We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
What’s the good of getting angry with a person? Some would argue that angry emotions like indignation or resentment are intrinsically good when they are an apt response. But many think this answer is not fully satisfactory. An increasing number of philosophers add that accusatory anger has value because of what it communicates to the blamee, and because of its downstream cultivating effects on the blamee.
Mediators and conflict resolution strategists share an interest with philosophers in the value of reactive attitudes for interpersonal communication, but prominent thinkers from those fields arrive at rather different verdicts about the effects of accusatory anger. On a more therapeutic approach to interpersonal conflict, angry accusation is commonly understood to obfuscate mutual understanding and to have bad downstream effects on the blamee.
Below, I discuss how the compassionate communication approach casts doubt on the purported valuable effects of angry accusation, and I provide empirical support for this worry. I argue that philosophers should reconsider their empirical assumptions about the human psychology of discord, and hypothesize that accusatory anger is unlikely to have the communicative and cultivating effects that it is purported to have. I conclude by highlighting further empirical and ethical questions this hypothesis generates.
The decay of a turbulent magnetic field is slower with helicity than without. Furthermore, the magnetic correlation length grows faster for a helical than a non-helical field. Both helical and non-helical decay laws involve conserved quantities: the mean magnetic helicity density and the Hosking integral. Using direct numerical simulations in a triply periodic domain, we show quantitatively that in the fractionally helical case the mean magnetic energy density and correlation length are approximately given by the maximum of the values for the purely helical and purely non-helical cases. The time of switchover from one to the other decay law can be obtained on dimensional grounds and is approximately given by $I_{H}^{1/2}I_{M}^{-3/2}$, where $I_{H}$ is the Hosking integral and $I_{M}$ is the mean magnetic helicity density. An earlier approach based on the decay time is found to agree with our new result and suggests that the Hosking integral exceeds naive estimates by the square of the same resistivity-dependent factor by which also the turbulent decay time exceeds the Alfvén time. In the presence of an applied magnetic field, the mean magnetic helicity density is known to be not conserved, and we show that then also the Hosking integral is not conserved.
Background: Infections lead to high mortality among patients on chronic dialysis; knowledge of multi-drug resistant infections is limited. The Centers for Disease Control and Prevention’s Emerging Infections Program (EIP) conducts laboratory- and population-based surveillance for carbapenem-resistant Enterobacterales (CRE) in 10 U.S. sites and carbapenem-resistant Acinetobacter baumannii (CRAB) in 9 U.S. sites. We investigated clinical characteristics, healthcare exposures, and outcomes of CRE and CRAB cases in persons on chronic dialysis from 2016-2021. Methods: Among EIP catchment-area residents on chronic dialysis, we defined a CRE case as the first isolation of Escherichia coli, Enterobacter cloacae complex, Klebsiella aerogenes (formerly Enterobacter aerogenes), Klebsiella oxytoca, Klebsiella pneumoniae, or Klebsiella variicola resistant to any carbapenem, from a normally sterile site or urine in a 30-day period. A CRAB case was defined as the first isolation of Acinetobacter baumannii complex resistant to any carbapenem (excluding ertapenem), from a normally sterile site or urine (or lower respiratory tract or wound since 2021) in a 30-day period. Medical records were reviewed. A case was considered colonized if the case culture had no associated infection type or colonization was documented in the medical record. Descriptive analyses, including analyses stratified by pathogen, were conducted. Results: Among 426 cases, 314 were CRE, and 112 were CRAB; most cases were male (235, 55.2%), Black (229, 53.8%), and 51-80 years old (320, 75.1%) (Table). An infection was associated with 363 (85.2%) case cultures; bloodstream infections (148; 40.8%), urinary tract infections (134; 36.9%), and pneumonia (17; 4.7%) were the most frequent. Overall, most cases had documented healthcare exposures (excluding outpatient dialysis) in the year before incident specimen collection, including: 366 (85.9%) hospitalizations, 235 (55.2%) surgeries, 209 (49.1%) long-term care facility stays, 54 (12.7%) long-term acute care facility stays. Additionally, 125 (29.3%) had an intensive care unit admission within the 7 days before incident specimen collection. Compared to CRE cases, a higher proportion of CRAB cases (a) had a long-term care facility stay (82/112 [73.2%] versus 127/314 [40.5%], P<.0001) or hospitalization (103/112 [92%] versus 263/314 [83.8%], P = .03) within the preceding year and (b) died within 30 days of incident specimen collection (40/112 [35.7%] versus 64/314 [20.4%], P = .001). Discussion: Among CRE and CRAB cases in persons on chronic dialysis, healthcare exposures were common, and mortality was high. Additional efforts to better describe the burden of these organisms and associated risk factors in the dialysis population are needed for tailoring infection prevention strategies to this vulnerable.
In 2020, an outbreak of Salmonella Hadar illnesses was linked to contact with non-commercial, privately owned (backyard) poultry including live chickens, turkeys, and ducks, resulting in 848 illnesses. From late 2020 to 2021, this Salmonella Hadar strain caused an outbreak that was linked to ground turkey consumption. Core genome multilocus sequence typing (cgMLST) analysis determined that the Salmonella Hadar isolates detected during the outbreak linked to backyard poultry and the outbreak linked to ground turkey were closely related genetically (within 0–16 alleles). Epidemiological and traceback investigations were unable to determine how Salmonella Hadar detected in backyard poultry and ground turkey were linked, despite this genetic relatedness. Enhanced molecular characterization methods, such as analysis of the pangenome of Salmonella isolates, might be necessary to understand the relationship between these two outbreaks. Similarly, enhanced data collection during outbreak investigations and further research could potentially aid in determining whether these transmission vehicles are truly linked by a common source and what reservoirs exist across the poultry industries that allow Salmonella Hadar to persist. Further work combining epidemiological data collection, more detailed traceback information, and genomic analysis tools will be important for monitoring and investigating future enteric disease outbreaks.
Computer vision and machine learning are rapidly advancing fields of study. For better or worse, these tools have already permeated our everyday lives and are used for everything from auto-tagging social media images to curating what we view in our news feed. In this chapter, we discuss historical and contemporary approaches used to study face recognition, detection, manipulation, and generation. We frame our discussion within the context of how this work has been applied to the study of older adults, but also acknowledge that more work is needed both within this domain as well as at its intersection with, e.g., race and gender. Throughout the chapter we review, and at the end offer links to (Table 11.1), a number of resources that researchers can start using now in their research. We also discuss ongoing concerns related to the ethics of artificial intelligence and to using this emerging technology responsibly.
In decaying magnetohydrodynamic (MHD) turbulence with a strong magnetic field, the spectral magnetic energy density is known to increase with time at small wavenumbers $k$, provided the spectrum at low $k$ is sufficiently steep. This process is called inverse cascading and occurs for an initial Batchelor spectrum, where the magnetic energy per linear wavenumber interval increases like $k^4$. For an initial Saffman spectrum that is proportional to $k^2$, however, inverse cascading has not been found in the past. We study here the case of an intermediate $k^3$ spectrum, which may be relevant for magnetogenesis in the early Universe during the electroweak epoch. This case is not well understood in view of the standard Taylor expansion of the magnetic energy spectrum for small $k$. Using high resolution MHD simulations, we show that, also in this case, there is inverse cascading with a strength just as expected from the conservation of the Hosking integral, which governs the decay of an initial Batchelor spectrum. Even for shallower $k^\alpha$ spectra with spectral index $\alpha >3/2$, our simulations suggest a spectral increase at small $k$ with time $t$ proportional to $t^{4\alpha /9-2/3}$. The critical spectral index of $\alpha =3/2$ is related to the slope of the spectral envelope in the Hosking phenomenology. Our simulations with $2048^3$ mesh points now suggest inverse cascading even for an initial Saffman spectrum.
Turbulence is typically not in equilibrium, i.e. mean quantities such as the mean energy and helicity are typically time-dependent. The effect of non-stationarity on the turbulent hydromagnetic dynamo process is studied here with the use of the two-scale direct-interaction approximation, which allows one to explicitly relate the mean turbulent Reynolds and Maxwell stresses and the mean electromotive force to the spectral characteristics of turbulence, such as the mean energy, as well as kinetic and cross-helicity. It is demonstrated that the non-equilibrium effects can enhance the dynamo process when the magnetohydrodynamic turbulence is both helical and cross-helical. This effect is based on the turbulent infinitesimal-impulse cross-response functions, which do not affect turbulent flows in equilibrium. The evolution and sources of the cross-helicity in magnetohydrodynamic turbulence are also discussed.
The Hosking integral, which characterizes magnetic helicity fluctuations in subvolumes, is known to govern the decay of magnetically dominated turbulence. Here, we show that, when the evolution of the magnetic field is controlled by the motion of electrons only, as in neutron star crusts, the decay of the magnetic field is still controlled by the Hosking integral, but now it has effectively different dimensions than in ordinary magnetohydrodynamic (MHD) turbulence. This causes the correlation length to increase with time $t$ like $t^{4/13}$ instead of $t^{4/9}$ in MHD. The magnetic energy density decreases like $t^{-10/13}$, which is slower than in MHD, where it decays like $t^{-10/9}$. These new analytic results agree with earlier numerical simulations for the non-helical Hall cascade.
The Saffman helicity invariant of Hosking & Schekochihin (Phys. Rev. X, vol. 11, issue 4, 2021, 041005), which we here call the Hosking integral, has emerged as an important quantity that may govern the decay properties of magnetically dominated non-helical turbulence. Using a range of different computational methods, we confirm that this quantity is indeed gauge invariant and nearly perfectly conserved in the limit of large Lundquist numbers. For direct numerical simulations with ordinary viscosity and magnetic diffusivity operators, we find that the solution develops in a nearly self-similar fashion. In a diagram quantifying the instantaneous decay coefficients of magnetic energy and integral scale, we find that the solution evolves along a line that is indeed suggestive of the governing role of the Hosking integral. The solution settles near a line in this diagram that is expected for a self-similar evolution of the magnetic energy spectrum. The solution will settle in a slightly different position when the magnetic diffusivity decreases with time, which would be compatible with the decay being governed by the reconnection time scale rather than the Alfvén time.
In May of 2018, PulseNet, the national molecular subtyping network for enteric pathogens, detected a multistate cluster of illnesses caused by an uncommon molecular subtype of Salmonella serovar Mbandaka. A case was defined as an illness in a person infected with the outbreak strain of Salmonella Mbandaka with illness onset on or after 3 March 2018 and before 1 September 2018. One-hundred thirty-six cases from 36 states were identified; 35 hospitalisations and no deaths were reported. Ill people ranged in age from <1 year to 95 years (median: 57 years). When standardised questionnaires did not generate a strong hypothesis, opened-ended interviews were performed. Sixty-three of 84 (75%) ultimately reported consuming or possibly consuming a specific sweetened puffed wheat cereal in the week before illness onset. Environmental sampling performed at the cereal manufacturing facility yielded the outbreak strain. The outbreak strain was also isolated from open cereal samples from ill people's homes and from a sealed retail sample. Due to these findings, the brand owner of the product issued a voluntary recall of the cereal on 14 June 2018. Additional investigation of the manufacturing facility identified persistent environmental contamination with Salmonella Mbandaka that was closely genetically related to other isolates in the outbreak. This investigation highlights the ability of Salmonella to survive in low-moisture environments, and the potential for prolonged outbreaks linked to products with long shelf lives and large distribution areas.
Clustering of inertial particles is important for many types of astrophysical and geophysical turbulence, but it has been studied predominately for incompressible flows. Here, we study compressible flows and compare clustering in both compressively (irrotationally) and vortically (solenoidally) forced turbulence. Vortically and compressively forced flows are driven stochastically either by solenoidal waves or by circular expansion waves, respectively. For compressively forced flows, the power spectrum of the density of inertial particles is a useful tool for displaying particle clustering relative to the fluid density enhancement. Power spectra are shown to be particularly sensitive for studying large-scale particle clustering, while conventional tools such as radial distribution functions are more suitable for studying small-scale clustering. Our primary finding is that particle clustering through shock interaction is particularly prominent in turbulence driven by spherical expansion waves. It manifests itself through a double-peaked distribution of spectral power as a function of Stokes number. The two peaks are associated with two distinct clustering mechanisms; shock interaction for smaller Stokes numbers and the centrifugal sling effect for larger values. The clustering of inertial particles is associated with the formation of caustics. Such caustics can only be captured in the Lagrangian description, which allows us to assess the relative importance of caustics in vortically and compressively forced turbulence. We show that the statistical noise resulting from the limited number of particles in the Lagrangian description can be removed from the particle power spectra, allowing us a more detailed comparison of the residual spectra. We focus on the Epstein drag law relevant for rarefied gases, but show that our findings apply also to the usual Stokes drag.
Poultry contact is a risk factor for zoonotic transmission of non-typhoidal Salmonella spp. Salmonella illness outbreaks in the United States are identified by PulseNet, the national laboratory network for enteric disease surveillance. During 2020, PulseNet observed a 25% decline in the number of Salmonella clinical isolates uploaded by state and local health departments. However, 1722 outbreak-associated Salmonella illnesses resulting from 12 Salmonella serotypes were linked to contact with privately owned poultry, an increase from all previous years. This report highlights the need for continued efforts to prevent backyard poultry-associated outbreaks of Salmonella as ownership increases in the United States.
This study aimed to identify an appropriate simple mathematical model to fit the number of coronavirus disease 2019 (COVID-19) cases at the national level for the early portion of the pandemic, before significant public health interventions could be enacted. The total number of cases for the COVID-19 epidemic over time in 28 countries was analysed and fit to several simple rate models. The resulting model parameters were used to extrapolate projections for more recent data. While the Gompertz growth model (mean R2 = 0.998) best fit the current data, uncertainties in the eventual case limit introduced significant model errors. However, the quadratic rate model (mean R2 = 0.992) fit the current data best for 25 (89%) countries as determined by R2 values of the remaining models. Projection to the future using the simple quadratic model accurately forecast the number of future total number of cases 50% of the time up to 10 days in advance. Extrapolation to the future with the simple exponential model significantly overpredicted the total number of future cases. These results demonstrate that accurate future predictions of the case load in a given country can be made using this very simple model.
On 17 March 2020, the President of the European Council, Charles Michel, and the President of the European Commission (hereinafter, Commission), Ursula von der Leyen, announced further European Union (EU) actions in response to the COVID-19 outbreak. Since the pandemic reached Europe, the EU has adopted a number of trade-related measures, including the issuance of guidelines for national border management, as well as export authorisation requirements. On 14 March 2020, the Commission adopted “Commission Implementing Regulation (EU) 2020/402 of 14 March 2020 making the exportation of certain products subject to the production of an export authorisation”, temporarily restricting exports of “personal protective equipment” to destinations outside of the EU. On 14 April 2020, the Commission announced that it would narrow down export authorisation requirements to protective masks only and extend the geographical and humanitarian exemptions. Governments around the world have been implementing trade-related measures in response to the COVID-19 pandemic, some trade restrictive, but a number of countries have also called for the elimination of export controls and restrictions on essential goods. As the greater implications of the COVID-19 pandemic on trade are still difficult to assess, the emergency measures taken by affected countries already require legal scrutiny. At the same time, it must be noted that, as noted above for the EU measures, measures around the world are subject to change dynamically in view of the evolution of the pandemic.
In recent years, several optimal dynamos have been discovered. They minimize the magnetic energy dissipation or, equivalently, maximize the growth rate at a fixed magnetic Reynolds number. In the optimal dynamo of Willis (Phys. Rev. Lett., vol. 109, 2012, 251101), we find mean-field dynamo action for planar averages. One component of the magnetic field grows exponentially while the other decays in an oscillatory fashion near onset. This behaviour is different from that of an $\unicode[STIX]{x1D6FC}^{2}$ dynamo, where the two non-vanishing components of the planar averages are coupled and have the same growth rate. For the Willis dynamo, we find that the mean field is excited by a negative turbulent magnetic diffusivity, which has a non-uniform spatial profile near onset. The temporal oscillations in the decaying component are caused by the corresponding component of the diffusivity tensor being complex when the mean field is decaying and, in this way, time dependent. The growing mean field can be modelled by a negative magnetic diffusivity combined with a positive magnetic hyperdiffusivity. In two other classes of optimal dynamos of Chen et al. (J. Fluid Mech., vol. 783, 2015, pp. 23–45), we find, to some extent, similar mean-field dynamo actions. When the magnetic boundary conditions are mixed, the two components of the planar averaged field grow at different rates when the dynamo is 15 % supercritical. When the mean magnetic field satisfies homogeneous boundary conditions (where the magnetic field is tangential to the boundary), mean-field dynamo action is found for one-dimensional averages, but not for planar averages. Despite having different spatial profiles, both dynamos show negative turbulent magnetic diffusivities. Our finding suggests that negative turbulent magnetic diffusivities may support a broader class of dynamos than previously thought, including these three optimal dynamos.
We discuss selected aspects regarding the magnetic field evolution of solar-type stars. Most of the stars with activity cycles are in the range where the normalized chromospheric Calcium emission increases linearly with the inverse Rossby number. For Rossby numbers below about a quarter of the solar value, the activity saturates and no cycles have been found. For Rossby numbers above the solar value, again no activity cycles have been found, but now the activity goes up again for a major fraction of the stars. Rapidly rotating stars show nonaxisymmetric large-scale magnetic fields, but there is disagreement between models and observations regarding the actual value of the Rossby number where this happens. We also discuss the prospects of detecting the sign of magnetic helicity using various linear polarization techniques both at the stellar surface using the parity-odd contribution to linear polarization and above the surface using Faraday rotation.
We develop a mean-field theory of compressibility effects in turbulent magnetohydrodynamics and passive scalar transport using the quasi-linear approximation and the spectral $\unicode[STIX]{x1D70F}$-approach. We find that compressibility decreases the $\unicode[STIX]{x1D6FC}$ effect and the turbulent magnetic diffusivity both at small and large magnetic Reynolds numbers, $Rm$. Similarly, compressibility decreases the turbulent diffusivity for passive scalars both at small and large Péclet numbers, $Pe$. On the other hand, compressibility does not affect the effective pumping velocity of the magnetic field for large $Rm$, but it decreases it for small $Rm$. Density stratification causes turbulent pumping of passive scalars, but it is found to become weaker with increasing compressibility. No such pumping effect exists for magnetic fields. However, compressibility results in a new passive scalar pumping effect from regions of low to high turbulent intensity both for small and large Péclet numbers. It can be interpreted as compressible turbophoresis of non-inertial particles and gaseous admixtures, while the classical turbophoresis effect exists only for inertial particles and causes them to be pumped to regions with lower turbulent intensity.
Recent advances in mean-field theory are reviewed and applications to the Sun, late-type stars, accretion disks, galaxies and the early Universe are discussed. We focus particularly on aspects of spatio-temporal non-locality, which provided some of the main new qualitative and quantitative insights that emerged from applying the test-field method to magnetic fields of different length and time scales. We also review the status of nonlinear quenching and the relation to magnetic helicity, which is an important observational diagnostic of modern solar dynamo theory. Both solar and some stellar dynamos seem to operate in an intermediate regime that has not yet been possible to model successfully. This regime is bracketed by antisolar-like differential rotation on one end and stellar activity cycles belonging to the superactive stars on the other. The difficulty in modelling this regime may be related to shortcomings in simulating solar/stellar convection. On galactic and extragalactic length scales, the observational constraints on dynamo theory are still less stringent and more uncertain, but recent advances both in theory and observations suggest that more conclusive comparisons may soon be possible also here. The possibility of inversely cascading magnetic helicity in the early Universe is particularly exciting in explaining the recently observed lower limits of magnetic fields on cosmological length scales. Such magnetic fields may be helical with the same sign of magnetic helicity throughout the entire Universe. This would be a manifestation of parity breaking.