We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Patients with chronic insomnia are characterized by alterations in default mode network and alpha oscillations, for which the medial parietal cortex (MPC) is a key node and thus a potential target for interventions.
Methods
Fifty-six adults with chronic insomnia were randomly assigned to 2 mA, alpha-frequency (10 Hz), 30 min active or sham transcranial alternating current stimulation (tACS) applied over the MPC for 10 sessions completed within two weeks, followed by 4- and 6-week visits. The connectivity of the dorsal and ventral posterior cingulate cortex (vPCC) was calculated based on resting functional MRI.
Results
For the primary outcome, the active group showed a higher response rate (≥ 50% reduction in Pittsburgh Sleep Quality Index (PSQI)) at week 6 than that of the sham group (71.4% versus 3.6%) (risk ratio 20.0, 95% confidence interval 2.9 to 139.0, p = 0.0025). For the secondary outcomes, the active therapy induced greater and sustained improvements (versus sham) in the PSQI, depression (17-item Hamilton Depression Rating Scale), anxiety (Hamilton Anxiety Rating Scale), and cognitive deficits (Perceived Deficits Questionnaire-Depression) scores. The response rates in the active group decreased at weeks 8–14 (42.9%–57.1%). Improvement in sleep was associated with connectivity between the vPCC and the superior frontal gyrus and the inferior parietal lobe, whereas vPCC-to-middle frontal gyrus connectivity was associated with cognitive benefits and vPCC-to-ventromedial prefrontal cortex connectivity was associated with alleviation in rumination.
Conclusions
Targeting the MPC with alpha-tACS appears to be an effective treatment for chronic insomnia, and vPCC connectivity represents a prognostic marker of treatment outcome.
Recent studies have increasingly utilized gradient metrics to investigate the spatial transitions of brain organization, enabling the conversion of macroscale brain features into low-dimensional manifold representations. However, it remains unclear whether alterations exist in the cortical morphometric similarity (MS) network gradient in patients with schizophrenia (SCZ). This study aims to examine potential differences in the principal MS gradient between individuals with SCZ and healthy controls and to explore how these differences relate to transcriptional profiles and clinical phenomenology.
Methods
MS network was constructed in this study, and its gradient of the network was computed in 203 patients with SCZ and 201 healthy controls, who shared the same demographics in terms of age and gender. To examine irregularities in the MS network gradient, between-group comparisons were carried out, and partial least squares regression analysis was used to study the relationships between the MS network gradient-based variations in SCZ, and gene expression patterns and clinical phenotype.
Results
In contrast to healthy controls, the principal MS gradient of patients with SCZ was primarily significantly lower in sensorimotor areas, and higher in more areas. In addition, the aberrant gradient pattern was spatially linked with the genes enriched for neurobiologically significant pathways and preferential expression in various brain regions and cortical layers. Furthermore, there were strong positive connections between the principal MS gradient and the symptomatologic score in SCZ.
Conclusions
These findings showed changes in the principal MS network gradient in SCZ and offered potential molecular explanations for the structural changes underpinning SCZ.
Silicified microfossils are reported from nine stratigraphic sections of the Ediacaran Doushantuo Formation deposited in shelf margin, slope, and basin environments in Hunan Province of South China. These microfossils include sphaeromorphic and acanthomorphic acritarchs (15 genera and 29 species, including three new acanthomorph species, Bullatosphaera? colliformis n. sp., Eotylotopalla inflata n. sp., and Verrucosphaera? undulata n. sp.), multicellular algae, tubular microfossils, and other problematic forms, representing major fossil groups similar to those from the Doushantuo Formation in more proximal facies (e.g., inner shelf and shelf lagoon). A database of the abundance and occurrences of Doushantuo acanthomorphs is assembled and analyzed using quantitative and data-visualization methods (e.g., rarefaction analysis, non-parametric multidimensional scaling, and network analysis). The results show that, at the genus and species levels, taxonomic richness of Doushantuo acanthomorphs exhibits considerable variation among facies, but this variation is largely due to sampling and taphonomic biases. The results also show that numerous acanthomorph taxa have broad facies distribution, affirming their biostratigraphic value. The analysis confirms that acanthomorphs in the Weng'an biota of shelf margin facies are composed of a mixture of Member II and Member III assemblages of shelf-lagoon facies in the Yangtze Gorges area. The study shows the biostratigraphic potential of acanthomorphs in the establishment of regional biozones using the first appearance datum of widely distributed taxa, highlighting the importance of continuing exploration of under-sampled Doushantuo sections in slope and basinal facies.
The school–vacation cycle may have impacts on the psychological states of adolescents. However, little evidence illustrates how transition from school to vacation impacts students’ psychological states (e.g. depression and anxiety).
Aims
To explore the changing patterns of depression and anxiety symptoms among adolescent students within a school–vacation transition and to provide insights for prevention or intervention targets.
Method
Social demographic data and depression and anxiety symptoms were measured from 1380 adolescent students during the school year (age: 13.8 ± 0.88) and 1100 students during the summer vacation (age: 14.2 ± 0.93) in China. Multilevel mixed-effect models were used to examine the changes in depression and anxiety levels and the associated influencing factors. Network analysis was used to explore the symptom network structures of depression and anxiety during school and vacation.
Results
Depression and anxiety symptoms significantly decreased during the vacation compared to the school period. Being female, higher age and with lower mother's educational level were identified as longitudinal risk factors. Interaction effects were found between group (school versus vacation) and the father's educational level as well as grade. Network analyses demonstrated that the anxiety symptoms, including ‘Nervous’, ‘Control worry’ and ‘Relax’ were the most central symptoms at both times. Psychomotor disturbance, including ‘Restless’, ‘Nervous’ and ‘Motor’, bridged depression and anxiety symptoms. The central and bridge symptoms showed variation across the school vacation.
Conclusions
The school–vacation transition had an impact on students’ depression and anxiety symptoms. Prevention and intervention strategies for adolescents’ depression and anxiety during school and vacation periods should be differentially developed.
The manipulation of the Richtmyer–Meshkov instability growth at a heavy–light interface via successive shocks is theoretically analysed and experimentally realized in a specific shock-tube facility. An analytical model is developed to forecast the interface evolution before and after the second shock impact, and the possibilities for the amplitude evolution pattern are systematically discussed. Based on the model, the parameter conditions for each scenario are designed, and all possibilities are experimentally realized by altering the time interval between two shock impacts. These findings may enhance the understanding of how successive shocks influence hydrodynamic instabilities in practical applications.
The effects of reshock conditions, including the interface evolution state before reshock and the second shock intensity, on interface instability induced by two successive shocks propagating in the same direction are investigated via shock-tube experiments. It is observed that the reshock promotes the interface instability, and the post-reshock perturbation evolution relates to both the pre-reshock interface evolution state and second shock intensity. For the linear evolution of the twice-shocked interface, existing models perform poorly when either the pre-reshock interface shape effect or the secondary compression effect is pronounced, as current reduction factors fail to accurately describe these effects. Besides, the reshock-induced linear amplitude growth rate shows a non-monotonic dependence on the scaled pre-reshock amplitude, primarily due to the shape effect of the pre-reshock interface. For the post-reshock nonlinear evolution, the model proposed by Zhang & Guo (J. Fluid Mech., vol. 786, 2016, pp. 47–61) offers reasonable predictions when the second shock is weak. However, when the second shock is moderately strong, the model overestimates the bubble growth and underestimates the spike evolution under the influence of the significant secondary compression effect. Furthermore, empirical linear and nonlinear models capable of describing the dependence of the post-reshock evolution on reshock conditions are proposed based on the present experimental results and existing models.
The formation and evolution of large-scale deposits generated by mass movement are often closely related to tectonic and climatic conditions. Investigating deposits under the influence of complex geological conditions can aid in reconstructing paleoenvironmental characteristics and fluvial geomorphic evolution. The First Bend of the Yangtze River (FBYR), located in the Jinsha River basin in southwest China, represents a significant section characterized by abundant allochthonous deposits. We conducted a detailed investigation of the Hongwen allochthonous deposit (HAD) and the river sediments in the First Bend. Through terrain interpretation, dating, and paleoenvironmental analysis, the HAD was determined to be a complex deposit with multiple sources and stages (46.4–33.5 ka), formed under the combined influence of tectonic activity and climate. Three mass-movement events occurred during the interglacial stage of the last glacial period or its transitional period, coinciding with the rapid uplift stage of the Tibetan Plateau since the late Pleistocene. Prominent features of this period include significant rainfall and tectonic activities. By dating fluvial sediments and examining the evolution of the HAD, we revealed a river incision rate of 2.30 mm/yr for the Jinsha River, providing a basis for analyzing periodic river cutting and the development pattern of surface processes.
The potential threshold for dietary energy intake (DEI) that might prevent protein-energy wasting (PEW) in chronic kidney disease (CKD) is uncertain. The subjects were non-dialysis CKD patients aged ≥ 14 years who were hospitalised from September 2019 to July 2022. PEW was measured by subjective global assessment. DEI and dietary protein intake (DPI) were obtained by 3-d diet recalls. Patients were divided into adequate DEI group and inadequate DEI group according to DEI ≥ 30 or < 30 kcal/kg/d. Logistic regression analysis and restricted cubic spline were used in this study. We enrolled 409 patients, with 53·8 % had hypertension and 18·6 % had diabetes. The DEI and DPI were 27·63 (sd 5·79) kcal/kg/d and 1·00 (0·90, 1·20) g/kg/d, respectively. 69·2 % of participants are in the inadequate DEI group. Malnutrition occurred in 18·6 % of patients. Comparing with patients in the adequate DEI group, those in the inadequate DEI group had significantly lower total lymphocyte count, serum cholesterol and LDL-cholesterol and a higher prevalence of PEW. For every 1 kcal/kg/d increase in DEI, the incidence of PEW was reduced by 12·0 % (OR: 0·880, 95 % CI: 0·830, 0·933, P < 0·001). There was a nonlinear curve relationship between DEI and PEW (overall P < 0·001), and DEI ≥ 27·6 kcal/kg/d may have a preventive effect on PEW in CKD. Low DPI was also significantly associated with malnutrition, but not when DEI was adequate. Decreased energy intake may be a more important factor of PEW in CKD than protein intake.
As a member of the Scathophagidae family, Scathophaga stercoraria (S. stercoraria) is widely distributed globally and is closely associated with animal feces. It is also a species of great interest to many scientific studies. However, its phylogenetic relationships are poorly understood. In this study, S. stercoraria was found in plateau pikas for the first time. The potential cause of its presence in the plateau pikas was discussed and it was speculated that the presence of S. stercoraria was related to the yak feces. In addition, 2 nuclear genes (18SrDNA and 28SrDNA), 1 mitochondrial gene (COI), and the complete mitochondrial genome of S. stercoraria were sequenced. Phylogenetic trees constructed based on 13 Protein coding genes (13PCGs), 18S and 28S rDNA showed that S. stercoraria is closely related to the Calliphoridae family; phylogenetic results based on COI suggest that within the family Scathophagidae, S. stercoraria is more closely related to the genus Leptopa, Micropselapha, Parallelomma and Americina. Divergence times estimated using the COI gene suggest that the divergence formation of the genus Scathophaga is closely related to changes in biogeographic scenarios and potentially driven by a combination of uplift of the Qinghai-Tibetan Plateau (QTP) and dramatic climate changes. These results provide valuable information for further studies on the phylogeny and differentiation of the Scathophaga genus in the future.
In the soils of western Jilin Province in northeastern China, some significant gaps have been observed between the fraction of the soil existing as clay-size particles (<0.002 mm) and the amount attributable to crystalline clay minerals, and that the relative proportions of crystalline clay minerals to the total clay-size fraction (CP) apparently varies with latitude. The purpose of the present study was to identify the reason for this discrepancy and to explain the dependence on latitude. The grain sizes and mineral compositions of the whole soils from western Jilin Province, China, were analyzed by laser particle-size analysis (LPSA) and X-ray diffraction (XRD), and the <0.002 mm particle-size fraction was analyzed by XRD and X-ray fluorescence (XRF). The results confirmed that the percentage gaps between the clay fraction and clay minerals increased with increasing latitude. The theoretical illite percentage calculated from K2O content was compared with the illite percentage measured by XRD, and the results suggested that the measured illite accounted for only a small proportion of the theoretical illite. Structures of some special minerals below the identification threshold of XRD was suggested to be the reason for the percent gaps. The grain size and mineral crystallization both changed with latitude: the soil particle size and the CP decreased. In addition, clay minerals were more sensitive to climate than particle sizes were, and the CP of clay minerals in the soils within 0~180 cm depth all decreased with increasing latitude; however, the grain size showed patterns with latitude only in relatively shallow soil layers. The present study provides a reference and error analysis for the testing of clay minerals in alpine regions, and more suitable methods may be considered for development of clay-mineral testing in future studies.
Functional montmorillonite can be dispersed in polymer coatings and organic species and polymers can be intercalated into the interlayer space or grafted onto the surface of the functional montmorillonite. The addition of functional montmorillonite into polymer-based coatings can significantly improve anti-corrosion, refractory, super-hydrophobicity, antibacterial activity, and absorption of solar radiation by the resulting montmorillonite/polymer coatings. Montmorillonite can be functionalized for this purpose by ion exchange, intercalation, exfoliation, or combinations of these treatments. The rigid montmorillonite layers interspersed within the polymer matrix inhibit the penetration of corrosive substances, minimize the impact of high-temperature airflow, and thereby lead to strong resistance of the coating to corrosion and fire. The combination of polymers and dispersed montmorillonite nanolayers, which are modified by metal ions, metal oxides, and hydrophobic organic species, allows the resulting composite coating to have quite a rough surface and a much smaller surface free energy so that the montmorillonite/polymer coating possesses superhydrophobicity. The interlayer space of functional montmorillonite can also host or encapsulate antibacterial substances, phase-change materials, and solar energy-absorbing materials. Moreover, it can act as a template to make these guest species exist in a more stable and ordered state. Literature surveys suggest that future work on the functional montmorillonite/polymer coatings should be targeted at the manufacture of functional montmorillonite nanolayers by finding more suitable modifiers and tuning the dispersion and funtionalities of montmorillonite in the coatings.
This study aimed to investigate the structural and metabolic changes in cumulus cells of underweight women and their effects on oocyte maturation and fertilization. The cytoplasmic ultrastructure was analyzed by electron microscopy, mitochondrial membrane potential by immunofluorescence, and mitochondrial DNA copy number by relative quantitative polymerase chain reaction. The expression of various proteins including the oxidative stress-derived product 4-hydroxynonenal (4-HNE) and autophagy and apoptosis markers such as Vps34, Atg-5, Beclin 1, Lc3-I, II, Bax, and Bcl-2 was assessed and compared between groups. Oocyte maturation and fertilization rates were lower in underweight women (P < 0.05), who presented with cumulus cells showing abnormal mitochondrial morphology and increased cell autophagy. Compared with the mitochondrial DNA copies of the control group, those of the underweight group increased but not significantly. The mitochondrial membrane potential was similar between the groups (P = 0.8). Vps34, Atg-5, Lc3-II, Bax, and Bcl-2 expression and 4-HNE levels were higher in the underweight group compared with the control group (P < 0.01); however, the Bax/Bcl-2 ratio was lower in the underweight group compared with the control group (P = 0.031). Additionally, Beclin 1 protein levels were higher in the underweight group compared with the control group but without statistical significance. In conclusion, malnutrition and other conditions in underweight women may adversely affect ovulation, and the development, and fertilization of oocytes resulting from changes to the intracellular structure of cumulus cells and metabolic processes. These changes may lead to reduced fertility or unsatisfactory reproduction outcomes in women.
Morin suggested that one of the reasons for the difficulty in standardizing graphic codes is that the production of spoken language reduces the need for graphic codes. Here we try to extend their claims from a psychological perspective, which allows us to conclude that the puzzle of ideography is perhaps related to human psychological traits and psychological evolution.
To evaluate the feasibility and safety of employing a Eustachian tube video endoscope with a supporting balloon as a viable treatment and examination option for patients with Eustachian tube dysfunction.
Methods
A study involving nine fresh human cadaver heads was conducted to investigate the potential of balloon dilatation Eustachian tuboplasty using a Eustachian tube video endoscope and a supporting balloon catheter. The Eustachian tube cavity was examined with the Eustachian tube video endoscope during the procedure, which involved the dilatation of the cartilaginous portion of the Eustachian tube with the supporting balloon catheter.
Results
The utilisation of the Eustachian tube video endoscope in conjunction with the supporting balloon catheter demonstrated technical ease during the procedure, with no observed damage to essential structures, particularly the Eustachian tube cavity.
Conclusion
This newly introduced method of dilatation and examination of the Eustachian tube cavity using a Eustachian tube video endoscope and the supporting balloon is a feasible, safe procedure.
Intertemporal choices involve tradeoffs between outcomes that occur at different times. Most of the research has used pure gains tasks and the discount rates yielding from those tasks to explain and predict real-world behaviors and consequences. However, real decisions are often more complex and involve mixed outcomes (e.g., sooner-gain and later-loss or sooner-loss and later-gain). No study has used mixed gain-loss intertemporal tradeoff tasks to explain and predict real-world behaviors and consequences, and studies involving such tasks are also scarce. Considering that tasks involving a combination of gains and losses may yield different discount rates and that existing pure gains tasks do not explain or predict real-world outcomes well, this study conducted two experiments to compare the discount rates of mixed gain-loss intertemporal tradeoffs with those of pure gains or pure losses (Experiment 1) and to examine whether these tasks predicted different real-world behaviors and consequences (Experiment 2). Experiment 1 suggests that the discount rate ordering of the four tasks was, from highest to lowest, pure gains, sooner-loss and later-gain, pure losses, and sooner-gain and later-loss. Experiment 2 indicates that the evidence supporting the claim that the discount rates of the four tasks were related to different real-world behaviors and consequences was insufficient.
The low maturation rate of oocytes is an important reason for female infertility and failure of assisted pregnancy. The germinal vesicle breakdown (GVBD) is a landmark event of oocyte maturation. In our previous studies, we found that zona pellucida 3 (ZP3) was strongly concentrated in the nuclear region of germinal vesicle (GV) oocytes and interacted with aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) and lamin A to promote GVBD. In the current study, we found that lamin A is mainly concentrated in the nuclear membrane. When ZP3 is knocked down, lamin A will be partially transferred to the nucleus of oocytes. The prelamin A is increased in both the nuclear membrane and nucleus, while phosphorylated lamin A (p-lamin A) is significantly reduced. AIPL1 was also proved to accumulate in the GV region of oocytes, and ZP3 deletion can significantly inhibit the aggregation of AIPL1 in the nuclear region. Similar to ZP3 knockdown, the absence of AIPL1 resulted in a decrease in the occurrence of GVBD, an increase in the amount of prelamin A, and a significant decrease in p-lamin A in oocytes developed in vitro. Finally, we propose the hypothesis that ZP3 can stabilize farnesylated prelamin A on the nuclear membrane of AIPL1, and promote its further processing into mature lamin A, therefore promoting the occurrence of GVBD. This study may be an important supplement for the mechanism of oocyte meiotic resumption and provide new diagnostic targets and treatment clues for infertility patients with oocyte maturation disorder.
Richtmyer–Meshkov instability induced by two successive shock waves is experimentally studied in a specific shock tube. To create two successive shock waves synchronously, a driver section is added between the driver and driven sections of the standard shock tube, and an electronically controlled membrane rupture equipment is adopted. The shock-tube flow after the membranes rupture is well described by combining the shock relations, isentropic wave relations with compatibility relations across the contact surface (region). The new shock tube is capable of generating two successive shock waves with controllable strengths and time interval, and provides a relatively ‘clean’ wave system. Then the developments of single-mode light–heavy interfaces with different initial conditions induced by two successive shock waves are investigated. The initial amplitudes are all small enough such that the first-shocked interface is within the linear growth regime at the arrival of the second shock. The results show that if the pre-second-shock perturbation amplitude is small, the linear, nonlinear and modal evolutions of the double-shocked interface can be reasonably predicted by the existing models proposed for predicting the perturbation growth induced by a single shock. For the double-shocked interface, the second shock provides an additional perturbation velocity field to the original one introduced by the first shock impact. The validity of the linear superposition model indicates that the linear superposition of these two perturbation velocity fields is satisfied. Therefore, a double-shocked interface evolves similarly to a single-shocked interface provided that their postshock amplitudes and linear growth rates are the same.
The southern Great Xing’an Range (SGXR), located in the eastern segment of the Central Asian Orogenic Belt (CAOB), is one of the most economically important Cu–Mo–Fe–Sn–Pb–Zn–Ag metallogenic provinces in China. The newly discovered Panjiaduan Cu–Pb–Zn deposit (9.3 Mt; at 1.36% Cu, 2.90% Pb, 3.80% Zn and 38.12 g/t Ag), located in the SE segment of the SGXR, is primarily hosted in fracture zones in volcanic rocks and granodiorite of the Manitu Formation. Four paragenetic stages of metallic mineralization are identified: (I) quartz-pyrite-arsenopyrite; (II) quartz-polymetallic sulphide; (III) quartz-galena-sphalerite-argentite; and (IV) quartz-calcite-minor sulphide. The hydrothermal quartz contains three types of primary fluid inclusion (FIs): vapour-rich two-phase liquid-vapour (LV-type), liquid-rich two-phase liquid-vapour (VL-type) and three-phase liquid-vapour-solid FIs (SL-type). Stages I and II contain all types with homogenization temperatures (Th) of 324–386 °C and 276–334 °C as well as salinities of 0.7–38.0 wt% and 0.9–34.7 wt%, respectively, whereas stage III is composed of VL- and LV-type FIs with Th of 210–269 °C and salinities of 0.5–7.2 wt%. Only VL-type FIs occur in stage IV, with Th of 139–185 °C and salinities of 1.6–4.2 wt%. The δ18OH2O and δD values vary from −15.7 to 2.6‰ and −132.7 to −110.2‰, respectively, indicating predominant meteoric water with an initial magmatic source. The He–Ar isotopic compositions of the pyrite inclusions from the Panjiaduan Cu–Pb–Zn veins suggest that fluids were derived from the crust.
N-acetylcysteine (NAC) possesses a strong capability to ameliorate high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) in mice, but the underlying mechanism is still unknown. Our study aimed to clarify the involvement of long non-coding RNA (lncRNA) in the beneficial effects of NAC on HFD-induced NAFLD. C57BL/6J mice were fed a normal-fat diet (10 % fat), a HFD (45 % fat) or a HFD plus NAC (2 g/l). After 14-week of intervention, NAC rescued the deleterious alterations induced by HFD, including the changes in body and liver weights, hepatic TAG, plasma alanine aminotransferase, plasma aspartate transaminase and liver histomorphology (haematoxylin and eosin and Oil red O staining). Through whole-transcriptome sequencing, 52 167 (50 758 known and 1409 novel) hepatic lncRNA were detected. Our cross-comparison data revealed the expression of 175 lncRNA was changed by HFD but reversed by NAC. Five of those lncRNA, lncRNA-NONMMUT148902·1 (NO_902·1), lncRNA-XR_001781798·1 (XR_798·1), lncRNA-NONMMUT141720·1 (NO_720·1), lncRNA-XR_869907·1 (XR_907·1), and lncRNA-ENSMUST00000132181 (EN_181), were selected based on an absolute log2 fold change value of greater than 4, P-value < 0·01 and P-adjusted value < 0·01. Further qRT-PCR analysis showed the levels of lncRNA-NO_902·1, lncRNA-XR_798·1, and lncRNA-EN_181 were decreased by HFD but restored by NAC, consistent with the RNA sequencing. Finally, we constructed a ceRNA network containing lncRNA-EN_181, 3 miRNA, and 13 mRNA, which was associated with the NAC-ameliorated NAFLD. Overall, lncRNA-EN_181 might be a potential target in NAC-ameliorated NAFLD. This finding enhanced our understanding of the biological mechanisms underlying the beneficial role of NAC.