We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Elastoinertial turbulence (EIT) is a chaotic state that emerges in the flows of dilute polymer solutions. Direct numerical simulation (DNS) of EIT is highly computationally expensive due to the need to resolve the multiscale nature of the system. While DNS of two-dimensional (2-D) EIT typically requires $O(10^6)$ degrees of freedom, we demonstrate here that a data-driven modelling framework allows for the construction of an accurate model with 50 degrees of freedom. We achieve a low-dimensional representation of the full state by first applying a viscoelastic variant of proper orthogonal decomposition to DNS results, and then using an autoencoder. The dynamics of this low-dimensional representation is learned using the neural ordinary differential equation (NODE) method, which approximates the vector field for the reduced dynamics as a neural network. The resulting low-dimensional data-driven model effectively captures short-time dynamics over the span of one correlation time, as well as long-time dynamics, particularly the self-similar, nested travelling wave structure of 2-D EIT in the parameter range considered.
The study area Sonapahar is an integral part of Shillong Meghalaya Gneissic Complex (SMGC), which is located in the Northeastern part of India. This complex mainly comprises metamorphic formations spanning from Upper Amphibolite to Ultra-high temperature granulite, interspersed with various igneous intrusions. In this study, particular attention is directed towards unravelling the metamorphic history of Mg-Al granulite. For the very first time, we establish the pressure–temperature (P-T) trajectory of the Mg-Al granulite from Sonapahar, SMGC. Employing conventional thermobarometry along with winTWQ analysis, the inferred metamorphic conditions for this granulite reveal temperatures exceeding 900°C and pressures of approximately >8 kbar. These conditions firmly indicate the presence of ultra-high-temperature metamorphism. By utilizing the Perple_X software in the MnO-Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3 compositional system, we construct a P-T pseudosection. This gives a clockwise P-T path, signifying an episode of cooling (+ minor decompression). Such a pattern also suggests rapid cooling of the tectonically-thickened crust. Concurrently, a geochemical exploration of trace and rare earth elements in the rocks offers further insights. These investigations give an idea about the protolith, having a clay-to-sandstone in nature. Additionally, chemical data from monazite within the studied rock provide a weighted mean age of 682 Ma for the peak metamorphic stage. This age aligns with the global Pan-African orogenic events. The biotite K-Ar isotopic geochronology from the symplectite position provides decompression history or cooling age of 442 Ma. This age corresponds to a period after the last peak metamorphic phase that occurred during the Pan-African thermal event.
Elastoinertial turbulence (EIT) is a chaotic flow resulting from the interplay between inertia and viscoelasticity in wall-bounded shear flows. Understanding EIT is important because it is thought to set a limit on the effectiveness of turbulent drag reduction in polymer solutions. Here, we analyse simulations of two-dimensional EIT in channel flow using spectral proper orthogonal decomposition (SPOD), discovering a family of travelling wave structures that capture the sheetlike stress fluctuations that characterise EIT. The frequency-dependence of the leading SPOD mode contains distinct peaks and the mode structures corresponding to these peaks exhibit well-defined travelling structures. The structure of the dominant travelling mode exhibits shift–reflect symmetry similar to the viscoelasticity-modified Tollmien–Schlichting (TS) wave, where the velocity fluctuation in the travelling mode is characterised by large-scale regular structures spanning the channel and the polymer stress field is characterised by thin, inclined sheets of high polymer stress localised at the critical layers near the channel walls. The travelling structures corresponding to the higher-frequency modes have a very similar structure, but are nested in a region roughly bounded by the critical layer positions of the next-lower-frequency mode. A simple theory based on the idea that the critical layers of mode $\kappa$ form the ‘walls’ for the structure of mode $\kappa +1$ yields quantitative agreement with the observed wave speeds and critical layer positions, indicating self-similarity between the structures. The physical idea behind this theory is that the sheetlike localised stress fluctuations in the critical layer prevent velocity fluctuations from penetrating them.
Let $f\,:\,X\,\longrightarrow \,Y$ be a generically smooth morphism between irreducible smooth projective curves over an algebraically closed field of arbitrary characteristic. We prove that the vector bundle $((f_*{\mathcal O}_X)/{\mathcal O}_Y)^*$ is virtually globally generated. Moreover, $((f_*{\mathcal O}_X)/{\mathcal O}_Y)^*$ is ample if and only if f is genuinely ramified.
Exploring the nutritional potential of underutilized legumes such as Dolichos bean (Lablab purpureus L.) is of great significance, particularly, in view of accomplishing the United Nation's Sustainable Development Goal number two, which emphasizes on improving food and nutrition security by 2030. A thorough understanding of genetic variability is crucial for developing biofortified cultivars of Dolichos bean. In this study, the Dolichos bean genotypes represented by pole and bush types (28 bush and 19 pole types) were assessed for genetic variability for Cu, Mn, Fe and Zn contents. Pole type genotypes had higher average contents for all micronutrients except manganese. Among micronutrients, Cu, Fe, Mn and Zn, content ranged from 10.10–19.95, 77.13–331.93, 22.78–46.40 and 42.03–102.85 mg kg−1 in pole type, and 8.2–18.5, 50.8–99.3, 25.65–53.25 and 37.15–63.25 mg kg−1 in bush type beans, respectively. Strong positive correlations between Cu, Fe and Zn concentrations occurred, which indicates the possibility of simultaneous improvement of these nutrients. Pod pigmentation was positively correlated with contents of Fe and Zn. There was an association of micronutrients with yield. The pole genotypes VRSEM-1000, VRDB-01 and VRSEM 109 and bush type genotypes VRBSEM-3, VRBSEM-35 and VRBSEM- 200 are good source of microelements and high yielders. Gene sources with enhanced nutrients may be used as cultivated forms or as input material for breeding nutritionally rich biofortified varieties of bean.
We studied the genetic polymorphism of beta-lactoglobulin (β-Lg) whey protein in Gangatiri zebu cows for this Research Communication. The polymorphic nature of milk protein fractions and their association with milk production traits, composition and quality has attracted several efforts in evaluating the allelic distribution of protein locus as a potential dairy trait marker. Genetic variants of β-Lg have highly significant effects on casein number (B > A) and protein recovery (B > A) and also determine the yield of cheese dry matter (B > A). Molecular techniques of polyacrylamide gel electrophoresis and high-resolution accurate mass-spectroscopy were applied to characterize the β-Lg protein obtained from the Gangatiri breed milk. Sequence analysis of β-Lg showed the presence of variant B having UniProt database accession number P02754, coded on the PAEP gene. Our study can provide reference and guidance for the selection of superior milk (having β-LgB) from this indigenous breed that could potentially give a good yield of β-Lg for industrial applications.
This study describes the morphological and dynamic changes of Parkachik Glacier, Suru River valley, Ladakh Himalaya, India. We used medium-resolution satellite images; CORONA KH-4, Landsat and Sentinel-2A from 1971–2021, and field surveys between 2015 and 2021. In addition, we used the laminar flow-based Himalayan Glacier Thickness Mapper and provide results for recent margin fluctuations, surface ice velocity, ice thickness, and identified glacier-bed overdeepenings. The results revealed that overall the glacier retreated by −210.5 ± 80 m with an average rate of 4 ± 1 m a−1 between 1971 and 2021. Whereas a field study suggested that the glacier retreat increased to −123 ± 72 m at an average rate of −20 ± 12 m a−1 between 2015 and 2021. Surface ice velocity was estimated using COSI-Corr on the Landsat data. Surface ice velocity in the lower ablation zone was 45 ± 2 m a−1 in 1999–2000 and 32 ± 1 m a−1 in 2020–2021, thus reduced by 28%. Further, the maximum thickness of the glacier is estimated to be ~441 m in the accumulation zone, while for glacier tongue it is ~44 m. The simulation results suggest that if the glacier continues to retreat at a similar rate, three lakes of different dimensions may form in subglacial overdeepenings.
This research communication aimed to probe the genetic polymorphisms of alpha, beta, and kappa caseins in Gangatiri cows (an indigenous Indian cattle). Detection of variants has received considerable research interest in the dairy industry and animal breeding in recent years as a source of good quality protein, but also of bioactive peptides that may be linked to health implications. The polymorphic nature of casein fractions and their association with milk production traits, composition, and quality also attracted several efforts in evaluating the allelic distribution of different casein locus as a potential dairy trait marker. Molecular techniques of polyacrylamide gel electrophoresis and high-resolution accurate mass-spectrometry have been applied to this probe. Sequence analysis of different casein types in the cows showed the presence of four specific variants.
In this communication, a compact flower shaped printed antenna for ultra-wideband communication is proposed. The “flower-shaped” structure is capable of transmitting UWB-band signals. The designed antenna exhibits a return loss ranging from 2.3 to 11 GHz with an 8.7 GHz central frequency and has 130% relative bandwidth. The suggested design includes a patch in the shape of a flower with several slots fed by a microstrip line. Multiple slots have been designed for better resonances at lower modes. The antenna is constructed with an FR4 substrate, and a 50 Ω A-type connector feeds it. The optimum dimensions of the designed antenna are 12 × 16 × 1.6 cubic-millimeters and 0.092λ × .12λ × 0.012λ in lambda. The proposed structure also demonstrates stable radiation patterns across the operating bandwidth. The proposed radiator has a high gain of 2.67 dBi, and an efficiency of 85%. It is compact, lightweight, and easy to make. Therefore, it can be used for UWB applications.
The Diwani hills are located SE of Balaram–Abu Road in the Banaskantha district of north Gujarat. The crystalline rocks of the Diwani hill area are a diverse assemblage of Precambrian metamorphic and igneous rocks. These rocks are petrologically more complex and date back to the Aravallis or earlier. The mineralogical assemblages such as grt–sp–opx–qz of these rocks indicate their origin in anhydrous or dry conditions, implying metamorphism under pyroxene granulite facies. These granulitic rocks were subjected to Delhi orogenic deformation and were later intruded by the Erinpura granite. Textural and microstructural relationships, mineral chemistry, P–T–X pseudosection modelling and the oxidation state of pelitic granulites from the Diwani hill area of north Gujarat are all part of the current approach. The winTWQ program and pseudosection modelling in the NCKFMASHTO model system utilizing Perple_X software were used to restrict the P–T evolution of these pelitic granulites. The unification of these estimates shows that the pelitic granulites reached their pressure and temperature maxima at 8.6 kbar and 770 °C, respectively. The oxygen fugacity (log fO2) versus temperature computations at 6.2 kbar revealed log fO2–T values of −13.0 and 765 °C, respectively. The electron microprobe dating of monazite grains separated from the granulites of the Diwani hills yields ages ranging from 769 Ma to 855 Ma. The electron microprobe dating presented here from the Diwani hills provides evidence for a Neoproterozoic (Tonian) metamorphic event in the Aravalli–Delhi Mobile Belt.
Presence of antimicrobial resistance (AMR) genes in Escherichia coli inhabiting anthropogenic rivers is an important public health concern because plasmid-mediated AMR genes can easily spread to other pathogens by horizontal gene transfer. Besides β-lactams, quinolones and aminoglycosides are the major antibiotics against E. coli. In the present study, we have investigated the presence of plasmid-mediated quinolone resistance (PMQR) and aminoglycoside resistance genes in E. coli isolated from a major river of northern India. Our results revealed that majority of the strains were phenotypically susceptible for fluoroquinolones and some aminoglycosides like amikacin, netilmicin, tobramycin and gentamicin. However, 16.39% of the strains were resistant for streptomycin, 8.19% for kanamycin and 3.30% for gentamicin. Of the various PMQR genes investigated, only qnrS1 was present in 24.59% of the strains along with ISEcl2. Aminoglycoside-resistance genes like strA-strB were found to be present in 16.39%, aphA1 in 8.19% and aacC2 in only 3.30% of the strains. Though, no co-relation was observed between phenotypic resistance for fluorquinolones and presence of PMQR genes, phenotypic resistance for streptomycin, kanamycin and gentamicin exactly co-related with the presence of the genes strA-strB, aphA1 and aacC2, respectively. Moreover, all the AMR genes discerned in aquatic E. coli were found to be situated on conjugative plasmids and, thus easily transferrable. Our study accentuates the importance of routine surveillance of urban rivers to curtail the spread of AMR genes in aquatic pathogens.
A compact ultra-wideband (UWB) square and circular slot ground plane planar antenna with a modified circular patch for UWB communication is presented. This antenna has a low reflection coefficient and high gain in the range of 8.94 GHz, starting from 2.85 to 11.79 GHz. The proposed antenna demonstrates UWB behavior with electrically small dimensions of 0.18 λ0×0.14 λ0×0.015 λ0 (λ0 is the free-space wavelength at 2.85 GHz). The fractional bandwidth of the antenna is 122.1%, with stable radiations. The antenna's maximum gain stands at 2.79 dBi, and the antenna's peak efficiency stands at 72%, respectively. It is lightweight, compact, and easy to manufacture. Hence, it can be used for the complete range of UWB applications and covers Wi-Max/WLAN/ X-Band and Ku-Band.
This study investigates stagnation conditions of the Pensilungpa glacier, western Himalaya. Multiple glacier parameters (length, area, debris extent and thickness, snowline altitude (SLA), velocity, downwasting and ice cliffs) were studied using field measurements (2016–18), high-resolution imagery from GoogleEarth (2013–17) and spaceborne Landsat, ASTER and SRTM data (1993–2017) to comprehend the glacier's current state. Results show a moderate decrease in length (6.62 ± 2.11 m a−1) and area (0.11 ± 0.03% a−1), a marked increase in SLA (~6 m a−1) and debris cover (2.86 ± 0.29% a−1) and a slowdown of ~50% during 1993–2016. Notable thinning of −0.88 ± 0.04 m a−1 was observed between 2000 and 2017 showing a similar trend as field measurements during 2016–17 (−0.88 m) and 2017–18 (−1.54 m). Further, results reveal a stagnation of the lower ablation zone (LAZ). Less mass supply and heterogeneous debris growth (6.67 ± 0.41% a−1) over the previous decade resulted in slowdown, margin insulation and slope-inversion, leading to stagnation. Stagnation of LAZ caused bulging in the dynamic upper ablation zone and favored the development of supraglacial ponds and ice cliffs. Ice cliffs have grown significantly (48% in number; 41% in area during 2013–17) and their back-wasting now dominates the ablation process.
Objective of the study was to assess subjective global nutritional assessment (SGNA) in children with chronic liver diseases (CLD). Children aged 3 months to 18 years with CLD were prospectively enrolled (January 2016 to October 2018). SGNA was performed as per validated pro forma for children. Nutritional categories were categorised into three groups: A (well-nourished), B (moderately malnourished) and C (severely malnourished). Agreement between SGNA and anthropometric measures, prediction of morbidity and death or liver transplantation (LT) at 1-year post-enrolment by SGNA and inter-observer reliability of SGNA were assessed. Ninety-two subjects were enrolled, median age 23·5 (3–216) months. SGNA classified 47 patients (51·1 %) in group A, 26 (28·3 %) in group B and 19 (20·6 %) in group C. Kendall coefficients disclosed significant association of SGNA with all anthropometric measurements, greatest with weight for age (r = −0·637), height for age (r = −0·581) and mid-arm fat area (r = −0·449). At 12 months follow-up, twenty children died and four received LT. A significantly higher number of children with malnutrition (groups B and C) had poor outcome (OR 6·74 (95 % CI 2·21, 20·55), P = 0·001), increased risk of hospital readmission (OR 12·2 (95 % CI 4·60, 35·88), P = 0·001), higher rate of infectious complications (OR 22·68 (95 % CI 7·29, 70·53), P < 0·0001) and lower median survival with native liver (Log Rank < 0·001) as compared with group A. Inter-observer agreement in assessment of SGNA was good (90·2 %). SGNA, in contrast to anthropometric measures, is a better nutritional assessment tool. It is reliable, comprehensive and predicts poor outcome in childhood CLD.
Zuriguel et al. (Phys. Rev. Lett., vol. 95, 2005a, 258002) and Pacheco-Vázquez and Ruiz-Suárez (Nat. Commun., vol. 1, 2010, p. 123) demonstrated that there exists a long-ranged force between intruders placed at a certain distance from each other in granular flow. The origin of these long-ranged forces, induced collectively by the grains, has not been fully understood. In our work, we provide a unified explanation for the origin of both attraction and repulsion between two intruders in terms of the building up of force chains and their subsequent buckling. The surface and shear zone of the other intruder makes a significant contribution to the strength or buckling of the force chains. Bernoulli’s effect used in earlier studies predicts the nature of these forces, viz., attraction or repulsion, correctly but is not well supported as observed in our study. The time-averaged flow fields around the intruders also support our explanation for the origin as evidenced by the burst in kinetic energy and granular temperature. The model proposed in this work predicts the qualitative trend of the sideways force with the separation between the intruders by combining Bernoulli’s equation with a minimum contact criterion of force chains. There exists an equilibrium at which the intruders neither attract nor repel each other and a certain separation distance where maximum attraction occurs between the two intruders. The effects of the static pressure, the velocity of the moving intruders and the friction coefficient on the attraction or repulsion force between the intruders have also been explored in our system.
Rural communities in developing countries extract provisioning ecosystem services from the natural environment to meet their subsistence needs, generate cash income and create employment opportunities. Caterpillar fungus Ophiocordyceps sinensis, known as yartsagunbu in Tibet and in the literature on this subject, is a medicinal resource extracted by the mountain communities of the Himalaya. Studies of the contribution of the fungus to local livelihoods in the Indian Himalaya are scarce. We investigated trade and harvest and analysed the contribution of caterpillar fungus to household economies in 32 villages in Dhauliganga Valley, Nanda Devi Biosphere Reserve, in the Western Himalaya. Caterpillar fungus harvesting has become an integral part of local livelihoods in the study area, and on average contributes c. 74% of household cash income. The majority of harvesters perceived that harvesting had become more difficult during 2010–2015 as a result of competition and a decline in abundance of the species. The mean annual per capita harvest declined by 54 pieces during 2011–2015. Increasing harvesting and trade, coupled with the dependency of local communities on the fungus, may result in greater extraction of the resource for short-term economic benefits, and could eventually lead to depletion and ecological damage. Harvesting of the fungus has already created environmental, legal and social challenges, although it has become a lucrative livelihood opportunity. The ongoing decline of the fungus threatens local livelihoods. Good governance and livelihood security should be integrated with biodiversity conservation when devising government policies and plans for sustainable management of the caterpillar fungus.
In June 2012, the Botswana Ministry of Health and Wellness (MOHW; Gaborone, Botswana) initiated a national Emergency Medical Services (EMS) system in response to significant morbidity and mortality associated with prehospital emergencies. The MOHW requested external expertise to train its developing workforce. Simulation-based training was planned to equip these health care providers with clinical knowledge, procedural skills, and communication techniques.
Objective
The objective of this study was to assess the educational needs of the pioneer Botswana MOHW EMS providers based on retrospective EMS logbook review and EMS provider feedback to guide development of a novel educational curriculum.
Methods
Data were abstracted from a representative sample of the Gaborone, Botswana MOHW EMS response log from 2013-2014 and were quantified into the five most common call types for both adults and children. Informal focus groups with health professionals and EMS staff, as well as surveys, were used to rank common response call types and self-perceived educational needs.
Results
Based on 1,506 calls, the most common adult response calls were for obstetric emergencies, altered mental status, gastrointestinal/abdominal pain, trauma, gynecological emergencies, and cardiovascular and respiratory distress-related emergencies. The most common pediatric response calls were for respiratory distress, gastrointestinal complaints/dehydration, trauma and musculoskeletal injuries, newborn delivery, seizures, and toxic ingestion/exposure. The EMS providers identified these same chief complaints as priorities for training using the qualitative approach. A locally relevant, simulation-based curriculum for the Botswana MOHW EMS system was developed and implemented based on these data.
Conclusions
: Trauma, respiratory distress, gastrointestinal complaints, and puerperal/perinatal emergencies were common conditions for all age groups. Other age-specific conditions were also identified as educational needs based on epidemiologic data and provider feedback. This needs assessment may be useful when designing locally relevant EMS curricula in other low-income and middle-income countries.GlombNW, KosokoAA, DoughtyCB, RusMC, ShahMI, CoxM, GalapiC, ParkesPS, KumarS, LabaB.Needs Assessment for Simulation Training for Prehospital Providers in Botswana. Prehosp Disaster Med. 2018;33(6):621–626.
Maturing oocytes have diverse developmental potential and good quality oocytes exhibit a better ability to attain physiological milestones in a time-dependent manner. This situation necessitates the confirmation of oocyte developmental status more precisely under an in vitro embryo production (IVEP) regime. The aim of this study was to explain timely events in germinal vesicle breakdown (GVBD), an important milestone of oocyte nuclear maturation, to delineate the developmental capacity of Bubalus bubalis oocytes. In addition, the expression profile of genes responsible for GVBD was assessed in order to understand the molecular context responsible for GVBD. The chronology of GVBD events at different time intervals during in vitro maturation (IVM) suggests that the rate at which oocytes undergo GVBD was strikingly different in the brilliant cresyl blue (BCB)+ and BCB− groups. The expression of AKT and CDC25B genes for BCB+ oocytes was maximum at 8 h of IVM, and CCNB (cyclin B) peaked at around 10 h, which suggested that GVBD was finished after 10 h in BCB+ oocytes, whereas the expression of AKT and CDC25B was found to peak at around 12–14 h of IVM. This difference consequently delays the GVBD event by 2–4 h in BCB− oocytes. Poor abundance of gene transcripts was mainly implicated in delay and lower rate of GVBD in BCB− oocytes which in turn strongly affected the translational ability of oocytes to blastocysts. The findings of this study support the idea that there is a propensity in sub-optimal grade oocytes for delayed GVBD that compromises the developmental ability of low grade buffalo oocytes. The study highlights the very small, but importantly vital and separate, time window of the GVBD event during which the competence levels of buffalo oocytes are altered along with their translational ability to develop into the prospective embryos.