Skip to main content Accessibility help
×
Home

Origin of the long-ranged attraction or repulsion between intruders in a confined granular medium

  • Manish Dhiman (a1), Sonu Kumar (a1), K. Anki Reddy (a1) and Raghvendra Gupta (a1)

Abstract

Zuriguel et al. (Phys. Rev. Lett., vol. 95, 2005a, 258002) and Pacheco-Vázquez and Ruiz-Suárez (Nat. Commun., vol. 1, 2010, p. 123) demonstrated that there exists a long-ranged force between intruders placed at a certain distance from each other in granular flow. The origin of these long-ranged forces, induced collectively by the grains, has not been fully understood. In our work, we provide a unified explanation for the origin of both attraction and repulsion between two intruders in terms of the building up of force chains and their subsequent buckling. The surface and shear zone of the other intruder makes a significant contribution to the strength or buckling of the force chains. Bernoulli’s effect used in earlier studies predicts the nature of these forces, viz., attraction or repulsion, correctly but is not well supported as observed in our study. The time-averaged flow fields around the intruders also support our explanation for the origin as evidenced by the burst in kinetic energy and granular temperature. The model proposed in this work predicts the qualitative trend of the sideways force with the separation between the intruders by combining Bernoulli’s equation with a minimum contact criterion of force chains. There exists an equilibrium at which the intruders neither attract nor repel each other and a certain separation distance where maximum attraction occurs between the two intruders. The effects of the static pressure, the velocity of the moving intruders and the friction coefficient on the attraction or repulsion force between the intruders have also been explored in our system.

Copyright

Corresponding author

Email address for correspondence: anki.reddy@iitg.ac.in

References

Hide All
Acevedo-Escalante, M. F. & Caballero-Robledo, G. A. 2017 Lift on side by side intruders of various geometries within a granular flow. Eur. Phys. J. Web Conf. 140, 03048.
Albert, R., Pfeifer, M. A., Barabási, A.-L. & Schiffer, P. 1999 Slow drag in a granular medium. Phys. Rev. Lett. 82, 205208.
Aumaître, S., Kruelle, C. A. & Rehberg, I. 2001 Segregation in granular matter under horizontal swirling excitation. Phys. Rev. E 64, 041305.
Brilliantov, N. V., Spahn, F., Hertzsch, J.-M. & Pöschel, T. 1996 Model for collisions in granular gases. Phys. Rev. E 53, 5382.
Butlanska, J., Arroyo, M., Gens, A. & OSullivan, C. 2014 Multi-scale analysis of cone penetration test (CPT) in a virtual calibration chamber. Can. Geotech. J. 51 (1), 5166.
Cattuto, C., Brito, R., Marconi, U. M. B., Nori, F. & Soto, R. 2006 Fluctuation-induced Casimir forces in granular fluids. Phys. Rev. Lett. 96, 178001.
de la Cruz, R. A. L. & Caballero-Robledo, G. A. 2016 Lift on side-by-side intruders within a granular flow. J. Fluid Mech. 800, 248263.
Cundall, P. A. & Strack, O. D. L. 1979 A discrete numerical model for granular assemblies. Géotechnique 29 (1), 4765.
Drescher, A. & de Josselin de Jong, G. 1972 Photoelastic verification of a mechanical model for the flow of a granular material. J. Mech. Phys. Solids 20 (5), 337340.
Forterre, Y. & Pouliquen, O. 2008 Flows of dense granular media. Annu. Rev. Fluid Mech. 40 (1), 124.
Geng, J. & Behringer, R. P. 2004 Diffusion and mobility in a stirred dense granular material. Phys. Rev. Lett. 93, 238002.
Geng, J. & Behringer, R. P. 2005 Slow drag in two-dimensional granular media. Phys. Rev. E 71, 011302.
Guillard, F., Forterre, Y. & Pouliquen, O. 2014 Lift forces in granular media. Phys. Fluids 26 (4), 043301.
Hilton, J. E. & Tordesillas, A. 2013 Drag force on a spherical intruder in a granular bed at low Froude number. Phys. Rev. E 88, 062203.
Hutter, K., Koch, T., Pluüss, C. & Savage, S. B. 1995 The dynamics of avalanches of granular materials from initiation to runout. Part II. Experiments. Acta Mech. 109 (1), 127165.
Jaeger, H. M., Nagel, S. R. & Behringer, R. P. 1996 Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 12591273.
Jenkins, J. T. & Yoon, D. K. 2002 Segregation in binary mixtures under gravity. Phys. Rev. Lett. 88, 194301.
Kamrin, K. & Henann, D. L. 2015 Nonlocal modeling of granular flows down inclines. Soft Matt. 11, 179185.
Kumar, S., Anki Reddy, K., Takada, S. & Hayakawa, H.2017 Scaling law of the drag force in dense granular media. arXiv:1712.09057.
Liu, D. & Henann, D. L. 2018 Size-dependence of the flow threshold in dense granular materials. Soft Matt. 14, 52945305.
Lozano, C., Zuriguel, I., Garcimartín, A. & Mullin, T. 2015 Granular segregation driven by particle interactions. Phys. Rev. Lett. 114, 178002.
Lu, K., Hou, M., Jiang, Z., Wang, Q., Sun, G. & Liu, J. 2018 Understanding earthquake from the granular physics point of view causes of earthquake, earthquake precursors and predictions. Intl J. Model. Phys. B 32 (07), 1850081.
Lucy, L. B. 1977 A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 10131024.
Nelson, E. L., Katsuragi, H., Mayor, P. & Durian, D. J. 2008 Projectile interactions in granular impact cratering. Phys. Rev. Lett. 101 (6), 068001.
Ottino, J. M. & Khakhar, D. V. 2000 Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32 (1), 5591.
Pacheco-Vázquez, F. & Ruiz-Suárez, J. C. 2010 Cooperative dynamics in the penetration of a group of intruders in a granular medium. Nat. Commun. 1, 123.
Peters, J. F., Muthuswamy, M., Wibowo, J. & Tordesillas, A. 2005 Characterization of force chains in granular material. Phys. Rev. E 72, 041307.
Plimpton, S., Crozier, P. & Thompson, A.2007 LAMMPS: large-scale atomic/molecular massively parallel simulator. Sandia National Laboratories. Available at: https://lammps.sandia.gov/.
Reddy, A. V. K., Kumar, S., Anki Reddy, K. & Talbot, J. 2018 Granular silo flow of inelastic dumbbells: clogging and its reduction. Phys. Rev. E 98, 022904.
Reddy, K. A., Forterre, Y. & Pouliquen, O. 2011 Evidence of mechanically activated processes in slow granular flows. Phys. Rev. Lett. 106, 108301.
Sanders, D. A., Swift, M. R., Bowley, R. M. & King, P. J. 2004 Are brazil nuts attractive? Phys. Rev. Lett. 93, 208002.
Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177215.
Seguin, A., Coulais, C., Martinez, F., Bertho, Y. & Gondret, P. 2016 Local rheological measurements in the granular flow around an intruder. Phys. Rev. E 93, 012904.
Shaebani, M. R., Sarabadani, J. & Wolf, D. E. 2012 Nonadditivity of fluctuation-induced forces in fluidized granular media. Phys. Rev. Lett. 108, 198001.
Silbert, L. E., Ertaş, D., Grest, G. S., Halsey, T. C., Levine, D. & Plimpton, S. J. 2001 Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64, 051302.
Solano-Altamirano, J. M., Caballero-Robledo, G. A., Pacheco-Vázquez, F., Kamphorst, V. & Ruiz-Suárez, J. C. 2013 Flow-mediated coupling on projectiles falling within a superlight granular medium. Phys. Rev. E 88, 032206.
Stukowski, A. 2009 Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model. Simul. Mater. Sci. Engng 18 (1), 015012.
Tordesillas, A., Hilton, J. E. & Tobin, S. T. 2014 Stick-slip and force chain evolution in a granular bed in response to a grain intruder. Phys. Rev. E 89, 042207.
Trujillo, L., Alam, M. & Herrmann, H. J. 2003 Segregation in a fluidized binary granular mixture: competition between buoyancy and geometric forces. Eur. Phys. Lett. 64 (2), 190196.
Trujillo, L. & Herrmann, H. J. 2003 Hydrodynamic model for particle size segregation in granular media. Physica A 330 (3), 519542.
Walker, D. M., Tordesillas, A. & Froyland, G. 2014 Mesoscale and macroscale kinetic energy fluxes from granular fabric evolution. Phys. Rev. E 89, 032205.
Weinhart, T., Hartkamp, R., Thornton, A. R. & Luding, S. 2013 Coarse-grained local and objective continuum description of three-dimensional granular flows down an inclined surface. Phys. Fluids 25 (7), 070605.
Wieghardt, K. 1975 Experiments in granular flow. Annu. Rev. Fluid Mech. 7 (1), 89114.
Williams, J. C. 1976 The segregation of particulate materials. A review. Powder Technol. 15 (2), 245251.
Zhang, Q. & Kamrin, K. 2017 Microscopic description of the granular fluidity field in nonlocal flow modeling. Phys. Rev. Lett. 118, 058001.
Zuriguel, I., Boudet, J. F., Amarouchene, Y. & Kellay, H. 2005a Role of fluctuation-induced interactions in the axial segregation of granular materials. Phys. Rev. Lett. 95, 258002.
Zuriguel, I., Garcimartín, A., Maza, D., Pugnaloni, L. A. & Pastor, J. M. 2005b Jamming during the discharge of granular matter from a silo. Phys. Rev. E 71, 051303.
Zuriguel, I., Janda, A., Garcimartín, A., Lozano, C., Arévalo, R. & Maza, D. 2011 Silo clogging reduction by the presence of an obstacle. Phys. Rev. Lett. 107, 278001.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Origin of the long-ranged attraction or repulsion between intruders in a confined granular medium

  • Manish Dhiman (a1), Sonu Kumar (a1), K. Anki Reddy (a1) and Raghvendra Gupta (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed