We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Manned lunar landers must ensure astronaut safety while enhancing payload capacity. Due to traditional landers being weak in high-impact energy absorb and heavy payload capacity, a Starship-type manned lunar lander is proposed in this paper. Firstly, a comprehensive analysis was conducted on the traditional cantilever beam cushioning mechanism for manned lander. Subsequently, a 26-ton manned lander and its landing mechanism were designed, and a rigid-flexible coupling dynamic analysis was performed on the compression process of the primary and auxiliary legs. Secondly, the landing performance of the proposed Starship-type manned lunar lander was compared with the traditional 14-ton manned lander in multiple landing conditions. The results indicate that under normal conditions, the largest acceleration of the proposed 26-ton Starship-type manned lander decreases more than 13.1%. It enables a significant increase in payload capacity while mitigating impact loads under various landing conditions.
This paper is the first to use the WeChat platform, one of the largest social networks, to conduct an online experiment of artificial investment games. We investigate how people’s forecasts about the financial market and investment decisions are shaped by whether they can observe others’ forecasts and whether they engage in public or private investment decisions. We find that with forecast sharing, subjects’ forecasts converge but in different directions across groups; consequently, forecast sharing does not lead to better forecasts nor more individually rational investment decisions. Whether or not subjects engage in public investment decisions does not significantly affect forecasts or investment.
The paper studies how common codes of artificial language in communication are developed in the laboratory. We find that codes emerging from an environment with more variable spatial positions tend to use a limited set of symbols to represent positions, whereas codes emerging from an environment with more variable geometric shapes tend to discriminate among shapes. The paper also experimentally shows that “language” affects the way its “speakers” share the view about a novel figure.
In order to gain a better understanding of clay and Fe (oxyhydr)oxide minerals formed during pedogenesis of basalts in tropical monsoonal Hainan (southern China), a basalt-derived lateritic soil at Nanyang, Hainan, was investigated comprehensively. The results show that the lateritic regolith consists uniformly of kaolinite and Fe (oxyhydr)oxide minerals, with trace gibbsite only in the AE horizon. Abundant dioctahedral smectite in the basalt bedrock formed due to primary hydrothermal alteration, and transformed to kaolinite rapidly in the highly weathering saprolite horizon. The ‘crystallinity’ of kaolinite is notably low and its Hinckley index fluctuates along the soil profile, resulting from intense ferrolysis due to fluctuations between wet/dry climate conditions. From the base to the top of the profile, maghemite shows a decreasing trend, whereas magnetite, hematite, and goethite exhibit a slightly increasing trend, indicating that maghemite formed as an initial product of basalt weathering. Formation of Fe (oxyhydr)oxide species in basalt-derived soil is mainly controlled by local environmental conditions such as soil moisture, redox, and acidic conditions; thus, iron mineral-based paleoclimatic proxies could not be used for subtropical to tropical soils. The highly weathered saprolite has a similar δ56Fe value (+0.06‰) to that (+0.07‰) of the parent rock, while the AE to middle E horizons have greater δ56Fe values of +0.12‰ to +0.19‰. Fe isotopic signatures correlate positively with the Fe mass transfer coefficient (R2=0.77, n=6, ρ<0.05), indicating repetitive weathering and relative accumulation of isotopically heavier Fe in the upper soil horizons, which occurred by reductive dissolution of organic matter under oxic conditions, as reflected by the greater U/Th.
Deep learning (DL) has been widely used in bearing fault diagnosis. In particular, convolutional neural networks (CNNs) improve diagnosis accuracy by extracting excellent fault features. However, CNN lacks an explicit learning mechanism to distinguish between different fault characteristics in the input signal to the diagnosis results. This article presents a new end-to-end depth framework called multi-head self-attention convolution neural network (MSA-CNN) for bearing fault diagnosis. Firstly, we adopt a data pre-processing method that directly converts one-dimensional (1D) original signals into two-dimensional (2D) grayscale images, which is simple to implement and preserves the complete information of the original signal. Secondly, multi-head self-attention (MSA) is first constructed to aggregate the global information and adaptively assign weights to the input signal's features. Thirdly, the CNN with small-scale kernels extracted detailed local features. Finally, the learned high-level representations are fed into the full connect (FC) layer for fault diagnosis. The performance of the MSA-CNN is validated on different datasets. The results show that the proposed MSA-CNN can significantly improve fault diagnosis accuracy compared with the other state-of-the-art methods and has excellent noise immunity performance.
This paper retrospectively analysed the prevalence of macrolide-resistant Mycoplasma pneumoniae (MRMP) in some parts of China. Between January 2013 and December 2019, we collected 4,145 respiratory samples, including pharyngeal swabs and alveolar lavage fluid. The highest PCR-positive rate of M. pneumoniae was 74.5% in Beijing, the highest resistance rate was 100% in Shanghai, and Gansu was the lowest with 20%. The highest PCR-positive rate of M. pneumoniae was 74.5% in 2013, and the highest MRMP was 97.4% in 2019; the PCR-positive rate of M. pneumoniae for adults in Beijing was 17.9% and the MRMP was 10.48%. Among the children diagnosed with community-acquired pneumonia (CAP), the PCR-positive and macrolide-resistant rates of M. pneumoniae were both higher in the severe ones. A2063G in domain V of 23S rRNA was the major macrolide-resistant mutation, accounting for more than 90%. The MIC values of all MRMP to erythromycin and azithromycin were ≥ 64 μg/ml, and the MICs of tetracycline and levofloxacin were ≤ 0.5 μg/ml and ≤ 1 μg/ml, respectively. The macrolide resistance varied in different regions and years. Among inpatients, the macrolide-resistant rate was higher in severe pneumonia. A2063G was the common mutation, and we found no resistance to tetracycline and levofloxacin.
Genes involved in melanin production directly impact insect pigmentation and can affect diverse physiology and behaviours. The role these genes have on sex behaviour, however, is unclear. In the present study, the crucial melanin pigment gene black was functionally characterised in an urban pest, the German cockroach, Blattella germanica. RNAi knockdown of B. germanica black (Bgblack) had no effect on survival, but did result in black pigmentation of the thoraxes, abdomens, heads, wings, legs, antennae, and cerci due to cuticular accumulation of melanin. Sex-specific variation in the pigmentation pattern was apparent, with females exhibiting darker coloration on the abdomen and thorax than males. Bgblack knockdown also resulted in wing deformation and negatively impacted the contact sex pheromone-based courtship behaviour of males. This study provides evidence for black function in multiple aspects of B. germanica biology and opens new avenues of exploration for novel pest control strategies.
Mythimna separata (Lepidoptera: Noctuidae) is an omnivorous pest that poses a great threat to food security. Insect antimicrobial peptides (AMPs) are small peptides that are important effector molecules of innate immunity. Here, we investigated the role of the AMP cecropin B in the growth, development, and immunity of M. separata. The gene encoding M. separata cecropin B (MscecropinB) was cloned. The expression of MscecropinB was determined in different developmental stages and tissues of M. separata. It was highest in the prepupal stage, followed by the pupal stage. Among larval stages, the highest expression was observed in the fourth instar. Tissue expression analysis of fourth instar larvae showed that MscecropinB was highly expressed in the fat body and haemolymph. An increase in population density led to upregulation of MscecropinB expression. MscecropinB expression was also upregulated by the infection of third and fourth instar M. separata with Beauveria bassiana or Bacillus thuringiensis (Bt). RNA interference (RNAi) targeting MscecropinB inhibited the emergence rate and fecundity of M. separata, and resulted in an increased sensitivity to B. bassiana and Bt. The mortality of M. separata larvae was significantly higher in pathogen plus RNAi-treated M. separata than in controls treated with pathogens only. Our findings indicate that MscecropinB functions in the eclosion and fecundity of M. separata and plays an important role in resistance to infection by B. bassiana and Bt.
A new species of Moniliformis, M. tupaia n. sp. is described using integrated morphological methods (light and scanning electron microscopy) and molecular techniques (sequencing and analysing the nuclear 18S, ITS, 28S regions and mitochondrial cox1 and cox2 genes), based on specimens collected from the intestine of the northern tree shrew Tupaia belangeri chinensis Anderson (Scandentia: Tupaiidae) in China. Phylogenetic analyses show that M. tupaia n. sp. is a sister to M. moniliformis in the genus Moniliformis, and also challenge the systematic status of Nephridiacanthus major. Moniliformis tupaia n. sp. represents the third Moniliformis species reported from China.
Seven accelerator mass spectrometry radiocarbon (AMS 14C) dates (7260±106∼7607±95 BP averaged 7444±103 BP) on a giant oyster shell, collected from an ancient shore of the Taipei Basin, are similar to the LSC (liquid scintillation counting) 14C age (7260±46 BP) of a grass sample inside the shell. The calibrated 14C ages of the C. gigas by Marine20 are 7490±240∼7805±230 cal BP (average 7660±96 cal BP), generally agreed with the calibrated LSC 14C ages of the grass and the oyster shell. Combined with other 14C ages of shoreline samples in the Taipei Basin, it is evident that sea level rose from 8600 to 7600 cal BP and reached a stand higher than modern sea level. During this marine transgression, the sedimentation rate along the shoreline was very high because 14C dating was not able to detect age differences for 4–5 m thick sediment sequences. Sixty-nine analyses of δ18O and δ13C from the oldest part of the shell exhibit clear seasonal cycles, with a 4-year period of growth in the 5.5-cm section. According to the δ18O values, the ancient oyster grew in a warmer-than-present shoreline environment, suggesting that the current absence of the giant oyster in Taiwan is not due to warming conditions.
In order to establish a compact all-optical Thomson scattering source, experimental studies were conducted on the 45 TW Ti: sapphire laser facility. By including a steel wafer, mixed gas, and plasma mirror into a double-exit jet, several mechanisms, such as shock-assisted ionization injection, ionization injection, and driving laser reflection, were integrated into one source. So, the source of complexity was remarkably reduced. Electron bunches with central energy fluctuating from 90 to 160 MeV can be produced. Plasma mirrors were used to reflect the driving laser. The scattering of the reflected laser on the electron bunches led to the generation of X-ray photons. Through comparing the X-ray spots under different experimental conditions, it is confirmed that the X-ray photons are generated by Thomson scattering. For further application, the energy spectra and source size of the Thomson scattering source were measured. The unfolded spectrum contains a large amount of low-energy photons besides a peak near 67 keV. Through importing the electron energy spectrum into the Monte Carlo simulation code, the different contributions of the photons with small and large emitting angles can be used to explain the origin of the unfolded spectrum. The maximum photon energy extended to about 500 keV. The total photon production was 107/pulse. The FWHM source size was about 12 μm.
Energy loss of protons with 90 and 100 keV energies penetrating through a hydrogen plasma target has been measured, where the electron density of the plasma is about 1016 cm−3 and the electron temperature is about 1-2 eV. It is found that the energy loss of protons in the plasma is obviously larger than that in cold gas and the experimental results based on the Bethe model calculations can be demonstrated by the variation of effective charge of protons in the hydrogen plasma. The effective charge remains 1 for 100 keV protons, while the value for 90 keV protons decreases to be about 0.92. Moreover, two empirical formulae are employed to extract the effective charge.
The comparisons among 126 14C dates of Carex samples including separated leaf and root parts with acid (A)-treatment and acid-base-acid (ABA)-treatment, and 48 published 14C dates of bulk peat plants on a 92-cm core from Jinchuan Mire in NE China, indicate old carbon influence (OCI) on the 14C dates. The OCI varies with plant species, pretreatment and peat depth. In vascular peat plants such as Carex, humin fractions (remains after ABA treatment) and humic acids are representative of the original plant precursor, while fulvic acids are regarded as the secondary mobile product which should be removed for 14C dating. ABA- treatment removes both fulvic acids and humic acids, whereas A-treatment gets rid of only fulvic acids. Carex roots uptake more dissolved CO2 in peat water. Carex leaves may use more CO2 (involving degassing CO2) above the peat surface. By removing humic acids throughout ABA treatment, the OCI may vary differently over depth (time). ABA treatment cannot eliminate the fixed OCI in humin fractions of vascular peat plants, instead, this treatment may enhance OCI by removing humic acid which may represent the true age of the plants. In addition, Bacon model results on this core could not show rapid changes in accumulation rate.
Retropharyngeal lymphadenectomy is challenging. This study investigated a minimally invasive approach to salvage retropharyngeal lymphadenectomy in patients with nasopharyngeal carcinoma.
Methods
An anatomical study of four fresh cadaveric heads was conducted to demonstrate the relevant details of retropharyngeal lymphadenectomy using the endoscopic transoral medial pterygomandibular fold approach. Six patients with nasopharyngeal cancer with retropharyngeal lymph node recurrence, who underwent retropharyngeal lymphadenectomy with the endoscopic transoral medial pterygomandibular fold technique at the Eye and ENT Hospital of Fudan University from July to December 2021, were included in this study.
Results
The anatomical study demonstrated that the endoscopic transoral medial pterygomandibular fold approach offers a short path and minimally invasive approach to the retropharyngeal space. The surgical procedure was well tolerated by all patients, with no significant post-operative complications.
Conclusion
The endoscopic transoral medial pterygomandibular fold approach is safe and efficient for retropharyngeal lymphadenectomy.
In modern society, the issue of student attention deficit is becoming increasingly common, posing challenges to education and teaching. From the perspective of educational psychology, the integration of traditional arts and crafts elements into modern art design teaching may have a positive impact on students’ attention deficit. This study aims to explore the impact of integrating traditional arts and crafts elements with modern art design teaching on students’ attention deficit, and provide corresponding teaching strategies.
Subjects and Methods
This study adopts a combination of quantitative and qualitative research methods, selecting 300 students from three different art colleges as the research subjects. These students were randomly divided into an experimental group and a control group, with 150 students in each group. The experimental group was taught the integration of traditional arts and crafts elements with modern art design, while the control group was taught conventional modern art design. During the process, the SNAP-IV-18 scale was used to evaluate the status of students before and after the intervention. Statistics on data were performed by using SPSS24.0 software.
Results
The research results show that the experimental group of students showed significant improvements in attention concentration, sustained attention, and attention transfer. At the same time, they also scored high in creativity, critical thinking, and problem-solving abilities.
Conclusions
Research has shown that the integration of traditional arts and crafts elements with modern art design in teaching from the perspective of educational psychology can help alleviate students’ attention deficits, and improve their creativity and critical thinking abilities.
Schizophrenia, as a disabling mental disorder, is often characterized by hallucinations, delusions, and confusion. Once schizophrenia occurs, patients will form a physiological and psychological burden, which will affect their normal lives. Although traditional drug therapy is effective, there are also some cases of high recurrence rates. Therefore, research has integrated aesthetic psychological theory into art education and combined it with risperidone to intervene and treat schizophrenia patients.
Subjects and Methods
80 patients with schizophrenia from a certain hospital from 2021 to 2022 were selected as the research subjects and were evenly divided into Group A and Group B based on different treatment methods. Group A was treated with traditional drugs, while Group B was treated with combination therapy. The clinical symptoms were quantified using the Concise Psychiatric Scale and analyzed using SPSS21.0 software after the experiment.
Results
After 6 weeks of treatment, the anxiety and depression scores of Group B were 4.01 ± 1.82, the thinking disorder scores were 6.02 ± 2.41, and the vitality scores were 4.18 ± 0.98, which were lower than before the experiment. At this time, the scores of Group A were 5.96 ± 1.78, 7.42 ± 2.35, and 5.64 ± 1.21, respectively, significantly higher than those of Group B.
Conclusions
The method of combining art education with risperidone, which integrates aesthetic psychological theory, has effective intervention and treatment effects on patients with schizophrenia.
Galls function as provide shelter for gall inducers, guarding them against their natural enemies. Previous research has illuminated the interactions between galls, gall inducers, and their corresponding parasitoids within various caltrop plants. However, less is known about these relationships within Nitraria sibirica, particularly regarding the efficacy of parasitism. Therefore, this study aimed to identify the morphometric relationships among the swollen galls, gall inducers, and their parasitoids. Two species of gall inducers and three species of parasitoids were obtained from the swollen galls of N. sibirica. The correlations of the parasitization indexes, the lifespan of gall inhabitants, and temperature and the morphometric relationships between the galls and their inhabitants were analyzed. The dominant gall inducer identified was Contarinia sp. (Diptera: Cecidomyiidae). Furthermore, it was observed that three solitary parasitoids attacked Contarinia sp. in the swollen galls, with only Eupelmus gelechiphagus acting as an idiobiont ectoparasitoid. The dominant parasitoids were Platygaster sp. and Cheiloneurus elegans at sites 1 and 2, respectively, with Platygaster sp. displaying greater abundance than C. elegans in the swollen galls. The lifespan of the gall inhabitants shortened gradually as the temperature increased. Moreover, the optimal number of gall chambers ranged from two to four per swollen gall with maximized fitness, which can be considered the optimal population density for the gall inducer Contarinia sp. Morphometric analysis exhibited a strong linear correlation between gall size and chamber number or the number of gall inhabitants, as well as a weak correlation between gall size and body size of the primary inhabitants of swollen galls. Our results highlight the importance of the biological investigation of parasitoids and gall inducers living in closed galls with multiple chambers and may pave the way for potential application in biological control.
Findings from observational studies have suggested a possible association between dietary inflammatory index (DII) and risk of gestational diabetes mellitus (GDM) and preeclampsia (PE). However, the results of these studies were inconclusive. A systematic review and meta-analysis was carried out to illuminate this association. Systematic literature search was conducted in PubMed, Web of Science, Cochrane Library, EMBASE, Scopus and other databases from inception until January 2023. The qualities of included studies were assessed using the Newcastle–Ottawa scale. Nine studies (seven cohort, two case–control) were included in the meta-analysis, including 11 423 participants from five different countries. The meta-analysis indicated that a 1-unit increase in the DII score, representing pro-inflammatory diet, was associated with 13 % higher risk of GDM (OR = 1·13; 95 % CI 1·02, 1·25, I2 = 68·4 %, P = 0·004) and 24 % higher risk of PE (OR = 1·24; 95 % CI 1·14, 1·35, I2 = 52·0 %, P = 0·125). Subgroup analysis found that this association was evident among studies with Chinese populations (OR = 1·16; 95 % CI 1·06, 1·28) and studies with mid pregnancy (OR = 1·20; 95 % CI 1·07, 1·34). The findings indicate that pro-inflammatory diet can increase the risk of GDM and PE. Considering some limitations in this study, more studies are needed to verify this association.
The relationship between magmatism and gold mineralization has been a topic of interest in understanding the formation of ore deposits. The Baizhangzi gold deposit, located in the northern margin of the North China Craton, is hosted by the Baizhangzi granite (BZG) and provides a case to evaluate the relation between granite and gold mineralization in Late Triassic. In this study, we present petrography, bulk geochemistry, zircon U-Pb isotope and trace elements data, as well as major elements of biotite and plagioclase for the BZG to evaluate the petrogenesis and link with gold mineralization. The BZG comprises biotite monzogranite, biotite-bearing monzogranite and monzogranite (BZGs). Zircon U-Pb geochronology shows that all the granitoids of BZGs were coeval with a formation age of 232 Ma. The granitoids, with high SiO2, Al2O3 and Sr, while low Y and Yb, show adakitic affinity. They are enriched in LILFs (e.g., Rb, Ba, Th, U and Sr) and LREEs, while depletion in HFSEs (e.g., Nb, Ta, P and Ti). The geochemical and mineral chemical data suggest that the granitoids have experienced the fractional crystallization of biotite + plagioclase + K- feldspar + apatite. Crystallization temperature is estimated as ca. 700°C, and pressure is between 0.71 kbar and 1.60 kbar. The monzogranite shows higher values of logfO2, △FMQ and △NNO than the biotite-bearing monzogranite, ranging from −19.76 to −11.71, −4.93 to +3.67 and −5.48 to +3.11, respectively. The fractional crystallization, together with high fO2, K-metasomatism and low evolution degree, provided favourable conditions for gold mineralization.