatrics. 2009;123(5):1409–11.Google Scholar
Narang, S, Estrada, C, Greenberg, S, Lindberg, D. Acceptance of shaken baby syndrome and abusive head trauma as medical diagnoses. J Pediatrics. 2016;177:273–8.Google Scholar
Ewigman, B, Kivlahan, C, Land, G. The Missouri child fatality study: underreporting of maltreatment fatalities among children younger than five years of age, 1983 through 1986. Pediatrics. 1993;91(2):330–7.Google Scholar
Overpeck, MD, Brenner, RA, Trumble, AC, Trifiletti, LB, Berendes, HW. Risk factors for infant homicide in the United States. N Engl J Med. 1998 339(17):1211–16.Google Scholar
Herman-Giddens, ME, Brown, G, Verbiest, S, Carlson, PJ, Hooten, EG, Howell, E, Butts, JD. Underascertainment of child abuse mortality in the United States. JAMA. 1999 282(5):463–7.Google Scholar
Palusci, VJ, Wirtz, SJ, Covington, TM. Using capture-recapture methods to better ascertain the incidence of fatal child maltreatment. Child Abuse Negl. 2010;34(6):396402.Google Scholar
Keenan, HT, Runyan, DK, Marshall, SW, Nocera, MA, Merten, DF, Sinal, SH. A population-based study of inflicted traumatic brain injury in young children. JAMA. 2003 290(5):621–6.Google Scholar
Christian Committee on Child Abuse and Neglect.The evaluation of suspected child physical abuse. Pediatrics. 2015;135(5):e1337e1354.Google Scholar
Binenbaum, G, Mirza-George, N, Christian, CW, Forbes, BJ. Odds of abuse associated with retinal hemorrhages in children suspected of child abuse. J AAPOS. 2009;13(3):268–72.Google Scholar
Sieswerda-Hoogendoorn, T, Boos, S, Spivack, B, Bilo, RA, van Rijn, RR. Abusive head trauma Part II: radiological aspects. Eur J Pediatr. 2012;171(4):617–23.Google Scholar
Brennan, LK, Rubin, D, Christian, CW, Duhaime, AC, Mirchandani, HG, Rorke-Adams, LB. Neck injuries in young pediatric homicide victims. J Neurosurg Pediatr. 2009;3(3):232–9.Google Scholar
Matshes, EW, Evans, RM, Pinckard, JK, Joseph, JT, Lew, EO. Shaken infants die of neck trauma, not of brain trauma. Academic Forensic Pathology 2011;1(1):8291.Google Scholar
Vester, ME, Bilo, RA, Karst, WA, Daams, JG, Duijst, WL, van Rijn, RR. Subdural hematomas: glutaric aciduria type 1 or abusive head trauma? A systematic review. Forensic Sci Med Pathol. 2015;11(3):405–15.Google Scholar
Christian, CW, Levin, AV, Council on Child Abuse and Neglect, Section on Ophthalmology, American Association of Certified Orthoptists, American Association for Pediatric Ophthalmology and Strabismus, American Academy of Ophthalmology. The eye examination in the evaluation of child abuse. Pediatrics. 2018;142(2):e20181411.Google Scholar
Binenbaum, G, Christian, CW, Guttmann, K, Huang, J, Ying, GS, Forbes, BJ. Evaluation of temporal association between vaccinations and retinal hemorrhage in children. JAMA Ophthalmol. 2015;133(11):1261–5.Google Scholar

References

Kinney, HC, Poduri, AH, Cryan, JB, Haynes, RL, Teot, L, Sleeper, LA, Holm, IA, Berry, GT, Prabhu, SP, Warfield, SK, Brownstein, C, Abram, HS, Kruer, M, Kemp, WL, Hargitai, B, Gastrang, J, Mena, OJ, Haas, EA, Dastjerdi, R, Armstrong, DD, Goldstein, RD. Hippocampal formation maldevelopment and sudden unexpected death across the pediatric age spectrum. J Neuropathol Exp Neurol. 2016;75(10):981–97.Google Scholar
www.cdc.gov/sids/index.htm (last reviewed January 3, 2019).Google Scholar
Willinger, M, James, LS, Catz, C. Defining the sudden infant death syndrome (SIDS): Deliberations of an expert panel convened by the National Institute of Child Health and Human Development. Pediatr Pathol. 1991;11(5):677–84.Google Scholar
Shapiro-Mendoza, CK, Parks, S, Lambert, AE, et al. The epidemiology of sudden infant death syndrome and sudden unexpected infant deaths: diagnostic shift and other temporal changes. In: Duncan, JR, Byard, RW, (eds.). SIDS Sudden Infant and Early Childhood Death: The Past, the Present and the Future. Adelaide: University of Adelaide Press; 2018.Google Scholar
Pasquale-Styles, MA, Regensburg, M, Bao, R. Sudden unexpected infant death certification in New York City: Intra-agency guideline compliance and variables that may influence death certification. Acad Forensic Pathol 2017;7:536–50.Google Scholar
Krous, HF, Chadwick, AE, Crandall, L, Nadeau-Manning, JM. Sudden unexpected death in childhood: a report of 50 cases. Pediatr Dev Pathol. 2005;8(3):307–19.Google Scholar
California Department of Public Health, Standardized autopsy protocol for the evaluation of sudden, unexpected infant death. www.cdph.ca.gov/programs/SIDS/Pages/4.5SIDSProtocal.aspx.Google Scholar
Folkerth, RD, Nunez, J. Georgievskaya, Z, McGuone, D. Neuropathologic examination in sudden unexpected deaths in infancy and childhood: recommendations for highest diagnostic yield and cost-effectiveness in forensic settings. Acad Forensic Pathol 2017;7:182–99.Google Scholar
Kinney, HC, Thach, BT. The sudden infant death syndrome. N Engl J Med. 2009 361(8):795805.Google Scholar
Iyasu, S, Randall, LL, Welty, TK, Hsia, J, Kinney, HC, Mandell, F, McClain, M, Randall, B, Habbe, D, Wilson, H, Willinger, M. Risk factors for sudden infant death syndrome among northern plains Indians. JAMA. 2002 288(21):2717–23. Erratum in: JAMA. 2003 289(3):303. PubMed PMID: 12460095.Google Scholar
Kinney, HC, Hefti, MM, Goldstein, RD, Haynes, RL. Sudden infant death syndrome. In: Adle-Biassette, H, Harding, BN, Golden, JA, (eds.). Developmental Neuropathology, 2nd ed. Hoboken: Wiley Blackwell, 2018, pp. 269–80.Google Scholar
Trachtenberg, FL, Haas, EA, Kinney, HC, Stanley, C, Krous, HF. Risk factor changes for sudden infant death syndrome after initiation of Back-to-Sleep campaign. Pediatrics. 2012;129(4):630–8.Google Scholar
Crandall, L, Devinsky, O. Sudden unexplained death in children. Lancet Child Adolesc Health. 2017;1(1):89.Google Scholar
Holm, IA, Poduri, A, Crandall, L, Haas, E, Grafe, MR, Kinney, HC, Krous, HF. Inheritance of febrile seizures in sudden unexplained death in toddlers. Pediatr Neurol. 2012;46(4):235–9.Google Scholar
Ackerman, MJ, Siu, BL, Sturner, WQ, Tester, DJ, Valdivia, CR, Makielski, JC, Towbin, JA. Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. JAMA. 2001 286(18):2264–9.Google Scholar
Moro, PL, Arana, J, Cano, M, Lewis, P, Shimabukuro, TT. Deaths reported to the vaccine adverse event reporting system, United States, 1997–2013. Clin Infect Dis. 2015 61(6):980–7.Google Scholar
Institute of Medicine (US) Immunization Safety Review Committee, Stratton, K, Almario, DA, Wizemann, TM, McCormick, MC, editors. Immunization Safety Review: Vaccinations and Sudden Unexpected Death in Infancy. Washington, DC: National Academies Press (US); 2003.Google Scholar
Vennemann, MM, Butterfass-Bahloul, T, Jorch, G, Brinkmann, B, Findeisen, M, Sauerland, C, Bajanowski, T, Mitchell, EA; GeSID Group. Sudden infant death syndrome: no increased risk after immunisation. Vaccine. 2007 25(2):336–40.Google Scholar
Haynes, RL, Frelinger, AL, III, Giles, EK, Goldstein, RD, Tran, H, Kozakewich, HP, Haas, EA, Gerrits, AJ, Mena, OJ, Trachtenberg, FL, Paterson, DS, Berry, GT, Adeli, K, Kinney, HC, Michelson, AD. High serum serotonin in sudden infant death syndrome. Proc Natl Acad Sci U S A. 2017 114(29):76957700.Google Scholar
Randall BB, Wadee SA, Sens MA, Kinney HC, Folkerth RD, Odendaal HJ, Dempers JJ. A practical classification schema incorporating consideration of possible asphyxia in cases of sudden unexpected infant death. Forensic Sci Med Pathol. 2009;5(4):254–60.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×