We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Fine particulate matter (PM2·5) is a known risk factor for heart failure (HF), while plant-based dietary patterns may help reduce HF risk. This study examined the combined impact of PM2·5 exposure and a plant-based diet on HF incidence. A total of 190 092 participants from the UK Biobank were included in this study. HF cases were identified through linkage to the UK National Health Services register, with follow-up lasting until October 2022 in England, August 2022 in Scotland and May 2022 in Wales. Annual mean PM2·5 concentration was obtained using a land use regression model, while the healthful plant-based diet index (hPDI) was calculated using the Oxford WebQ tool based on two or more 24-hour dietary assessments of seventeen major food groups. Cox proportional hazard models assessed the associations of PM2·5 and hPDI with HF risk, and interactions were evaluated on additive and multiplicative scales. During a median of 13·4-year follow-up, 4351 HF cases were recorded. Participants in the highest PM2·5 tertile had a 23 % increased HF risk (hazard ratio: 1·23, 95 % CI: 1·14, 1·32) compared with those in the lowest tertile. Moderate or high hPDI was associated with reduced HF risk relative to low hPDI. The lowest HF risk was observed in individuals with high hPDI and low PM2·5 exposure, underscoring the protective role of a plant-based diet, particularly in areas with lower PM2·5 levels. A healthy plant-based diet may mitigate HF risk, especially in populations exposed to lower PM2·5 levels.
This study employs direct numerical simulations to examine the effects of varying backpressure conditions on the turbulent atomisation of impinging liquid jets. Using the incompressible Navier–Stokes equations, and a volume-of-fluid approach enhanced by adaptive mesh refinement and an isoface-based interface reconstruction algorithm, we analyse spray characteristics in the environments with ambient gas densities ranging from 1 to 40 times the atmospheric pressure under five different backpressure scenarios. We investigate the behaviour of turbulent jets, incorporate realistic orifice geometries and identify significant variations in the atomisation patterns depending on backpressure. Two distinct atomisation types emerge, namely jet-sheet-ligament-droplet at lower backpressures and jet-sheet-fragment-droplet at higher ones, alongside a transition from dilute to dense spray patterns. This variation affects the droplet size distribution and spray dynamics, with increased backpressure reducing the spray's spreading angle and breakup length, while increasing the droplet size variation. Furthermore, these conditions promote distributions that induce rapid, nonlinear wavy motion in liquid sheets. Topological analysis of the atomisation field using velocity-gradient tensor invariants reveals significant variations in topology volume fractions across different regions. Downstream, the droplet Sauter mean diameter increases and then stabilises, reflecting the continuous breakup and coalescence processes, notably under higher backpressures. This research underscores the substantial impact of backpressure on impinging-jet atomisation and provides essential insights for nozzle design to optimise droplet distributions.
This study aimed to explore the influence of laryngopharyngeal reflux on the features of vocal fold polyps and prognosis after office-based transnasal vocal fold polypectomy.
Methods
Eighty-four vocal fold polyp patients were retrospectively analysed. Patients were assigned to laryngopharyngeal reflux or non-laryngopharyngeal reflux groups using pre-operative Reflux Symptom Score-12.
Results
The laryngopharyngeal reflux group had significantly higher pre-operative Reflux Sign Assessment scores, worse lifestyle and worse eating habits than the non-laryngopharyngeal reflux group. After office-based transnasal vocal fold polypectomy, the Reflux Symptom Score-12 and Reflux Sign Assessment score decreased in both groups, although the laryngopharyngeal reflux group still had higher values. The non-laryngopharyngeal reflux group had better vocal fold morphology recovery than the laryngopharyngeal reflux group. Multivariate logistic regression analysis demonstrated that smoking and a higher pre-operative Reflux Symptom Score-12 score were independent risk factors for poor prognosis.
Conclusions
Laryngopharyngeal reflux is detrimental to vocal fold recovery of vocal fold polyp patients following office-based transnasal vocal fold polypectomy. For vocal fold polyp patients with laryngopharyngeal reflux, lifestyle and diet guidance should be focused.
We study the melting process of a solid under microgravity, driven solely by lateral vibrations that are perpendicular to the applied temperature gradient due to the absence of gravity-induced convection. Using direct numerical simulations with the phase-field method, we examine two-dimensional vibration-induced melting in a square cavity over four orders of magnitude of vibrational Rayleigh numbers, $10^5\le Ra_{{vib}}\le 10^9$. Our results show that as melting progresses, the flow structure transitions from a periodic-circulation regime with diffusion-dominated heat transfer to a columnar regime with vibroconvection. The mean height of the liquid–solid interface follows a power-law dependency with time, $\bar {\xi } \sim \tilde t^{1/(2-2\alpha )}$, where $\alpha = 0$ in the periodic-circulation regime and $\alpha = 1/2$ in the columnar regime. We further observe that within the columnar regime, the morphological evolution of the liquid–solid interface is influenced by the interaction of columnar thermal plumes in the central regions and the peripheral flow near the sidewalls. Specifically, we offer a comprehensive analysis of the plume merging behaviour, which is governed by the aspect ratio ($\bar {\xi }$) of the liquid layer and the intensity of vibration, quantified by the effective vibrational Rayleigh number $Ra_{vib}^{eff}$. We identify the relationship between the number of columnar plumes $K_m$ and $Ra_{vib}^{eff}$, finding that $K_m \sim \bar {\xi }^{-1} (Ra_{vib}^{eff})^{\gamma }$ with the fitting scaling exponent $\gamma = 0.150 \pm 0.025$. We subsequently quantify the characteristics of the interface roughness amplitude evolution in microgravity vibroconvection. Our results indicate that the roughness amplitude exhibits a power-law dependence on the mean height of the liquid layer. Drawing from the Stefan boundary condition, we theoretically deduce this dependence under the assumption of a non-uniform heat flux distribution at the interface, where the theory is corroborated by our numerical simulations.
MicroRNAs (miRNAs) are endogenous, non-coding RNAs, which are functional in a variety of biological processes through post-transcriptional regulation of gene expression. However, the role of miRNAs in the interaction between Bacillus thuringiensis and insects remains unclear. In this study, small RNA libraries were constructed for B. thuringiensis-infected (Bt) and uninfected (CK) Spodoptera exigua larvae (treated with double-distilled water) using Illumina sequencing. Utilising the miRDeep2 and Randfold, a total of 233 known and 726 novel miRNAs were identified, among which 16 up-regulated and 34 down-regulated differentially expressed (DE) miRNAs were identified compared to the CK. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that potential target genes of DE miRNAs were associated with ABC transporters, fatty acid metabolism and MAPK signalling pathway which are related to the development, reproduction and immunity. Moreover, two miRNA core genes, SeDicer1 and SeAgo1 were identified. The phylogenetic tree showed that lepidopteran Dicer1 clustered into one branch, with SeDicer1 in the position closest to Spodoptera litura Dicer1. A similar phylogenetic relationship was observed in the Ago1 protein. Expression of SeDicer1 increased at 72 h post infection (hpi) with B. thuringiensis; however, expression of SeDicer1 and SeAgo1 decreased at 96 hpi. The RNAi results showed that the knockdown of SeDicer1 directly caused the down-regulation of miRNAs and promoted the mortality of S. exigua infected by B. thuringiensis GS57. In conclusion, our study is crucial to understand the relationship between miRNAs and various biological processes caused by B. thuringiensis infection, and develop an integrated pest management strategy for S. exigua via miRNAs.
We report the unified constitutive law of vibroconvective turbulence in microgravity, i.e. $Nu \sim a^{-1} Re_{os}^\beta$ where the Nusselt number $Nu$ measures the global heat transport, $a$ is the dimensionless vibration amplitude, $Re_{os}$ is the oscillational Reynolds number and $\beta$ is the universal exponent. We find that the dynamics of boundary layers plays an essential role in vibroconvective heat transport and the $Nu$-scaling exponent $\beta$ is determined by the competition between the thermal boundary layer (TBL) and vibration-induced oscillating boundary layer (OBL). Then a physical model is proposed to explain the change of scaling exponent from $\beta =2$ in the TBL-dominant regime to $\beta = 4/3$ in the OBL-dominant regime. Our finding elucidates the emergence of universal constitutive laws in vibroconvective turbulence, and opens up a new avenue for generating a controllable effective heat transport under microgravity or even microfluidic environment in which the gravity effect is nearly absent.
Motivated by the work initiated by Chapman [‘Determinants of Legendre symbol matrices’, Acta Arith.115 (2004), 231–244], we investigate some arithmetical properties of generalised Legendre matrices over finite fields. For example, letting $a_1,\ldots ,a_{(q-1)/2}$ be all the nonzero squares in the finite field $\mathbb {F}_q$ containing q elements with $2\nmid q$, we give the explicit value of the determinant $D_{(q-1)/2}=\det [(a_i+a_j)^{(q-3)/2}]_{1\le i,j\le (q-1)/2}$. In particular, if $q=p$ is a prime greater than $3$, then
This paper retrospectively analysed the prevalence of macrolide-resistant Mycoplasma pneumoniae (MRMP) in some parts of China. Between January 2013 and December 2019, we collected 4,145 respiratory samples, including pharyngeal swabs and alveolar lavage fluid. The highest PCR-positive rate of M. pneumoniae was 74.5% in Beijing, the highest resistance rate was 100% in Shanghai, and Gansu was the lowest with 20%. The highest PCR-positive rate of M. pneumoniae was 74.5% in 2013, and the highest MRMP was 97.4% in 2019; the PCR-positive rate of M. pneumoniae for adults in Beijing was 17.9% and the MRMP was 10.48%. Among the children diagnosed with community-acquired pneumonia (CAP), the PCR-positive and macrolide-resistant rates of M. pneumoniae were both higher in the severe ones. A2063G in domain V of 23S rRNA was the major macrolide-resistant mutation, accounting for more than 90%. The MIC values of all MRMP to erythromycin and azithromycin were ≥ 64 μg/ml, and the MICs of tetracycline and levofloxacin were ≤ 0.5 μg/ml and ≤ 1 μg/ml, respectively. The macrolide resistance varied in different regions and years. Among inpatients, the macrolide-resistant rate was higher in severe pneumonia. A2063G was the common mutation, and we found no resistance to tetracycline and levofloxacin.
This study investigates the effect of vibration on the flow structure transitions in thermal vibrational convection (TVC) systems, which occur when a fluid layer with a temperature gradient is excited by vibration. Direct numerical simulation (DNS) of TVC in a two-dimensional enclosed square box is performed over a range of dimensionless vibration amplitudes $0.001 \le a \le 0.3$ and angular frequencies $10^{2} \le \omega \le 10^{7}$, with a fixed Prandtl number of 4.38. The flow visualisation shows the transition behaviour of flow structure upon the varying frequency, characterising three distinct regimes, which are the periodic-circulation regime, columnar regime and columnar-broken regime. Different statistical properties are distinguished from the temperature and velocity fluctuations at the boundary layer and mid-height. Upon transition into the columnar regime, columnar thermal coherent structures are formed, in contrast to the periodic oscillating circulation. These columns are contributed by the merging of thermal plumes near the boundary layer, and the resultant thermal updrafts remain at almost fixed lateral position, leading to a decrease in fluctuations. We further find that the critical point of this transition can be described nicely by the vibrational Rayleigh number ${{Ra}}_{vib}$. As the frequency continues to increase, entering the so-called columnar-broken regime, the columnar structures are broken, and eventually the flow state becomes a large-scale circulation (LSC), characterised by a sudden increase in fluctuations. Finally, a phase diagram is constructed to summarise the flow structure transition over a wide range of vibration amplitude and frequency parameters.
To alleviate the growth inhibition, and intestinal damage of Chinese mitten crab (Eriocheir sinensis) induced by low fishmeal diets (LF), an 8-week feeding trial was conducted to evaluate the addition of dietary soybean-derived bioactive peptides (SBP) in LF diets on the regulation of growth, digestion and intestinal health. The crabs were fed isonitrogenous and isoenergetic conventional diet and LF diets (10 % fishmeal replaced by soybean meal, LF) supplemented with 0, 1 %, 2 %, 4 % and 6 % SBP, respectively. The results showed that LF diet inhibited growth while inclusion of SBP quadratically remitted the growth inhibition induced by LF. For digestive function, increasing addition level of SBP quadratically improved the α-amylase and trypsin activities. For antioxidant function, LF group significantly increased the malondialdehyde content, while SBP linearly decreased the malondialdehyde level and cubically increased the anti-superoxide anion activity and total antioxidant capacity level. For intestinal health, the peritrophic membrane (PM) almost completely separated from the inner wall of the intestinal lumen, the epithelial cells reduced, the muscularis became thinner and the apoptotic signals increased in LF group; with SBP addition, the intestinal morphology was improved, with the PM adhering to the inner wall of the intestinal lumen, an increase in the number of epithelial cells and an increase in the thickness of the muscularis. Additionally, there was a decrease in apoptotic signals. Dietary SBP also increased the expression of PT and Crustin1 quadratically and decreased the expression of ALF1 linearly, ALF3 and ILF2 quadratically.
Nonlinear compression has become an obligatory technique along with the development of ultrafast lasers in generating ultrashort pulses with narrow pulse widths and high peak power. In particular, techniques of nonlinear compression have experienced a rapid progress as ytterbium (Yb)-doped lasers with pulse widths in the range from hundreds of femtoseconds to a few picoseconds have become mainstream laser tools for both scientific and industrial applications. Here, we report a simple and stable nonlinear pulse compression technique with high efficiency through cascaded filamentation in air followed by dispersion compensation. Pulses at a center wavelength of 1040 nm with millijoule pulse energy and 160 fs pulse width from a high-power Yb:CaAlGdO4 regenerative amplifier are compressed to 32 fs, with only 2.4% loss from the filamentation process. The compressed pulse has a stable output power with a root-mean-square variation of 0.2% over 1 hour.
A high-power all polarization-maintaining (PM) chirped pulse amplification (CPA) system operating in the 2.0 μm range is experimentally demonstrated. Large mode area (LMA) thulium-doped fiber (TDF) with a core/cladding diameter of 25/400 μm is employed to construct the main amplifier. Through dedicated coiling and cooling of the LMA-TDF to manage the loss of the higher order mode and thermal effect, a maximum average power of 314 W with a slope efficiency of 52% and polarization extinction ratio of 20 dB is realized. The pulse duration is compressed to 283 fs with a grating pair, corresponding to a calculated peak power of 10.8 MW, considering the compression efficiency of 88% and the estimated Strehl ratio of 89%. Moreover, through characterizing the noise properties of the laser, an integrated relative intensity noise of 0.11% at 100 Hz−1 MHz is obtained at the maximum output power, whereas the laser timing jitter is degraded by the final amplifier from 318 to 410 fs at an integration frequency of 5 kHz to 1 MHz, owing to the self-phase modulation effect-induced spectrum broadening. The root-mean-square of long-term power fluctuation is tested to be 0.6%, verifying the good stability of the laser operation. To the best of our knowledge, this is the highest average power of an ultrafast laser realized from an all-PM-fiber TDF-CPA system ever reported.
Straightplasma channels are widely used to guide relativistic intense laser pulses over several Rayleigh lengths for laser wakefield acceleration. Recently, a curved plasma channel with gradually varied curvature was suggested to guide a fresh intense laser pulse and merge it into a straight channel for staged wakefield acceleration [Phys. Rev. Lett. 120, 154801 (2018)]. In this work, we report the generation of such a curved plasma channel from a discharged capillary. Both longitudinal and transverse density distributions of the plasma inside the channel were diagnosed by analyzing the discharging spectroscopy. Effects of the gas-filling mode, back pressure and discharging voltage on the plasma density distribution inside the specially designed capillary are studied. Experiments show that a longitudinally uniform and transversely parabolic plasma channel with a maximum channel depth of 47.5 μm and length of 3 cm can be produced, which is temporally stable enough for laser guiding. Using such a plasma channel, a laser pulse with duration of 30 fs has been successfully guided along the channel with the propagation direction bent by 10.4°.
The physics of leading-edge vortex (LEV) stability on flapping wings and autorotating seeds is still underexplored due to its complex dependency on Reynolds number ($\textit {Re}$), aspect ratio (AR) and Rossby number (Ro). Our previous study observed an interesting dual-stage vortex tilting between radial and tangential components in a stable LEV. Here, the establishment of this novel mechanism, i.e. dual-stage radial–tangential vortex tilting (DS-VT$_{r-t}$), is investigated and explained in detail using numerical methods. The contributions of other tangential vorticity transport terms are also considered. It is shown that the stable LEV region coincides mostly with a constant ratio of tangential and radial vorticity components. The DS-VT$_{r-t}$ mechanism functions as a negative feedback loop for radial vorticity, thereby contributing to the LEV stability at $\textit {Re} > 500$. Specifically, this mechanism involves a dual-stage vortex tilting starting from negative radial component to positive tangential component, and then back to positive radial component, thereby leading to a $180^{\circ }$ reversal of radial vorticity. The radial Coriolis acceleration can also assist the DS-VT$_{r-t}$ by enhancing the tangential vorticity component and the reduction of radial vorticity inside the LEV via the second stage of DS-VT$_{r-t}$. The effects of $\textit {Re}$, AR and Ro on the constant radial–tangential vorticity ratio and DS-VT$_{r-t}$ are then analysed. The coupled effects of AR and Ro are separated into rotational effects and those of tip and root vortices. Our results establish an evident relationship among the LEV stability, the constant radial–tangential vorticity ratio, and the DS-VT$_{r-t}$, thereby deepening the understanding in the vorticity transport of LEV formation and stability.
The Wood Snipe Gallinago nemoricola is one of the least known shorebird species, and its habitat associations are very poorly understood. Here we provide the first assessment of the habitat use of the Wood Snipe during the breeding season. Between May and July 2021 at a 4-km2 alpine meadow in Sichuan province, China, we conducted population surveys and behavioural observations to identify sites where breeding Wood Snipe occurred and foraged. We quantified the habitat characteristics and food resource availability of these sites and compared them with randomly selected “background” sites. Comparison between 34 occurrence sites and 25 background sites indicated that during the breeding season, Wood Snipes are not distributed evenly across alpine meadow habitats, but preferred habitats in the lower part (3,378–3,624 m) of the alpine meadow with intermediate levels of soil moisture. In addition, comparison between 17 foraging sites and 24 background sites showed that the Wood Snipe tended to forage at sites with higher soil fauna abundance. We found weak evidence for denser vegetation cover at its height and no evidence for other biotic habitat variables such as vegetation composition or other abiotic habitat variables such as slope, soil penetrability, or disturbance level to influence Wood Snipe habitat associations. Our results suggest that the actual distribution range of the Wood Snipe during the breeding season may be smaller than expected from the extent of apparently suitable habitat. We advise caution in evaluating the potential habitat availability and distribution of the Wood Snipe, and call for further research to better understand the ecology of this rare species to inform its conservation.
An all-fiber high-power linearly polarized chirped pulse amplification (CPA) system is experimentally demonstrated. Through stretching the pulse duration to a full width of approximately 2 ns with two cascaded chirped fiber Bragg gratings (CFBGs), a maximum average output power of 612 W is achieved from a high-gain Yb-doped fiber that has a core diameter of 20 μm with a slope efficiency of approximately 68% at the repetition rate of 80 MHz. At the maximum output power, the polarization degree is 92.5% and the M2 factor of the output beam quality is approximately 1.29; the slight performance degradations are attributed to the thermal effects in the main amplifier. By optimizing the B-integral of the amplifier and finely adjusting the higher-order dispersion of one of the CFBGs, the pulse width is compressed to 863 fs at the highest power with a compression efficiency of 72%, corresponding to a maximum compressed average power of 440.6 W, single pulse energy of 5.5 μJ and peak power of about 4.67 MW. To the best of our knowledge, this is the highest average power of a femtosecond laser directly generated from an all-fiber linearly polarized CPA system.
Large scale optical and infrared surveys have revealed numbers of accretion-derived stellar features within the halo of the Galaxy. These coherent tail-like features are produced by encounters with satellite dwarf galaxies. We conducted an SiO and H2O maser survey towards O-rich AGBs towards the orbital plane of the Sgr Stellar Stream from 2016. Up to now, maser emissions have been found from 60 sources, most of which are detected for the first time. However, their distances and kinematics suggest they are still disk stars.
We report that vertical vibration with small amplitude and high frequency can tame convective heat transport in Rayleigh–Bénard convection in a turbulent regime. When vertical vibration is applied, a dynamically averaged ‘anti-gravity’ results that stabilizes the thermal boundary layer and inhibits the eruption of thermal plumes. This eventually leads to the attenuation of the intensity of large-scale mean flow and a significant suppression of turbulent heat transport. Accounting for both the thermally led buoyancy and the vibration-induced anti-gravitational effects, we propose an effective Rayleigh number that helps to extend the Grossmann–Lohse theory to thermal vibrational turbulence. The prediction of the reduction on both the Nusselt and Reynolds numbers obtained by the extended model is found to agree well with the numerical data. In addition, vibrational influences on the mean flow structure and the temporal evolution of Nusselt and Reynolds numbers are investigated. The non-uniform characteristic of vibration-induced ‘anti-gravity’ is discussed. The present findings provide a powerful basis for studying thermal vibrational turbulence and put forward a novel strategy for actively controlling thermal turbulence.