We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The 1994 discovery of Shor's quantum algorithm for integer factorization—an important practical problem in the area of cryptography—demonstrated quantum computing's potential for real-world impact. Since then, researchers have worked intensively to expand the list of practical problems that quantum algorithms can solve effectively. This book surveys the fruits of this effort, covering proposed quantum algorithms for concrete problems in many application areas, including quantum chemistry, optimization, finance, and machine learning. For each quantum algorithm considered, the book clearly states the problem being solved and the full computational complexity of the procedure, making sure to account for the contribution from all the underlying primitive ingredients. Separately, the book provides a detailed, independent summary of the most common algorithmic primitives. It has a modular, encyclopedic format to facilitate navigation of the material and to provide a quick reference for designers of quantum algorithms and quantum computing researchers.
This work presents visual morphological and dynamical classifications for 637 spatially resolved galaxies, most of which are at intermediate redshift (z ∼ 0.3), in the Middle-Ages Galaxy Properties with Integral field spectroscopy (MAGPI) Survey. For each galaxy, we obtain a minimum of 11 independent visual classifications by knowledgeable classifiers. We use an extension of the standard Dawid-Skene Bayesian model introducing classifier-specific confidence parameters and galaxy-specific difficulty parameters to quantify classifier confidence and infer reliable statistical confidence estimates. Selecting sub-samples of 86 bright (r < 20 mag) high-confidence (> 0.98) morphological classifications at redshifts (0.2 ≤ z ≤ 0.4), we confirm the full range of morphological types is represented in MAGPI as intended in the survey design. Similarly, with a sub-sample of 82 bright high-confidence stellar kinematic classifications, we find that the rotating and non-rotating galaxies seen at low redshift are already in place at intermediate redshifts. We do not find evidence that the kinematic morphology-density relation seen at z ∼ 0 is established at z ∼ 0.3. We suggest that galaxies without obvious stellar rotation are dynamically pre-processed sometime before z ∼ 0.3 within lower mass groups before joining denser environments.
River terraces serve as excellent indicators of the landform evolution of the Guizhou Plateau. This paper presents the results of terrace investigation and optically stimulated luminescence (OSL) dating focused on five sections along the Liujiang River of the southeastern Guizhou Plateau. The OSL ages of the terraces range from 0.21 ± 0.02 to 16.0 ± 1.4 ka for the first terraces (T1) and from 3.5 ± 0.3 to 26.5 ± 3.3 ka for the second terraces (T2), which are much younger than those of other basins on the Guizhou Plateau. These ages, considered in tandem with the results of previous investigations, enhance our understanding of the fluvial landform evolution of the Guizhou Plateau since the Late Pleistocene. On the Guizhou Plateau platform, terraces are considered to be the response of river evolution to tectonic uplift, indicating a relatively slow geomorphic process. In the slope zone, climate change has had a significant impact on the fluvial landform processes, driving the formation of the younger terraces along the Liujiang River. In the platform–slope transition zone, the evolution of terraces was driven by both tectonic uplift and climate change, where the landform processes were dominated by strong headward erosion.
While the cross-sectional relationship between internet gaming disorder (IGD) and depression is well-established, whether IGD predicts future depression remains debated, and the underlying mechanisms are not fully understood. This large-scale, three-wave longitudinal study aimed to clarify the predictive role of IGD in depression and explore the mediating effects of resilience and sleep distress.
Methods
A cohort of 41,215 middle school students from Zigong City was assessed at three time points: November 2021 (T1), November 2022 (T2) and November 2023 (T3). IGD, depression, sleep distress and resilience were measured using standardized questionnaires. Multiple logistic regression was used to examine the associations between baseline IGD and both concurrent and subsequent depression. Mediation analyses were conducted with T1 IGD as the predictor, T2 sleep distress and resilience as serial mediators and T3 depression as the outcome. To test the robustness of the findings, a series of sensitivity analyses were performed. Additionally, sex differences in the mediation pathways were explored.
Results
(1) IGD was independently associated with depression at baseline (T1: adjusted odds ratio [AOR] = 4.76, 95% confidence interval [CI]: 3.79–5.98, p < 0.001), 1 year later (T2: AOR = 1.42, 95% CI: 1.16–1.74, p < 0.001) and 2 years later (T3: AOR = 1.24, 95% CI: 1.01–1.53, p = 0.042); (2) A serial multiple mediation effect of sleep distress and resilience was identified in the relationship between IGD and depression. The mediation ratio was 60.7% in the unadjusted model and 33.3% in the fully adjusted model, accounting for baseline depression, sleep distress, resilience and other covariates. The robustness of our findings was supported by various sensitivity analyses; and (3) Sex differences were observed in the mediating roles of sleep distress and resilience, with the mediation ratio being higher in boys compared to girls.
Conclusions
IGD is a significant predictor of depression in adolescents, with resilience and sleep distress serving as key mediators. Early identification and targeted interventions for IGD may help prevent depression. Intervention strategies should prioritize enhancing resilience and improving sleep quality, particularly among boys at risk.
Advances in artificial intelligence (AI) have great potential to help address societal challenges that are both collective in nature and present at national or transnational scale. Pressing challenges in healthcare, finance, infrastructure and sustainability, for instance, might all be productively addressed by leveraging and amplifying AI for national-scale collective intelligence. The development and deployment of this kind of AI faces distinctive challenges, both technical and socio-technical. Here, a research strategy for mobilising inter-disciplinary research to address these challenges is detailed and some of the key issues that must be faced are outlined.
The axisymmetric nozzle mechanism is the core part for thrust vectoring of aero engine, which contains complex rigid-flexible coupled multibody system with joints clearance and significantly reduces the efficiency in modeling and calculation, therefore the kinematics and dynamics analysis of axisymmetric vectoring nozzle mechanism based on deep neural network is proposed. The deep neural network model of the axisymmetric vector nozzle is established according to the limited training data from the physical dynamic model and then used to predict the kinematics and dynamics response of the axisymmetric vector nozzle. This study analyses the effects of joint clearance on the kinematics and dynamics of the axisymmetric vector nozzle mechanism by a data-driven model. It is found that the angular acceleration of the expanding blade and the driving force are mostly affected by joint clearance followed by the angle, angular velocity and position of the expanding blade. Larger joint clearance results in more pronounced fluctuations of the dynamic response of the mechanism, which is due to the greater relative velocity and contact force between the bushing and the pin. Since axisymmetric vector nozzles are highly complex nonlinear systems, traditional numerical methods of dynamics are extremely time-consuming. Our work indicates that the data-driven approach greatly reduces the computational cost while maintaining accuracy, and can be used for rapid evaluation and iterative computation of complex multibody dynamics of engine nozzle mechanism.
Background: Cerebral venous thrombosis (CVT) is a rare cause of stroke, with 10–15% of patients experiencing dependence or death. The role of endovascular therapy (EVT) in the management of CVT remains controversial and practice patterns are not well-known. Methods: We distributed a comprehensive 53-question survey to neurologists, neuro-interventionalists, neurosurgeons and other relevant clinicians globally from May 2023 to October 2023. The survey asked about practice patterns and perspectives on EVT for CVT and assessed opinions regarding future clinical trials. Results: The overall response rate was 31% (863 respondents from 2744 invited participants) across 61 countries. A majority (74%) supported use of EVT for certain CVT cases. Key considerations for EVT included worsening level of consciousness (86%) and other clinical deficits (76%). Mechanical thrombectomy with aspiration (22%) and stent retriever (19%) were the most utilized techniques, with regional variations. Post-procedurally, low molecular weight heparin was the predominant anticoagulant administered (40%), although North American respondents favored unfractionated heparin. Most respondents supported future trials of EVT (90%). Conclusions: Our survey reveals significant heterogeneity in approaches to EVT for CVT, highlighting the necessity for adequately powered clinical trials to guide standard-of-care practices.
Ultrafast optical probing is a widely used method of underdense plasma diagnostic. In relativistic plasma, the motion blur limits spatial resolution in the direction of motion. For many high-power lasers the initial pulse duration of 30–50 fs results in a 10–15 μm motion blur, which can be reduced by probe pulse post-compression. Here we used the compression after compressor approach [Phys.-Usp. 62, 1096 (2019); JINST 17 P07035 (2022)], where spectral broadening is performed in thin optical plates and is followed by reflections from negative-dispersion mirrors. Our initially low-intensity probe beam was down-collimated for a more efficient spectral broadening and higher probe-to-self-emission intensity ratio. The setup is compact, fits in a vacuum chamber and can be implemented within a short experimental time slot. We proved that the compressed pulse retained the high quality necessary for plasma probing.
Mendelian randomization (MR) leverages genetic information to examine the causal relationship between phenotypes allowing for the presence of unmeasured confounders. MR has been widely applied to unresolved questions in epidemiology, making use of summary statistics from genome-wide association studies on an increasing number of human traits. However, an understanding of essential concepts is necessary for the appropriate application and interpretation of MR. This review aims to provide a non-technical overview of MR and demonstrate its relevance to psychiatric research. We begin with the origins of MR and the reasons for its recent expansion, followed by an overview of its statistical methodology. We then describe the limitations of MR, and how these are being addressed by recent methodological advances. We showcase the practical use of MR in psychiatry through three illustrative examples – the connection between cannabis use and psychosis, the link between intelligence and schizophrenia, and the search for modifiable risk factors for depression. The review concludes with a discussion of the prospects of MR, focusing on the integration of multi-omics data and its extension to delineating complex causal networks.
This study aimed to understand the population and contact tracer uptake of the quick response (QR)-code-based function of the New Zealand COVID Tracer App (NZCTA) used for digital contact tracing (DCT). We used a retrospective cohort of all COVID-19 cases between August 2020 and February 2022. Cases of Asian and other ethnicities were 2.6 times (adjusted relative risk (aRR) 2.58, 99 per cent confidence interval (95% CI) 2.18, 3.05) and 1.8 times (aRR 1.81, 95% CI 1.58, 2.06) more likely than Māori cases to generate a token during the Delta period, and this persisted during the Omicron period. Contact tracing organization also influenced location token generation with cases handled by National Case Investigation Service (NCIS) staff being 2.03 (95% CI 1.79, 2.30) times more likely to generate a token than cases managed by clinical staff at local Public Health Units (PHUs). Public uptake and participation in the location-based system independent of contact tracer uptake were estimated at 45%. The positive predictive value (PPV) of the QR code system was estimated to be close to nil for detecting close contacts but close to 100% for detecting casual contacts. Our paper shows that the QR-code-based function of the NZCTA likely made a negligible impact on the COVID-19 response in New Zealand (NZ) in relation to isolating potential close contacts of cases but likely was effective at identifying and notifying casual contacts.
Enteric bacterial infections are common among people who travel internationally. During 2017–2020, the Centers for Disease Control and Prevention investigated 41 multistate outbreaks of nontyphoidal Salmonella and Shiga toxin-producing Escherichia coli linked to international travel. Resistance to one or more antimicrobial agents was detected in at least 10% of isolates in 16 of 30 (53%) nontyphoidal Salmonella outbreaks and 8 of 11 (73%) Shiga toxin-producing E. coli outbreaks evaluated by the National Antimicrobial Resistance Monitoring System. At least 10% of the isolates in 14 nontyphoidal Salmonella outbreaks conferred resistance to one or more of the clinically significant antimicrobials used in human medicine. This report describes the epidemiology and antimicrobial resistance patterns of these travel-associated multistate outbreaks. Investigating illnesses among returned travellers and collaboration with international partners could result in the implementation of public health interventions to improve hygiene practices and food safety standards and to prevent illness and spread of multidrug-resistant organisms domestically and internationally.
Cholestasis characterised by conjugated hyperbilirubinemia is a marker of hepatobiliary dysfunction following neonatal cardiac surgery. We aimed to characterise the incidence of conjugated hyperbilirubinemia following neonatal heart surgery and examine the effect of conjugated hyperbilirubinemia on post-operative morbidity and mortality.
Methods:
This was a retrospective study of all neonates who underwent surgery for congenital heart disease (CHD) at our institution between 1/1/2010 and 12/31/2020. Patient- and surgery-specific data were abstracted from local registry data and review of the medical record. Conjugated hyperbilirubinemia was defined as perioperative maximum conjugated bilirubin level > 1 mg/dL. The primary outcome was in-hospital mortality. Survival analysis was conducted using the Kaplan–Meier survival function.
Results:
Conjugated hyperbilirubinemia occurred in 8.5% of patients during the study period. Neonates with conjugated hyperbilirubinemia were more likely to be of younger gestational age, lower birth weight, and non-Caucasian race (all p < 0.001). Patients with conjugated hyperbilirubinemia were more likely to have chromosomal and non-cardiac anomalies and require ECMO pre-operatively. In-hospital mortality among patients with conjugated hyperbilirubinemia was increased compared to those without (odds ratio 5.4). Post-operative complications including mechanical circulatory support, reoperation, prolonged ventilator dependence, and multi-system organ failure were more common with conjugated hyperbilirubinemia (all p < 0.04). Patients with higher levels of conjugated bilirubin had worst intermediate-term survival, with patients in the highest conjugated bilirubin group (>10 mg/dL) having a 1-year survival of only 6%.
Conclusions:
Conjugated hyperbilirubinemia is associated with post-operative complications and worse survival following neonatal heart surgery. Cholestasis is more common in patients with chromosomal abnormalities and non-cardiac anomalies, but the underlying mechanisms have not been delineated.
We identify a set of essential recent advances in climate change research with high policy relevance, across natural and social sciences: (1) looming inevitability and implications of overshooting the 1.5°C warming limit, (2) urgent need for a rapid and managed fossil fuel phase-out, (3) challenges for scaling carbon dioxide removal, (4) uncertainties regarding the future contribution of natural carbon sinks, (5) intertwinedness of the crises of biodiversity loss and climate change, (6) compound events, (7) mountain glacier loss, (8) human immobility in the face of climate risks, (9) adaptation justice, and (10) just transitions in food systems.
Technical summary
The Intergovernmental Panel on Climate Change Assessment Reports provides the scientific foundation for international climate negotiations and constitutes an unmatched resource for researchers. However, the assessment cycles take multiple years. As a contribution to cross- and interdisciplinary understanding of climate change across diverse research communities, we have streamlined an annual process to identify and synthesize significant research advances. We collected input from experts on various fields using an online questionnaire and prioritized a set of 10 key research insights with high policy relevance. This year, we focus on: (1) the looming overshoot of the 1.5°C warming limit, (2) the urgency of fossil fuel phase-out, (3) challenges to scale-up carbon dioxide removal, (4) uncertainties regarding future natural carbon sinks, (5) the need for joint governance of biodiversity loss and climate change, (6) advances in understanding compound events, (7) accelerated mountain glacier loss, (8) human immobility amidst climate risks, (9) adaptation justice, and (10) just transitions in food systems. We present a succinct account of these insights, reflect on their policy implications, and offer an integrated set of policy-relevant messages. This science synthesis and science communication effort is also the basis for a policy report contributing to elevate climate science every year in time for the United Nations Climate Change Conference.
Social media summary
We highlight recent and policy-relevant advances in climate change research – with input from more than 200 experts.
The extent to which weed species vary in their ability to acquire and use different forms of nitrogen (N) (inorganic and organic) has not been investigated but could have important implications for weed survival and weed–crop competition in agroecosystems. We conducted a controlled environment experiment using stable isotopes to determine the uptake and partitioning of organic and inorganic N (amino acids, ammonium, and nitrate) by seven common weed and non-weed species. All species took up inorganic and organic N, including as intact amino acids. Concentrations of 15N derived from both ammonium and amino acids in shoot tissues were higher in large crabgrass [Digitaria sanguinalis (L.) Scop.] and barnyardgrass [Echinochloa crus-galli (L.) P. Beauv] than in common lambsquarters (Chenopodium album L.), redroot pigweed (Amaranthus retroflexus L.), and sorghum-sudangrass [Sorghum bicolor (L.) Moench × Sorghum bicolor (L.) ssp. drummondii (Nees ex Steud.) de Wet & Harlan]. In contrast, the concentration of 15N derived from nitrate was higher in wild mustard (Sinapis arvensis L.) shoots than in wild oat (Avena fatua L.) shoots. Root concentration of 15N derived from ammonium was lower in sorghum-sudangrass compared with other species, except for A. retroflexus and A. fatua, while root concentration of 15N derived from nitrate was lower in A. retroflexus compared with other species, except for C. album and S. arvensis. Discriminant analysis classified species based on their uptake and partitioning of all three labeled N forms. These results suggest that common agricultural weeds can access and use organic N and differentially take up inorganic N forms. Additional research is needed to determine whether species-specific differences in organic and inorganic N uptake influence the intensity of competition for soil N.
Despite replicated cross-sectional evidence of aberrant levels of peripheral inflammatory markers in individuals with major depressive disorder (MDD), there is limited literature on associations between inflammatory tone and response to sequential pharmacotherapies.
Objectives
To assess associations between plasma levels of pro-inflammatory markers and treatment response to escitalopram and adjunctive aripiprazole in adults with MDD.
Methods
In a 16-week open-label clinical trial, 211 participants with MDD were treated with escitalopram 10– 20 mg daily for 8 weeks. Responders continued on escitalopram while non-responders received adjunctive aripiprazole 2–10 mg daily for 8 weeks. Plasma levels of pro-inflammatory markers – C-reactive protein, Interleukin (IL)-1β, IL-6, IL-17, Interferon gamma (IFN)-Γ, Tumour Necrosis Factor (TNF)-α, and Chemokine C–C motif ligand-2 (CCL-2) - measured at baseline, and after 2, 8 and 16 weeks were included in logistic regression analyses to assess associations between inflammatory markers and treatment response.
Results
Pre-treatment levels of IFN-Γ and CCL-2 were significantly higher in escitalopram non-responders compared to responders. Pre-treatment IFN-Γ and CCL-2 levels were significantly associated with a lower of odds of response to escitalopram at 8 weeks. Increases in CCL-2 levels from weeks 8 to 16 in escitalopram non-responders were significantly associated with higher odds of non-response to adjunctive aripiprazole at week 16.
Conclusions
Pre-treatment levels of IFN-Γ and CCL-2 were predictive of response to escitalopram. Increasing levels of these pro-inflammatory markers may predict non-response to adjunctive aripiprazole. These findings require validation in independent clinical populations.
The deformable wing structure can change its aerodynamic shape according to the change of flight mission and flight environment, so as to obtain better lift-drag, stability and control characteristics, which is considered as one of the future research directions of aviation technology. Considering the current technology maturity and reliability, a gradient corrugated fin is designed to realise the bending deformation of the wing. The structure of the skin is optimised to keep the skin smooth during deformation. In addition, a progressive push and pull rod is proposed to drive the wing deformation, and the fluid-structure interaction simulation is carried out for the wing deformation. At the same time, the changes of wing aerodynamic characteristics under different angles of leading and trailing edges and different push rod action schemes are analysed. Finally, a dry wind tunnel simulation test of the designed progressive flexible variable bending wing is carried out. The results of fluid-structure interaction simulation and dry wind tunnel test show that the progressive flexible variable bending wing proposed in this paper has a simple and reliable structure and remarkable deformation effect. It has advantages in increasing lift and reducing drag, ensuring high lift-drag ratio and providing wing trim moment. The deformable wing dry wind tunnel test platform designed by this method is structurally reliable, easy to operate, and can accurately reflect the influence of wing deformation on its aerodynamic force, which provides a verification means for the development of the design method and the design of practical aircraft in the future.
Background: Low-intensity transcranial ultrasound (TUS) is a non-invasive neuromodulation technique, which in theta burst mode (tbTUS) can increase cortical excitability. Parkinson’s disease (PD) has altered cortical excitability of motor cortex (M1). We evaluated the neurophysiological and clinical effects of M1 tbTUS in PD patients. Methods: Sixteen PD patients (4F, 59.5±9.7 years) in ON and OFF dopaminergic medication states, and 15 controls (5F, 61.9±8.7 years) were evaluated. tbTUS was applied for 80 seconds at M1 with 20W/cm2. Motor evoked potential (MEP) was recorded at baseline, at 5-minutes (T5), T30, and T60 after tbTUS. Motor (m)UPDRS was evaluated in PD at baseline and T60. Results: A linear mixed model on MEP amplitudes comparing PD-ON, PD-OFF and controls showed significant effect of time (F=4.83, p=0.003). Post-hoc analysis showed significant difference between baseline and T30 timepoints (p=0.0003). The MEP increase at T30 was higher in controls (66%), followed by PD-ON (41%) and PD-OFF (21%). PD-ON showed reduced mUPDRS at T60 when compared to PD-OFF, with significant effect of time (F=6.14, p=0.017) and group (F=5.39, p=0.025). Conclusions: tbTUS induced motor cortical plasticity is reduced in PD-OFF, that is partially restored by dopaminergic medications.Repeated sessions of tbTUS can be further investigated as a novel non-invasive treatment for PD.
Background: The late-onset cerebellar ataxias (LOCAs) have until recently resisted molecular diagnosis. Contributing to this diagnostic gap is that non-coding structural variations, such as repeat expansions, are not fully accessible to standard short-read sequencing analysis. Methods: We combined bioinformatics analysis of whole-genome sequencing and long-read sequencing to search for repeat expansions in patients with LOCA. We enrolled 66 French-Canadian, 228 German, 20 Australian and 31 Indian patients. Pathogenic mechanisms were studied in post-mortem cerebellum and induced pluripotent stem cell (iPSC)-derived motor neurons from 2 patients. Results: We identified 128 patients who carried an autosomal dominant GAA repeat expansion in the first intron of the FGF14 gene. The expansion was present in 61%, 18%, 15% and 10% of patients in the French-Canadian, German, Australian and Indian cohorts, respectively. The pathogenic threshold was determined to be (GAA)≥250, although incomplete penetrance was observed in the (GAA)250-300 range. Patients developed a slowly progressive cerebellar syndrome at an average age of 59 years. Patient-derived post-mortem cerebellum and induced motor neurons both showed reduction in FGF14 RNA and protein expression compared to controls. Conclusions: This intronic, dominantly inherited GAA repeat expansion in FGF14 represents one of the most common genetic causes of LOCA uncovered to date.
This abstract is based on unpublished data. OBJECTIVES/GOALS: The estimates of unbiased first-degree relatives (FDRs) risk of cancers would enhance genetic counseling of at-risk FDRs in families where the pancreatic cancer (PC) proband carrying a germline variant. This study aims at quantifying gene-specific risks of six cancers among FDRs of PC patients with germline variants in cancer-associated genes. METHODS/STUDY POPULATION: In the prospective, clinic-based Mayo Clinic Biospecimen Resource for Pancreas Research registry, 4,562 PC patients had previously undergone germline genetic testing for pancreatic cancer-associated genes through either research studies or clinical testing. Of these, 234 PC probands were found to carry germline pathogenic/likely pathogenic variants (PLPV) among 9 genes of interest and had provided detailed demographic and cancer data on their FDRs by questionnaire. We focused on six cancer types (ovary, breast, uterus, pancreas, colon, and malignant melanoma) in FDRs as reported by the probands. Standardized incidence ratios were calculated to estimate risk of six cancers among FDRs of PC patients carrying PLPV by gene. RESULTS/ANTICIPATED RESULTS: 1,670 FDRs (mean age 58.1+17.8SD; 48.9% female) were included in the study. We found significantly increased risk of ovarian cancer in female FDRs of PC probands who carry PLPV in BRCA1 (SIR 9.49, 95%CI:3.06-22.14) or BRCA2 (3.72, 95%CI:1.36-8.11), and breast cancer risks were higher with BRCA2 (2.62, 95%CI:1.89-3.54). Uterine cancer risk was increased in FDRs of PC probands who carry PLPV for Lynch Syndrome mismatch repair (MMR) (6.53, 95%CI:2.81-12.86). PC risk was also increased (ATM 4.53, 95% CI:2.69-7.16; BRCA2 3.45, 95%CI:1.72-6.17; CDKN2A 7.38, 95%CI:3.18-14.54; PALB2 5.39, 95%CI:1.45-13.79). Increased colon cancer risk was observed in FDRs of probands who carried MMR PLPV (5.83, 95%CI:3.70-8.75), while melanoma risk was elevated for FDRs of probands with CDKN2A PLPV (7.47, 95%CI:3.97-12.77). DISCUSSION/SIGNIFICANCE: PLPV in nine syndrome-associated genes in PC probands are associated with increased risk of six cancers in FDRs. The findings underscore the importance of risk estimation of various other cancers in PC families for screening, early detection, intervention, and cascade genetic testing.