Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-01T13:03:07.028Z Has data issue: false hasContentIssue false

Section 3 - Stillbirth

Published online by Cambridge University Press:  07 August 2021

Mirna Lechpammer
Affiliation:
New York University School of Medicine
Marc Del Bigio
Affiliation:
University of Manitoba, Canada
Rebecca Folkerth
Affiliation:
New York University School of Medicine
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Bar, W, Kratzer, A, Machler, M, Schmid, W. Postmortem stability of DNA. Forensic Sci Int. 1988;39(1):5970.Google Scholar
Muciaccia, B, Vico, C, Aromatario, M, Fazi, F, Cecchi, R. Molecular analysis of different classes of RNA molecules from formalin-fixed paraffin-embedded autoptic tissues: a pilot study. Int J Legal Med. 2015;129(1):1121.Google Scholar
Almarzooqi, S, Leber, A, Kahwash, S. Artifacts and organism mimickers in pathology: case examples and review of literature. Adv Anat Pathol. 2010;17(4):277–81.Google Scholar
Bindhu, P, Krishnapillai, R, Thomas, P, Jayanthi, P. Facts in artifacts. J Oral Maxillofac Pathol. 2013;17(3):397401.Google Scholar
Taqi, SA, Sami, SA, Sami, LB, Zaki, SA. A review of artifacts in histopathology. J Oral Maxillofac Pathol. 2018;22(2):279.Google Scholar
McInnes, E. Artefacts in histopathology. Comp Clin Pathol. 2005;13:100–8.Google Scholar
Polgar, K, Abel, G, Laczko, J, Sipka, S, Papp, Z. Immunocytochemical characterization of amniotic fluid macrophages in cases of fetal neural tube defects. Am J Clin Pathol. 1987;87(1):3742.Google Scholar
Cammermeyer, J. The effect of water on the human spinal cord in post-mortem experiments. Monatsschr Psychiatr Neurol. 1953;126(4–5):229–39.CrossRefGoogle ScholarPubMed
Kies, MW, Schwimmer, S. Observations on proteinase in brain. J Biol Chem. 1942;145(2):685–91.Google Scholar
Pope, A, Nixon, RA. Proteases of human brain. Neurochem Res. 1984;9(3):291323.Google Scholar
Gibson, CA, Umbreit, F, Bradley, HC. Studies of autolysis VII. Autolysis of brain. J Biol Chem. 1921;47:333–9.CrossRefGoogle Scholar
Romanic, AM, Madri, JA. Extracellular matrix-degrading enzymes in the nervous system. Brain Pathol. 1994;4:145–56.Google Scholar
Bednarek, N, Clement, Y, Lelievre, V, Olivier, P, Loron, G, Garnotel, R, et al. Ontogeny of MMPs and TIMPs in the murine neocortex. Pediatr Res. 2009;65(3):296300.CrossRefGoogle ScholarPubMed
Bernstein, HG, Kirschke, H, Kloss, P, Wiederanders, B, Rinne, A, Frohlich, J. Cathepsin B during early human brain development. Acta Histochem Suppl. 1990;39:473–5.Google Scholar
Mahajan, RG, Mandal, S, Mukherjee, KL. Cathepsin D and 2’,3’-cyclic nucleotide 3’-phosphohydrolase in developing human foetal brain. Int J Dev Neurosci. 1988;6(2):117–23.Google Scholar
Marks, N, Stern, F, Lajtha, A. Changes in proteolytic enzymes and proteins during maturation of the brain. Brain Res. 1975;86(2):307–22.Google Scholar
Benner, SA. Enzyme kinetics and molecular evolution. Chem Rev. 1989;89:789806.Google Scholar
Sheleg, SV, Lobello, JR, Hixon, H, Coons, SW, Lowry, D, Nedzved, MK. Stability and autolysis of cortical neurons in post-mortem adult rat brains. Int J Clin Exp Pathol. 2008;1(3):291–9.Google Scholar
Pakkenberg, H, Vraa-Jensen, J. Cytoplasmic basophilia in the nerve cells of the cerebral cortex. V. Autolysis of RNA and inhibition of glycolysis. Acta Neuropathol. 1964;3:211–6.Google Scholar
Smythies, JR, Inman, OR. The effect of post-mortem autolysis on synaptic terminals in cerebral cortex of dog. J Anat. 1960;94:241–3.Google Scholar
Ansari, KA, Rand, A, Hendrickson, H, Bentley, MD. Qualitative and quantitative studies on human myelin basic protein in situ with respect to time interval between death and autopsy. J Neuropathol Exp Neurol. 1976;35(2):180–90.CrossRefGoogle ScholarPubMed
Ansari, KA, Hendrickson, H, Sinha, AA, Rand, A. Myelin basic protein in frozen and unfrozen bovine brain: a study of autolytic changes in situ. J Neurochem. 1975;25(3):193–5.Google Scholar
Fishman, MA, Trotter, JL, Agrawal, HC. Selective loss of myelin proteins during autolysis. Neurochem Res. 1977;2(3):247–57.Google Scholar
Matthieu, JM, Koellreutter, B, Joyet, ML. Changes in CNS myelin proteins and glycoproteins after in situ autolysis. Brain Res Bull. 1977;2(1):1521.Google Scholar
Hukkanen, V, Roytta, M. Autolytic changes of human white matter: an electron microscopic and electrophoretic study. Exp Mol Pathol. 1987;46(1):31–9.Google Scholar
Sheedy, D, Harding, A, Say, M, Stevens, J, Kril, JJ. Histological assessment of cerebellar granule cell layer in postmortem brain; a useful marker of tissue integrity? Cell Tissue Bank. 2012;13(4):521–7.Google Scholar
Ogata, J, Yutani, C, Imakita, M, Ueda, H, Waki, R, Ogawa, M, et al. Autolysis of the granular layer of the cerebellar cortex in brain death. Acta Neuropathol. 1986;70(1):75–8.Google Scholar
Varlet, V, Smith, F, Giuliani, N, Egger, C, Rinaldi, A, Dominguez, A, et al. When gas analysis assists with postmortem imaging to diagnose causes of death. Forensic Sci Int. 2015;251:110.Google Scholar
MacKenzie, JM. Examining the decomposed brain. Am J Forensic Med Pathol. 2014;35(4):265–70.CrossRefGoogle ScholarPubMed
Matoba, K, Hyodoh, H, Murakami, M, Matoba, T, Saito, A, Feng, F, et al. Freezing preparation for macroscopic forensic investigation in putrefied brain. Leg Med (Tokyo). 2017;26:610.Google Scholar
Morris, JA, Harrison, LM, Partridge, SM. Practical and theoretical aspects of postmortem bacteriology. Curr Diagn Pathol. 2007;13(1):6574.Google Scholar
Metz, B, Kersten, GF, Hoogerhout, P, Brugghe, HF, Timmermans, HA, de Jong, A, et al. Identification of formaldehyde-induced modifications in proteins: reactions with model peptides. J Biol Chem. 2004;279(8):6235–43.CrossRefGoogle ScholarPubMed
Wadsworth, A, Pangborn, MC. The reaction of formaldehyde with amino acids. J Biol Chem. 1936;116(1):423–36.Google Scholar
Koga, D, Imoto, T, Yasuyuki, N, Shinichi, F, Yagishita, K. Analysis of the reaction between formaldehyde and amide. Agric Biol Chem. 1978;42(6):1147–56.Google Scholar
Start, RD, Layton, CM, Cross, SS, Smith, JH. Reassessment of the rate of fixative diffusion. J Clin Pathol. 1992;45(12):1120–1.Google Scholar
Helander, KG. Formaldehyde binding in brain and kidney: a kinetic study of fixation. J Histotechnol. 1999;22:317–8.CrossRefGoogle Scholar
Fox, CH, Johnson, FB, Whiting, J, Roller, PP. Formaldehyde fixation. J Histochem Cytochem. 1985;33(8):845–53.Google Scholar
Dawe, RJ, Bennett, DA, Schneider, JA, Vasireddi, SK, Arfanakis, K. Postmortem MRI of human brain hemispheres: T2 relaxation times during formaldehyde fixation. Magn Reson Med. 2009;61(4):810–8.Google Scholar
Wehrl, HF, Bezrukov, I, Wiehr, S, Lehnhoff, M, Fuchs, K, Mannheim, JG, et al. Assessment of murine brain tissue shrinkage caused by different histological fixatives using magnetic resonance and computed tomography imaging. Histol Histopathol. 2015;30(5):601–13.Google Scholar
Garman, RH. Artifacts in routinely immersion fixed nervous tissue. Toxicol Pathol. 1990; 18 (1 Pt 2): 149–53.Google Scholar
Stradleigh, TW, Greenberg, KP, Partida, GJ, Pham, A, Ishida, AT. Moniliform deformation of retinal ganglion cells by formaldehyde-based fixatives. J Comp Neurol. 2015;523(4):545–64.CrossRefGoogle ScholarPubMed
Jones, D. Reactions of aldehydes with unsaturated fatty acids during histological fixation. Histochem J. 1972;4(5):421–65.Google Scholar
Werner, M, Chott, A, Fabiano, A, Battifora, H. Effect of formalin tissue fixation and processing on immunohistochemistry. Am J Surg Pathol. 2000;24(7):1016–9.Google Scholar
Do, H, Dobrovic, A. Sequence artifacts in DNA from formalin-fixed tissues: causes and strategies for minimization. Clin Chem. 2015;61(1):6471.Google Scholar
Takayasu, T. Toxicological analyses of medications and chemicals in formalin-fixed tissues and formalin solutions: a review. J Anal Toxicol. 2013;37(9):615–21.Google Scholar
Helander, KG, Widehn, S, Helander, HF. Kinetic studies of glutaraldehyde binding in liver. Biotech Histochem. 2002;77(4):207–12.Google Scholar
Wells, GA, Wells, M. Neuropil vacuolation in brain: a reproducible histological processing artefact. J Comp Pathol. 1989;101(4):355–62.Google Scholar
Brenner, E. Human body preservation – old and new techniques. J Anat. 2014;224(3):316–44.Google Scholar
Mall, FP. On the transitory or artificial fissures of the human cerebrum. Am J Anat. 1903;2:333–9.Google Scholar
Streeter, GL. The cortex of the brain in the human embryo during the fourth month with special reference to the so-called “papillae of Retzius.”. Am J Anat. 1907;7:337–44.Google Scholar
Rickert, CH, Gros, O, Nolte, KW, Vennemann, M, Bajanowski, T, Brinkmann, B. Leptomeningeal neurons are a common finding in infants and are increased in sudden infant death syndrome. Acta Neuropathol. 2009;117(3):275–82.Google Scholar
Strachan, GI. The pathology of foetal maceration: a study of 24 cases. Br Med J. 1922;2(3211):80–2.Google Scholar
Pizzolato, P. Formalin pigment (acid hematin) and related pigments. Am J Med Technol. 1976;42(11):436–40.Google Scholar
Rahaman, P, Del Bigio, MR. Histology of brain trauma and hypoxia-ischemia. Acad Forensic Pathol. 2018;8(3):539–54.Google Scholar
Geddes, JF, Tasker, RC, Hackshaw, AK, Nickols, CD, Adams, GG, Whitwell, HL, et al. Dural haemorrhage in non-traumatic infant deaths: does it explain the bleeding in ‘shaken baby syndrome’? Neuropathol Appl Neurobiol. 2003;29(1):1422.CrossRefGoogle ScholarPubMed
Scharrer, E. On dark and light cells in the brain and in the liver. Anat Rec. 1938;72(1):5365.Google Scholar
Cammermeyer, J. Histochemical phospholipid reaction in ischemic neurons as an indication of exposure to postmortem trauma. Exp Neurol. 1975;49:252–71.Google Scholar
Zsombok, A, Toth, Z, Gallyas, F. Basophilia, acidophilia and argyrophilia of “dark” (compacted) neurons during their formation, recovery or death in an otherwise undamaged environment. J Neurosci Methods. 2005;142(1):145–52.Google Scholar
Brown, AW. Structural abnormalities in neurones. J Clin Pathol Suppl. 1977;11:155–69.Google Scholar
Cammermeyer, J. The post-mortem origin and mechanism of neuronal hyperchromatosis and nuclear pyknosis. Exp Neurol. 1960;2:379405.CrossRefGoogle ScholarPubMed
Cammermeyer, J. An evaluation of the significance of the “dark” neuron. Ergeb Anat Entwicklungsgesch. 1962;36:161.Google Scholar
Gallyas, F, Zoltay, G, Dames, W. Formation of “dark” (argyrophilic) neurons of various origin proceeds with a common mechanism of biophysical nature (a novel hypothesis). Acta Neuropathol. 1992;83:504–9.Google Scholar
Gallyas, F, Gasz, B, Szigeti, A, Mazlo, M. Pathological circumstances impair the ability of “dark” neurons to undergo spontaneous recovery. Brain Res. 2006;1110(1):211–20.CrossRefGoogle ScholarPubMed
Gallyas, F, Farkas, O, Mazlo, M. Gel-to-gel phase transition may occur in mammalian cells: Mechanism of formation of “dark” (compacted) neurons. Biol Cell. 2004;96(4):313–24.Google Scholar
Kherani, ZS, Auer, RN. Pharmacologic analysis of the mechanism of dark neuron production in cerebral cortex. Acta Neuropathol. 2008;116(4):447–52.Google Scholar
Ebels, EJ. Dark neurons. A significant artifact: the influence of the maturational state of neurons on the occurrence of the phenomenon. Acta Neuropathol. 1975;33(3):271–3.Google Scholar

References

Anonymous. Facts about Stillbirth: U.S. Department of Health & Human Services / Centers for Disease Control and Prevention; 2017 (updated October 2, 2017). Available from: www.cdc.gov/ncbddd/stillbirth/facts.html.Google Scholar
Joseph, KS, Kinniburgh, B, Hutcheon, JA, Mehrabadi, A, Dahlgren, L, Basso, M, et al. Rationalizing definitions and procedures for optimizing clinical care and public health in fetal death and stillbirth. Obstet Gynecol. 2015;125(4):784–8.Google Scholar
Froen, JF, Gordijn, SJ, Abdel-Aleem, H, Bergsjo, P, Betran, A, Duke, CW, et al. Making stillbirths count, making numbers talk – issues in data collection for stillbirths. BMC Pregnancy Childbirth. 2009;9:58.Google Scholar
Tavares Da Silva, F, Gonik, B, McMillan, M, Keech, C, Dellicour, S, Bhange, S, et al. Stillbirth: case definition and guidelines for data collection, analysis, and presentation of maternal immunization safety data. Vaccine. 2016;34(49):6057–68.Google Scholar
Cousens, S, Blencowe, H, Stanton, C, Chou, D, Ahmed, S, Steinhardt, L, et al. National, regional, and worldwide estimates of stillbirth rates in 2009 with trends since 1995: a systematic analysis. Lancet. 2011;377(9774):1319–30.CrossRefGoogle ScholarPubMed
Blencowe, H, Cousens, S, Jassir, FB, Say, L, Chou, D, Mathers, C, et al. National, regional, and worldwide estimates of stillbirth rates in 2015, with trends from 2000: a systematic analysis. Lancet Glob Health. 2016;4(2):e98e108.Google Scholar
Joseph, KS, Basso, M, Davies, C, Lee, L, Ellwood, D, Fell, DB, et al. Rationale and recommendations for improving definitions, registration requirements and procedures related to fetal death and stillbirth. BJOG. 2017;124(8):1153–7.Google Scholar
Paternoster, M, Perrino, M, Travaglino, A, Raffone, A, Saccone, G, Zullo, F, et al. Parameters for estimating the time of death at perinatal autopsy of stillborn fetuses: a systematic review. Int J Legal Med. 2019;133(2):483–9.Google Scholar
Rudolph, AM, Heyman, MA. Fetal and neonatal circulation and respiration. Annu Rev Physiol. 1974;36:187207.Google Scholar
Papp, JG. Autonomic responses and neurohumoral control in the human early antenatal heart. Basic Res Cardiol. 1988;83(1):29.CrossRefGoogle ScholarPubMed
Davis, ME, Potter, EL. Intrauterine respiration of the human fetus. J Am Med Assoc. 1946;131(15):1194–201.Google Scholar
Yoshizato, T, Koyanagi, T, Takashima, T, Satoh, S, Akazawa, K, Nakano, H. The relationship between age-related heart rate changes and developing brain function: a model of anencephalic human fetuses in utero. Early Hum Dev. 1994;36(2):101–12.CrossRefGoogle Scholar
Schneider, U, Frank, B, Fiedler, A, Kaehler, C, Hoyer, D, Liehr, M, et al. Human fetal heart rate variability-characteristics of autonomic regulation in the third trimester of gestation. J Perinat Med. 2008;36(5):433–41.Google Scholar
Kinney, HC, Broadbelt, KG, Haynes, RL, Rognum, IJ, Paterson, DS. The serotonergic anatomy of the developing human medulla oblongata: implications for pediatric disorders of homeostasis. J Chem Neuroanat. 2011;41(4):182–99.Google Scholar
Matturri, L, Minoli, I, Lavezzi, AM, Cappellini, A, Ramos, S, Rossi, L. Hypoplasia of medullary arcuate nucleus in unexpected late fetal death (stillborn infants): a pathologic study. Pediatrics. 2002;109(3):E43.Google Scholar
Lavezzi, AM, Ferrero, S, Matturri, L, Roncati, L, Pusiol, T. Developmental neuropathology of brainstem respiratory centers in unexplained stillbirth: What’s the meaning? Int J Dev Neurosci. 2016;53:99106.Google Scholar
Folkerth, RD, Zanoni, S, Andiman, SE, Billiards, SS. Neuronal cell death in the arcuate nucleus of the medulla oblongata in stillbirth. Int J Dev Neurosci. 2008;26(1):133–40.Google Scholar
Pongsatha, S, Tongsong, T. Outcomes of pregnancy termination by misoprostol at 14–32 weeks of gestation: a 10-year-experience. J Med Assoc Thai. 2011;94(8):897901.Google Scholar
Lanna, MM, Rustico, MA, Dell’Avanzo, M, Schena, V, Faiola, S, Consonni, D, et al. Bipolar cord coagulation for selective feticide in complicated monochorionic twin pregnancies: 118 consecutive cases at a single center. Ultrasound Obstet Gynecol. 2012;39(4):407–13.CrossRefGoogle Scholar
Sharvit, M, Klein, Z, Silber, M, Pomeranz, M, Agizim, R, Schonman, R, et al. Intra-amniotic digoxin for feticide between 21 and 30 weeks of gestation: a prospective study. BJOG. 2019;126(7):885–9.Google Scholar
Rayssiguier, R, Musizzano, Y, Perez, MJ, Mousty, E, Menard, A, Boulot, P, et al. Comparison between potassium chloride and lidocaine as lethal agents for feticide in termination of pregnancy. Ultrasound Obstet Gynecol. 2019;53(4):546–7.Google Scholar
Pinar, H, Koch, MA, Hawkins, H, Heim-Hall, J, Shehata, B, Thorsten, VR, et al. The Stillbirth Collaborative Research Network neuropathologic examination protocol. Am J Perinatol. 2011;28(10):793802.Google Scholar
Roncati, L, Piscioli, F, Pusiol, T, Lavezzi, AM. Neuropathological protocol for the study of unexplained stillbirth. Folia Neuropathol. 2017;55(2):7985.CrossRefGoogle Scholar
Shruthi, M, Gupta, N, Jana, M, Mridha, AR, Kumar, A, Agarwal, R, et al. Conventional vs virtual autopsy with postmortem MRI in phenotypic characterization of stillbirths and fetal malformations. Ultrasound Obstet Gynecol. 2018;51(2):236–45.CrossRefGoogle ScholarPubMed
Papadopoulou, I, Langan, D, Sebire, NJ, Jacques, TS, Arthurs, OJ. Diffusion-weighted post-mortem magnetic resonance imaging of the human fetal brain in situ. Eur J Radiol. 2016;85(6):1167–73.CrossRefGoogle ScholarPubMed
Cox, P, Marton, T. Pathological assessment of intrauterine growth restriction. Best Pract Res Clin Obstet Gynaecol. 2009;23(6):751–64.Google Scholar
Sims, ME, Turkel, SB, Halterman, G, Paul, RH. Brain injury and intrauterine death. Am J Obstet Gynecol. 1985;151(6):721–3.Google Scholar
Becher, JC, Bell, JE, Keeling, JW, Liston, WA, McIntosh, N, Wyatt, B. The Scottish Perinatal Neuropathology Study–clinicopathological correlation in stillbirths. BJOG. 2006;113(3):310–17.Google Scholar
Jacques, SM, Kupsky, WJ, Giorgadze, T, Qureshi, F. Fetal central nervous system injury in third trimester stillbirth: a clinicopathologic study of 63 cases. Pediatr Dev Pathol. 2012;15(5):375–84.Google Scholar
Burke, CJ, Tannenberg, AE. Intrapartum stillbirths in hospital unrelated to uteroplacental vascular insufficiency. Pediatr Dev Pathol. 2007;10(1):3540.Google Scholar
Sylvester, PE. Brain disease in stillborn infants and neonates. J Obstet Gynaecol Br Emp. 1960;67:219–27.Google Scholar
Grafe, MR, Kinney, HC. Neuropathology associated with stillbirth. Semin Perinatol. 2002;26(1):83–8.Google Scholar
Gaffney, G, Squier, MV, Johnson, A, Flavell, V, Sellers, S. Clinical associations of prenatal ischaemic white matter injury. Arch Dis Child Fetal Neonatal Ed. 1994;70(2):F101–6.Google Scholar
Burke, CJ, Tannenberg, AE. Prenatal brain damage and placental infarction – an autopsy study. Dev Med Child Neurol. 1995;37(6):555–62.Google Scholar
Korteweg, FJ, Erwich, JJ, Timmer, A, van der Meer, J, Ravise, JM, Veeger, NJ, et al. Evaluation of 1025 fetal deaths: proposed diagnostic workup. Am J Obstet Gynecol. 2012;206(1):53e1e12.Google Scholar
The Stillbirth Collaborative Research Network Writing Group. Causes of death among stillbirths. JAMA. 2011;306(22):2459–68.Google Scholar
Bell, JE, Gosden, CM. Central nervous system abnormalities – contrasting patterns in early and late pregnancy. Clin Genet. 1978;13(5):387–96.Google Scholar
Creasy, MR, Alberman, ED. Congenital malformations of the central nervous system in spontaneous abortions. J Med Genet. 1976;13(1):916.Google Scholar
Richards, ID. Fetal and infant mortality associated with congenital malformations. Br J Prev Soc Med. 1973;27(2):8590.Google Scholar
Jaquier, M, Klein, A, Boltshauser, E. Spontaneous pregnancy outcome after prenatal diagnosis of anencephaly. BJOG: an international journal of obstetrics and gynaecology. 2006;113(8):951–3.Google Scholar
O’Leary, C, Jacoby, P, D’Antoine, H, Bartu, A, Bower, C. Heavy prenatal alcohol exposure and increased risk of stillbirth. BJOG. 2012;119(8):945–52.Google Scholar
McClure, EM, Saleem, S, Pasha, O, Goldenberg, RL. Stillbirth in developing countries: a review of causes, risk factors and prevention strategies. J Matern Fetal Neonatal Med. 2009;22(3):183–90.Google Scholar
McClure, EM, Goldenberg, RL. Infection and stillbirth. Semin Fetal Neonatal Med. 2009;14(4):182–9.Google Scholar
Pinar, H, Koch, MA, Hawkins, H, Heim-Hall, J, Abramowsky, CR, Thorsten, VR, et al. The stillbirth collaborative research network postmortem examination protocol. Am J Perinatol. 2012;29(3):187202.Google Scholar
Corabian, P, Scott, NA, Lane, C, Guyon, G. Guidelines for investigating stillbirths: an update of a systematic review. J Obstet Gynaecol Can. 2007;29(7):560–7.Google Scholar
Faye-Petersen, OM, Heller, DS. Pathology of the stillborn infant for the general pathologist: part 2. Adv Anat Pathol. 2015;22(2):7193.Google Scholar
Pinar, H, Carpenter, M. Placenta and umbilical cord abnormalities seen with stillbirth. Clin Obstet Gynecol. 2010;53(3):656–72.Google Scholar
Leviton, A, Allred, EN, Kuban, KC, Hecht, JL, Onderdonk, AB, O’Shea, TM, et al. Microbiologic and histologic characteristics of the extremely preterm infant’s placenta predict white matter damage and later cerebral palsy. the ELGAN study. Pediatr Res. 2010;67(1):95101.Google Scholar
Chang, KT, Keating, S, Costa, S, Machin, G, Kingdom, J, Shannon, P. Third-trimester stillbirths: correlative neuropathology and placental pathology. Pediatr Dev Pathol. 2011;14(5):345–52.Google Scholar
Ernst, LM, Bit-Ivan, EN, Miller, ES, Minturn, L, Bigio, EH, Weese-Mayer, DE. Stillbirth: correlations between brain injury and placental pathology. Pediatr Dev Pathol. 2016;19(3):237–43.CrossRefGoogle ScholarPubMed
Cohen, MC, Peres, LC, Al-Adnani, M, Zapata-Vazquez, R. Increased number of fetal nucleated red blood cells in the placentas of term or near-term stillborn and neonates correlates with the presence of diffuse intradural hemorrhage in the perinatal period. Pediatr Dev Pathol. 2014;17(1):19.Google Scholar
Flenady, V, Koopmans, L, Middleton, P, Froen, JF, Smith, GC, Gibbons, K, et al. Major risk factors for stillbirth in high-income countries: a systematic review and meta-analysis. Lancet. 2011;377(9774):1331–40.Google Scholar
Pacora, P, Romero, R, Jaiman, S, Erez, O, Bhatti, G, Panaitescu, B, et al. Mechanisms of death in structurally normal stillbirths. J Perinat Med. 2019;47(2):222–40.Google Scholar
Man, J, Hutchinson, JC, Ashworth, M, Judge-Kronis, L, Levine, S, Sebire, NJ. Stillbirth and intrauterine fetal death: role of routine histological organ sampling to determine cause of death. Ultrasound Obstet Gynecol. 2016;48(5):596601.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×