We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Antitakeover measures are controversial because the evidence of their net effect on shareholders is mixed. We propose that, for many firms, the potential bonding benefits outweigh the agency costs of the quiet life, explaining the mixed results. We study business combination and poison pill laws as exogenous shocks to takeover vulnerability and use shareholder valuation of internal slack as an indicator of the net effect of takeover protection. Firms susceptible to quiet life agency problems exhibit a decrease in the market-assessed value of internal slack. Conversely, cash appreciates at companies where takeover protection bonds commitments with major counterparties.
The 22q11.2 deletion syndrome (22q11DS) is characterized by high rates of psychotic symptoms and schizophrenia, making this condition a promising human model for studying risk factors for psychosis. We explored the predictive value of ultra high-risk (UHR) criteria in a sample of patients with 22q11DS. We also examined the additional contribution of sociodemographic, clinical and cognitive variables to predict transition to psychosis within a mean interval of 32.56176 months after initial assessment. Eighty-nine participants with 22q11DS (age range: 8–30 years; mean: 16.1647) were assessed using the structured interview for psychosis-risk syndromes. Information on axis I diagnoses, internalizing and externalizing symptoms, level of functioning and IQ was also collected. At baseline, 22 (24.7%) participants met UHR criteria. Compared to those without a UHR condition, they had a significantly lower functioning, more frequent anxiety disorders and more severe psychopathology. Transition rate to psychosis was 27.3% in UHR and 4.5% in non-UHR participants. Cox regression analyses revealed that UHR status significantly predicted conversion to psychosis. Baseline level of functioning was the only other additional predictor. This is the first study investigating the predictive value of UHR criteria in 22q11DS. It indicates that the clinical path leading to psychosis is broadly comparable to that observed in other clinical high-risk samples. Nevertheless, the relatively high transition rate in non-UHR individuals suggests that other risk markers should be explored in this population. The role of low functioning as a predictor of transition to psychosis should also be investigated more in depth.
Disclosure of interest
The authors have not supplied their declaration of competing interest.
In this work, we report a preliminary study, based on molecular dynamics simulations, about 3D carbon nanotube networks that could be formed inside the beta zeolites. We investigated their structural stability and mechanical properties. Our results show that from all possible carbon nanotubes that can be embedded inside the channels of the beta zeolite, the one with chirality (6,0) is the most stable. Using the carbon nanotube (6,0), it is possible to build 3D structures with both all (higher density) and only partially (lower density) filled zeolite channels. Under tensile uniaxial force, the 3D low-density carbon nanotube networks are anisotropic and can be stretched along the direction in which all nanotubes are perpendicular up to 130% of strain without fracture. Also, the porosity and network stiffness can be tuned depending on the amount of carbon nanotubes filling the channels of the zeolites.
Recently, a new class of carbon allotrope called protomene was proposed. This new structure is composed of sp2 and sp3 carbon-bonds. Topologically, protomene can be considered as an sp3 carbon structure (∼80% of this bond type) doped by sp2 carbons. First-principles simulations have shown that protomene presents an electronic bandgap of ∼3.4 eV. However, up to now, its mechanical properties have not been investigated. In this work, we have investigated protomene mechanical behavior under tensile strain through fully atomistic reactive molecular dynamics simulations using the ReaxFF force field, as available in the LAMMPS code. At room temperature, our results show that the protomene is very stable and the obtained ultimate strength and ultimate stress indicates an anisotropic behavior. The highest ultimate strength was obtained for the x-direction, with a value of ∼110 GPa. As for the ultimate strain, the highest one was for the z-direction (∼25% of strain) before protomene mechanical fracture.
With the aim to overcome the problems of climatic changes and rising ocean levels, one option is to produce large-scale sustainable energy by nuclear fusion of hydrogen and other very light nuclei similar to the energy source of the sun. Sixty years of worldwide research for the ignition of the heavy hydrogen isotopes deuterium (D) and tritium (T) have come close to a breakthrough for ignition. The problem with the DT fusion is that generated neutrons are producing radioactive waste. One exception as the ideal clean fusion process – without neutron production – is the fusion of hydrogen (H) with the boron isotope 11B11 (B11). In this paper, we have mapped out our research based on recent experiments and simulations for a new energy source. We suggest how HB11 fusion for a reactor can be used instead of the DT option. We have mapped out our HB11 fusion in the following way: (i) The acceleration of a plasma block with a laser beam with the power and time duration of the order of 10 petawatts and one picosecond accordingly. (ii) A plasma confinement by a magnetic field of the order of a few kiloteslas created by a second laser beam with a pulse duration of a few nanoseconds (ns). (iii) The highly increased fusion of HB11 relative to present DT fusion is possible due to the alphas avalanche created in this process. (iv) The conversion of the output charged alpha particles directly to electricity. (v) To prove the above ideas, our simulations show for example that 14 milligram HB11 can produce 300 kWh energy if all achieved results are combined for the design of an absolutely clean power reactor producing low-cost energy.
Alterations of the reward system have been proposed as one of the core mechanisms underlying the expression of negative symptoms in schizophrenia. Specifically, deficits in specific reward components and white matter (WM) integrity of the reward system have been highlighted. The putative link between negative symptoms and the hedonic experience, or structural connectivity of the reward system has never been examined in the 22q11.2 deletion syndrome (22q11DS), a condition with increased risk for psychosis.
Method
Anticipatory and consummatory dimensions of pleasure were assessed in participants with 22q11DS (N = 54) and healthy controls (N = 55). In patients with 22q11DS, the association between pleasure scores and positive or negative symptoms was investigated. Furthermore, WM integrity of the accumbofrontal tract was quantified using diffusion tensor imaging (DTI). Associations between DTI measures, pleasure dimensions and negative symptoms were examined.
Results
Patients with 22q11DS showed reduced anticipatory and consummatory pleasure compared to controls. Furthermore, anticipatory pleasure scores were negatively correlated to negative and positive symptoms in 22q11DS. WM microstructural changes of the accumbofrontal tract in terms of increased fractional anisotropy and reduced radial anisotropy were also identified in patients. However, no significant correlation between the DTI measures and pleasure dimensions or psychotic symptoms was observed.
Conclusions
This study revealed that participants with 22q11DS differed in their experience of pleasure compared to controls. The anticipatory pleasure component appears to be related to negative and positive symptom severity in patients. Alterations of WM integrity of the accumbofrontal tract seem to be related to myelination abnormalities in 22q11DS patients.
The application of laser pulses with psec or shorter duration enables nonthermal efficient ultrahigh acceleration of plasma blocks with homogeneous high ion energies exceeding ion current densities of $10^{12}~\text{A}~\text{cm}^{-2}$. The effects of ultrahigh acceleration of plasma blocks with high energy proton beams are proposed for muon production in a compact magnetic fusion device. The proposed new scheme consists of an ignition fusion spark by muon catalyzed fusion ($\unicode[STIX]{x03BC}$CF) in a small mirror-like configuration where low temperature D–T plasma is trapped for a duration of $1~\unicode[STIX]{x03BC}\text{s}$. This initial fusion spark produces sufficient alpha heating in order to initiate the fusion process in the main device. The use of a multi-fluid global particle and energy balance code allows us to follow the temporal evolution of the reaction rate of the fusion process in the device. Recent progress on the ICAN and IZEST projects for high efficient high power and high repetition rate laser systems allows development of the proposed device for clean energy production. With the proposed approaches, experiments on fusion nuclear reactions and $\unicode[STIX]{x03BC}$CF process can be performed in magnetized plasmas in existing kJ$/$PW laser facilities as the GEKKO-LFEX, the PETAL and the ORION or in the near future laser facilities as the ELI-NP Romanian pillar.
Measured highly elevated gains of proton–boron (HB11) fusion (Picciotto et al., Phys. Rev. X 4, 031030 (2014)) confirmed the exceptional avalanche reaction process (Lalousis et al., Laser Part. Beams 32, 409 (2014); Hora et al., Laser Part. Beams 33, 607 (2015)) for the combination of the non-thermal block ignition using ultrahigh intensity laser pulses of picoseconds duration. The ultrahigh acceleration above $10^{20}~\text{cm}~\text{s}^{-2}$ for plasma blocks was theoretically and numerically predicted since 1978 (Hora, Physics of Laser Driven Plasmas (Wiley, 1981), pp. 178 and 179) and measured (Sauerbrey, Phys. Plasmas 3, 4712 (1996)) in exact agreement (Hora et al., Phys. Plasmas 14, 072701 (2007)) when the dominating force was overcoming thermal processes. This is based on Maxwell’s stress tensor by the dielectric properties of plasma leading to the nonlinear (ponderomotive) force $f_{\text{NL}}$ resulting in ultra-fast expanding plasma blocks by a dielectric explosion. Combining this with measured ultrahigh magnetic fields and the avalanche process opens an option for an environmentally absolute clean and economic boron fusion power reactor. This is supported also by other experiments with very high HB11 reactions under different conditions (Labaune et al., Nature Commun. 4, 2506 (2013)).
The laser-induced relativistic shock waves are described. The shock waves can be created directly by a high irradiance laser or indirectly by a laser acceleration of a foil that collides with a second static foil. A special case of interest is the creation of laser-induced fusion where the created alpha particles create a detonation wave. A novel application is suggested with the shock wave or the detonation wave to ignite a pre-compressed target. In particular, the deuterium–tritium fusion is considered. It is suggested that the collision of two laser accelerated foils might serve as a novel relativistic accelerator for bulk material collisions.
Development of a detonation wave due to α heating following short pulse laser irradiation in pre-compressed deuterium–tritium (DT) plasma is considered. The laser parameters required for development of a detonation wave are calculated. We find that a laser irradiance and energy of IL = 1.75 × 1023 W/cm2 and 12.8 kJ accordingly during 1.0 ps in a pre-compressed target at 900 g/cm3 creates an α heating fusion detonation wave. In this case, the nuclear fusion ignition conditions for the pre-compressed DT plasma are achieved along the detonation wave orbit.
In this work, we review some properties of twisted partial actions of Hopf algebras on unital algebras and give necessary and sufficient conditions for a twisted partial action to have a globalization. We also elaborate a series of examples.
Very little is known about the phenotypic expression of schizotypal traits in individuals with 22q11.2 deletion syndrome (22q11DS). The main purpose was to analyse the factorial structure, internal consistency and temporal stability of schizotypal traits, as well as their associations with prodromal states and clinical psychotic symptoms in adolescents with 22q11DS.
Method
The sample comprised 61 adolescents with 22q11DS (mean = 14.95 years, s.d. = 2.13; n = 24 at follow-up). An age-matched comparison group (n = 61, mean = 15.44 years, s.d. = 1.76) was also included. The Schizotypal Personality Questionnaire (SPQ), the Structured Interview for Prodromal Syndromes, the Positive and Negative Syndrome Scale, and the Brief Psychiatric Rating Scale were used.
Results
Adolescents with 22q11DS scored higher than the control group on the interpersonal dimension and suspiciousness subscale of the SPQ. The analysis of the internal structure of the SPQ in the sample of 22q11DS participants yielded a three-component solution (cognitive–perceptual, interpersonal, and disorganized). In addition, internal consistency coefficients ranged between 0.63 and 0.91. The schizotypal traits were highly stable across a 3.6-year interval, and ranged from 0.50 to 0.63. Self-reported schizotypal traits correlated with interview-based ratings of prodromal states and psychotic symptoms.
Conclusions
These results indicate that the SPQ may be a valid tool to assess schizotypal traits in adolescents with 22q11DS. The identification of a reliable self-report instrument for use in individuals with learning disabilities and at genetic high risk for psychosis could be useful in clinical and research settings. Assessment of schizotypal traits may be used as a distal risk marker and in a close-in strategy in high-risk genetic samples to enhance the possibility of early detection of psychosis.
This paper suggests a novel route to approach the cold compression curve in laser-plasma induced shock waves. This effect is achieved with a precompression in a diamond anvil cell (DAC). In order to keep the necessary structure of one dimensional shock wave it is required to use a diamond anvil cell with a partially perforated diamond anvil. Precompression pressures of about 50 GPa, that are an order of magnitude higher than the currently reported pressures, are possible to obtain with presentley existing diamond anvil cell technology. The precompressed Hugoniot of Al was calculated for different precompression pressures and it was found that at precompression pressure of 50 GPa the Hugoniot follows the “cold curve” up to about 2 Mbar and 5.2 g/cc. Furthermore, the thermal relative contribution on the Hugoniot curves is calculated.
The increased occurrence of obstetric complications (OCs) in patients with schizophrenia suggests that alterations in neurodevelopment may be of importance to the aetiology of the illness. Abnormal cortical folding may reflect subtle deviation from normal neurodevelopment during the foetal or neonatal period. In the present study, we hypothesized that OCs would be related to cortical folding abnormalities in schizophrenia patients corresponding to areas where patients with schizophrenia display altered cortical folding when compared with healthy controls.
Method
In total, 54 schizophrenia patients and 54 healthy control subjects underwent clinical examination and magnetic resonance image scanning on a 1.5 T scanner. Information on OCs was collected from original birth records. An automated algorithm was used to calculate a three-dimensional local gyrification index (lGI) at numerous points across the cortical mantle.
Results
In both schizophrenia patients and healthy controls, an increasing number of OCs was significantly related to lower lGI in the left pars triangularis (p<0.0005) in Broca's area. For five other anatomical cortical parcellations in the left hemisphere, a similar trend was demonstrated. No significant relationships between OCs and lGI were found in the right hemisphere and there were no significant case–control differences in lGI.
Conclusions
The reduced cortical folding in the left pars triangularis, associated with OCs in both patients and control subjects suggests that the cortical effect of OCs is caused by factors shared by schizophrenia patients and healthy controls rather than factors related to schizophrenia alone.
All preceding hydrodynamic computations of plasmas need correction if the thermal conductivity is used because electronic thermal conductivity is decreased on plasma inhomogeneities due to electrostatic double layers. In the worst case, ionic conductivity remains. We compare this with a possible electronic conductivity by the fast tail of the energy distribution. Using the volume ignition for fusion gain computations, we study the increase of gain by spin-polarization of nuclei for the DT reaction especially in nonlinear ranges. Gain can increase by a factor of 3·1.
Inertial confinement fusion (ICF) targets can be imploded by heavy-ion beams (HIBs) in order to obtain a highly compressed fuel microsphere. The hydrodynamic efficiency of the compression can be optimized by tuning the ablation process in order to produce the total evaporation of the pusher material by the end of the implosion. Such pusherless compressions produce very highly compressed targets for relatively short confinement times. However, these times are long enough for a fusion burst to take place, and burnup fractions of 30% and higher can be obtained if the volume ignition requirements are met. Numerical simulations demonstrate that targets of 1-mg DT driven by a few MJ can yield energy gains of over 70. Although direct drive is used in these simulations, the main conclusions about volume ignition are also applicable to indirect drive.
In this paper we propose the coherent amplification of gamma radiation of a system of parapositronium atoms. The nonlinear optics of positronium media is suggested. The induced annihilation transitions for the electron-positron plasma are compared with those of the positronium medium. It is suggested in this paper that the Bose–Einstein condensation could play a crucial role in the estimation of the induced annihilation of electron-positron pairs for dense (n ≳ 1016cm−3) and cold (T ≲ 104 °K) positronium systems. The calculated effects of the induced positron-electron decays might be observed in astrophysical objects such as pulsars, white dwarf stars etc. Furthermore, these transitions might play an important role in Klein–Alfven cosmology. Finally, with the further advancement of the positron technology, a gamma ray laser may be constructed.
After the theory of dynamic double layers in laser-produced plasmas arrived at several significant results in agreement with measurement, including particle acceleration, a clarification was given to the paper by Bryant et al. (1992) negating such acceleration. The discrepancy seems to be in the definition of static double layers in contradiction with dynamic double layers that are created in laser-induced plasma. We present here new results on the acceleration of electrons in a laser-irradiated plasma by double layer mechanisms. A simple analytical example is given.
Cluster-driven inertial confinement fusion (ICF) is analyzed. A cluster is defined as a charged supermolecule with a charge of one (or of the order 1) and with a very high mass number A, so that Z/A « 1. The energy deposition range is shown to be very small (a few micrometers) for projectiles with a few tens of kev/a.m.u. A significant momentum transfer is therefore possible in its slowing down as it passes through matter. In this case, a high hydrodynamic efficiency seems evident. Three relevant models for cluster beam-target interactions are discussed: (1) the rocket model, where the ablation pressure (Pa) is much larger than the cluster beam direct pressure (II); (2) the hammer model, where Pa « II (in this case, two possibilities are discussed—an impact interaction between the beam and the target, and an impact interaction between one cluster and its absorption volume); (3) an intermediate model, where Pa ~II (in this regime, the hydrodynamic efficiency is maximum). Preliminary simulations were performed and the general features of the models were confirmed. Most relevant for ICF, it was found that approximately 75% of the beam energy is converted into X rays, so that the indirect drive is promising in this context.