Skip to main content Accessibility help

Road map to clean energy using laser beam ignition of boron-hydrogen fusion

  • H. Hora (a1), S. Eliezer (a2) (a3), G.J. Kirchhoff (a4), N. Nissim (a2) (a5), J.X. Wang (a6), P. Lalousis (a7), Y.X. Xu (a6), G.H. Miley (a8), J.M. Martinez-Val (a3), W. McKenzie (a9) and J. Kirchhoff (a9)...


With the aim to overcome the problems of climatic changes and rising ocean levels, one option is to produce large-scale sustainable energy by nuclear fusion of hydrogen and other very light nuclei similar to the energy source of the sun. Sixty years of worldwide research for the ignition of the heavy hydrogen isotopes deuterium (D) and tritium (T) have come close to a breakthrough for ignition. The problem with the DT fusion is that generated neutrons are producing radioactive waste. One exception as the ideal clean fusion process – without neutron production – is the fusion of hydrogen (H) with the boron isotope 11B11 (B11). In this paper, we have mapped out our research based on recent experiments and simulations for a new energy source. We suggest how HB11 fusion for a reactor can be used instead of the DT option. We have mapped out our HB11 fusion in the following way: (i) The acceleration of a plasma block with a laser beam with the power and time duration of the order of 10 petawatts and one picosecond accordingly. (ii) A plasma confinement by a magnetic field of the order of a few kiloteslas created by a second laser beam with a pulse duration of a few nanoseconds (ns). (iii) The highly increased fusion of HB11 relative to present DT fusion is possible due to the alphas avalanche created in this process. (iv) The conversion of the output charged alpha particles directly to electricity. (v) To prove the above ideas, our simulations show for example that 14 milligram HB11 can produce 300 kWh energy if all achieved results are combined for the design of an absolutely clean power reactor producing low-cost energy.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Road map to clean energy using laser beam ignition of boron-hydrogen fusion
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Road map to clean energy using laser beam ignition of boron-hydrogen fusion
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Road map to clean energy using laser beam ignition of boron-hydrogen fusion
      Available formats


Corresponding author

Address correspondence and reprint requests to: Department of Theoretical Physics, University of New South Wales, Sydney 2052, Australia. E-mail:


Hide All
Badziak, J., Kozlov, A.A., Makowski, J., Paris, P. & Ryc, L. (1999). Investigations of ion streams emitted from plasma produced with a highpower picosecond laser. Laser Part. Beams 17, 323.
Banati, R., Hora, H., Lalousis, P. & Moustaizis, S. (2014). Ultrahigh laser acceleration of plasma blocks with ultrahigh ion density for fusion and hadron therapy. J. Intense Pulsed Laser Appl. Adv. Phys. 4, 1116.
Basov, N.G. & Krokhin, O.N. (1964). In Proceedings of 3rd International Quantum Electronics Conference Paris 1963, (Grivet, P. and Bloembergen, N., Eds.), Vol. 2, p. 1375. Paris: Dunod.
Belyaev, V.S., Matafonov, A.P., Vinogradov, V.I., Krainov, V.P., Lisitsa, V.S., Roussetski, A.S., Ignatyev, G.N. & Andrianov, V.P. (2005). Observation of neutronless fusion reactions in picoseconds laser plasmas. Phys. Rev. E 72, 026406.
Bigot, B. Key Lecture at the IEEE SOFE conference Shanghai/China 4 June 2017.
Bobin, J.-L. (1974). Nuclear fusion reactions in fronts propagating in solid DT. In Laser Interaction and Related Plasma Phenomena, Schwarz, H. and Hora, H., Eds.), Vol. 4B, p. 465. New York: Plenum Press.
Chu, M.S. (1972). Thermonuclear reactions waves at high densities. Phys. Fluids 15, 412.
Clark, E.L., Krushelnik, K., Zepf, M., Tataralis, M., Machacek, M., Santla, M.I.K., Watts, I., Norreys, P.A. & Dangor, A.E. (2001) Energetic Heavy-Ion and Proton Generation from Ultraintense Laser-Plasma Interactions with Solids. Phys. Rev. Letters 85, 1654.
Daido, H., Miki, F., Mima, K., Fujita, M., Sawaki, K., Fujita, H., Kitagawa, Y., Nakai, S. & Yamanaka, C. (1986). Generation of a strong magnetic field by an intense CO2-laser pulse. Phys. Rev. Lett. 56, 846.
Davidson, R. (2016) Nonneutral Plasmas. Singapore: World Scientific.
Dawson, J.M. (1964) On the production of plasma by giant pulse lasers. Phys. Fluids 7, 981.
Ditmire, T. (2017) Proceedings SPIE Conference 10241 paper 10241-25.
Eliezer, S., Hora, H., Korn, G., Nissim, N. & Martinez-Val, J.-M. (2016). Avalanche proton-boron fusion based on elastic nuclear collisions. Phys. Plasmas 23, 050704.
Eliezer, S., Nissim, N., Martinez Val, J.M., Mima, K. & Hora, H. (2014). Double layer acceleration by laser radiation. Laser Part. Beams 32, 211217.
Eliezer, S. & Ross, D.A. (1974) A ‘Cabbibo’ theory for leptons and the neutrino masses. Phys. Rev. D 10, 3088.
Fan, Z., Liu, Y., Liu, B., Yu, C., Lan, K. & Liu, J. (2017). Non-equilibrium between ions and electrons inside hot spots from National Ignition Facility experiments. MRE 2, 38.
Földes, I.B., Bakos, J.S., Gal, K., Juhasz, Y., Kedves, M.A., Koscis, G., Szatmari, S. & Veres, G. (2000). Properties of high Harmonics generation by UV laser pulses on solid surfaces. Laser Phys. 10, 264.
Fortov, V.E. & Iakubov, T. (1998). Physics of Nonideal Plasmas. Singapore: World Scientific.
Fujioka, S., Zhang, Z., Ishihara, K., Shigemori, K., Hironaka, Y., Johzaki, T., Sunahara, A., Yamamoto, N., Nakashima, H., Watanabe, T., Shiraga, H., Nishimura, H. & Azechi, H. (2013). Kilotesla magnetic field due to a capacitor-coil target driven by high power laser. Nat. Sci. Rep. 3, 11701176.
Gaul, E. (2017). Discussion SPIE Prague 24 April 2017.
Giuffrida, L., Scuderi, V., Cirrone, P., Margarone, D., Picciotto, A., Velyhan, A., Peringa, G., Miluzzo, G., Krasa, J., Dostal, J., Kucharik, M. & Korn, G. (2017). Inertial Fusion Science and Applications 2017, Conference abstracts, p. 92.
Hammons, T., Victor, T.J., Lesale, F., Uecker, K., Hausler, M., Retzmann, D., Staschus, K. & Lang, S. (2012). Proceedings of the IEEE 100, No. 2, 360 DOI: 10.1109/JPROC.2011.2152310.
Hinkel, D.E., Berzak-Hopkins, L.F., Jones, O.S., Callahan, D.A. & Hurricane, E.A. (2016). High foot implosions in larer hohlraums filled with an immediate gas fill density. IFSA Conference Seattle September 2015, Abstracts, p. 163.
Hirsch, R.L. (1972). Inertial-electrostatic confinement of ionized fusion gases. J. Appl. Phys. 38, 45224534.
Hoffmann, D.H.H., Hora, H., Eliezer, S., Nissim, N., Fortov, V.E., Lalousis, P., Korn, G., Moustaizis, S., Kirchhoff, G.J. & Martinez-Val, J.-M. (2017). Nonideal plasma at elastic nuclear collisions for avalanche boron fusion. Hirscheck Conference, January.
Hohenberger, M., Chang, P.-Y., Fiksel, G., Knauer, J.P., Betti, R., Marshall, F.J., Meyerhofer, D.D., Séguin, F.H. & Petrasso, R.D. (2012). Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA Laser. Phys. Plasmas 19, 056306.
Hora, H. (1964). Report 6/23 Abschätzungen zur Aufheizung eines Plasma mittels Lasern (Institut für Plasmaphysik, Garching) July; Estimtions for heating of plasmas with lasers. Technical Translation 1193 (National Research Council of Canada, Ottawa, 1965).
Hora, H. (1981). Physics of Laser Driven Plasma. New York: Wiley.
Hora, H. (1988). Nuclear effects and non thermal plasmas. Nucl. Instrum. Meth. A271, 117.
Hora, H. (2003). Skin-depth theory explaining anomalous picosecond–terawatt laser plasma interaction II. Czech. J. Phys. 53, 199217.
Hora, H. (2009). Laser fusion with nonlinear force driven plasma blocks: thresholds and dielectric effects. Laser Part. Beams 29, 207222.
Hora, H. (2013). Extraordinary strong jump of increasing laser fusion gains experienced at volume ignition for combination with NIF experiments Laser Part. Beams 31, 230232.
Hora, H. (2014). arXiv 1412.4190.
Hora, H. (2015). SPIE NEWSROOM 10.1117/2.1201506.005965.
Hora, H. (2016). Laser Plasma Physics. 2nd edn. Bellingham, WA: SPIE Books.
Hora, H., Azechi, H., Kitagawa, K., Mima, K., Murakami, M., Nakai, S., Nishihara, K., Takabe, H., Yamanaka, C., Yamanaka, M. & Yamanaka, T. (1998). Measured laser fusion gains reproduced by self-similar volume compression and volume ignition for NIF conditions. J. Plasma Phys. 60, 743.
Hora, H., Badziak, J., Boody, F.P., Höpfl, R., Jungwirth, K., Kralikowa, B., Kraska, J., Laska, L., Parys, P., Perina, V., Pfeifer, M., Rohlena, K., Skala, J., Ullschmied, J., Wolowski, J. & Woryna, E. (2002). Effects of ps and ns laser pulses for giant ion source. Opt. Commun. 207, 333337.
Hora, H., Badziak, J., Read, M.N., Li, Y.-T., Liang, T.-J., Liu, H., Sheng, Z.-M., Zhang, J., Osman, F., Miley, G.H., Zhang, W., He, X., Peng, H., Osman, F., Glowacz, S., Jablonski, S., Wolowski, S., Skladanowski, Z., Jungwirth, K., Rohlena, K. & Ullschmied, J. (2007). Fast ignition by laser driven beams of very high intensity. Phys. Plasmas 14, 072701/1–7.
Hora, H., Eliezer, S., Kirchhoff, G.J., Korn, G., Lalaousis, P., Miley, G.H. & Moustaizis, S. (2017 a). Extreme laser pulses for possible development of boron fusion power reactors for clean and lasting energy. SPIE Conference Proceedings 10242 paper 10241-14.
Hora, H., Eliezer, S., Nissim, N., Xu, Y. & Lalousis, P. (2017 b). Non-thermal laser driven plasma-blocks for proton boron avalanche fusion as direct drive option. MRE 2, 177189.
Hora, H., Eiezer, S., Wang, J., Korn, G., Nissim, N., Xu, Y., Lalousis, P., Kirchhoff, G. & Miley, G.H. (2017 c). Laser Boron Fusion Reactor with Picosecond Petawatt Block Ignition, IEEE Transactions of Plasma Science (SOFE conference proceedings).
Hora, H. & Kirchhoff, G.J. (2015). PCT/EP2014/003281 Patent, published as World Patent WO 2-15/144190 A1, priority 23 March 2014.
Hora, H. & Kirchoff, G.J. (2017). US Patent Application 20170125129A1, May 4, National Phase of PCT.
Hora, H., Korn, G., Giuffrida, L., Marganoone, D., Picciotto, A., Krasa, J., Jungwirth, K., Ullschmied, J., Lalouais, P., Eliezer, S., Miley, G.H., Moustaizis, S. & Mourou, G. (2015 a) Fusion energy using avalanche increased boron reactions for block ignition by ultrahigh power picosecond laser pulses. Laser Part. Beams. 33, 607619.
Hora, H., Lalousis, P. & Eliezer, S. (1984). Analysis of the inverted double layers in nonlinear force produced cavitons at laserplasma interaction. Phys. Rev. Lett. 53, 16501652.
Hora, H., Lalousis, P., Giuffrida, L., Margarone, D., Korn, G., Eliezer, S., MILEYi, G.H., Moustaizis, S. & Mourou, G. (2015 b). Petawatt laser pulses for proton-boron high gain fusion with avalanche reactions excluding problems of nuclear radiation. SPIE Proc. 9515, 951518/1–15.
Hora, H., Lalousis, P. & Moustaizis, S. (2014). Fiber ICAN laser with exawatt–picosecond pulses for fusion without nuclear radiation problems. Laser Part. Beams. 32, 6368.
Hora, H., Lalousis, P., Moustaizis, S., Földes, I., Miley, G.H., Yang, X., He, X.T., Eliezer, S. & Martinez-Val, J.-M. (2012). Shock Studies in Nonlinear Force Driven Laser Fusion with Ultrahigh Plasma Block Acceleration. IAEA Proc. Fusion Energy, San Diego October 2012. Paper IFE/P6–03, 8 pages (IAEA Vienna 2013).
Hora, H., Malekynia, B., Ghoranneviss, M., Miley, G.H. & He, X. (2008). Twenty times lower ignition thresholds for laser driven fusion using collective effects and the inhibition factor. Appl. Phys. Lett. 93, 011101/1–3.
Hora, H., Miley, G.H., Azizi, N., Malekynia, B., Ghoranneviss, M. & He, X.T. (2009). Nonlinear Force Driven Plasma Blocks Igniting Solid Density Hydrogen Boron: Laser Fusion Energy without Radioactivity. Laser Part. Beams 27, 491496.
Hora, H., Miley, G.H., Ghorannviss, M., Malekynia, H., Azizi, N. & He, X-T. (2010). Fusion energy without radioactivity: laser ignition of solid hydrogen-boron(11) fuel. Energy Environ. Sci. 3, 479486.
Hurricane, O.A., Callahan, D.A., Casey, D.T., Celliers, P.M., Cerjan, C., Dewald, E.L., Dittrich, T.R., Döppner, T., Hinkel, D.E., Berzak Hopkins, L.F., Kline, J.L., Le Pape, S., Ma, T., Macphee, A.G., Milovich, J.L., Pak, A., Park, H.-S., Patel, P.K., Remington, B.A., Salmonson, J.D., Springer, P.T. & Tommasini, R. (2014). Fuel gain exceeding unity in an inertial confined fusion implosion. Nature 506, 343348.
Kanngiesser, K.W., Huang, D.H. & Lips, H. (1994). Highvoltage direct current transmission – Systems and Planning. Siemens monographs Munich, EV HA 7.
Labaune, C., Deprierraux, S., Goyon, S., Loisel, C., Yahia, G. & Rafelski, J. (2013). Fusion reactions initiated by laser accelerated particle beams in laser produced plasmas. Nat. Commun. 4, 2506.
Lalousis, P. & Hora, H. (1983). First direct electron and ion fluid computation of high electrostatic fields in dense inhomogeneous plasmas with subsequent nonlinear laser interaction. Laser Part. Beams 1, 283304.
Lalousis, P., Hora, H., Eliezer, S., Martinez-Val, J.-M., Moustaizis, S., Miley, G.H. & Mourou, G. (2013). Shock mechanisms by ultrahigh laser accelerated plasma blocks in solid density targets for fusion. Phys. Lett. A 377, 885888.
Lalousis, P., Hora, H. & Moustaizis, S. (2014). Optimized boron fusion with magnetic trapping by laser driven shock initiation at nonlinear force driven ultrahigh acceleration. Laser Part. Beams 32, 409.
Lawrence, V.F. (1978). Momentum Transfer of Laser Radiation to Inhomogenous Dielectrics. PhD Thesis University of New South Wales. Sydney: Australia.
Li, M., Wang, J.X., Xu, Y.X. & Zhu, W.J. (2017) Study of plasma pressure evolution driven by strong picosecond laser pulse. Phys. Plasmas 24, 013117.
Margarone, D., Picciotto, A., Velyhan, A., Krasa, J., Kucharik, M., Mangione, A., Szydlowsky, A., Malinowska, A., Bertuccio, G., Shi, Y., Crivellari, M., Ullschmied, J., Bellutti, P. & Korn, G. (2015). Advanced scheme for high-yield laser driven nuclear reactions. Plasma Phys. Control. Fusion 57, 014030.
Meglich, B & Morwood, D. Jr. (1988). Editorial: Aneutronic Power Princeton 1987. Nuclear Instruments and Methods A271, p. vii-viii.
Miley, G.H. & Murali, K. (2015) Inertial Electrostatic confinement (IEC). Heidelberg: Springer.
Norreys, P.A., Fews, A.P., Beg, F.N., Bell, A.R., Dangor, A.E., Lee, P., Nelson, M.B., Schmidt, H., Tatarakis, M. & Cable, M.D. (1998). Neutron production from picosecond laser irradiation of deuterated targets at intensities of 1019 Wcm−2 . Phys. Control. Fusion 40, 175182.
Nuckolls, J.H. Contributions to the Genesis and Progress of UCF (2007) In Inertial Confinement Nuclear Fusion: A historical Approach by its Pioneers (Guillermo Velarde and Natividad Carbintero-Santamarai eds) Foxwell & Davies (UK) p.493-507 ISBN 1-805868-10. 2007.
Oliphant, M.L.E. & Rutherford, L. (1933). Experiments on the transmutations of elements by protons. Proc. R. Soc. Lond. A 141, 259281.
Picciotto, A., Margarone, D., Velyhan, A., Bellini, P., Krasa, J., Szydlowski, A., Bertuccio, G., Shi, Y., Margarone, A., Prokupek, J., Malinowska, A., Krouski, E., Ullschmied, J., Laska, L., Kucharik, M. & Korn, G. (2014). Boron-proton nuclear-fusion enhancement induced in boron-doped silicon targets by low contrast pulsed laser. Phys. Rev. X 4, 031030.
Rostoker, N. & Binderbauer, M.W. (1996). US-Patent 6,664,740 B-2.
Rostoker, N., Binderbauer, M.W. & Monkhorst, H.J. (1997). Colliding beam fusion reactor. Science 278, 14191422.
Sakharov, A.D. (1982). Collected Scientific Works. NewYork and Basel: Marcel and Dekker, 1983, (see Laser and Particle Beams 18, 151 2000).
Santos, J.J., Bailly-Gandvoux, M., Giuffrida, L., Forestercolleoni, P., Fuijoka, S., Zang, Z., Korneev, PH, Boullaud, R., Dor And, S., Batani, D., Chervrrot, M., Cross, J., Crowston, R., Dubois, J.-L., Gazave, J., Greofri, G., D'humieres, E., Hulin, S., Ishihara, K., Kojima, S., Loyez, E., Marques, J.-R., Nicolai, PH., Peyrusse, O., Poye, A., Raffestin, D., Ribolzi, J., Roth, M., Schaumann, G., Serred, F., Tikhonchuk, V.T., Vacar, PH., Woolsley, N. (2015). Laser-driven platform for generation and characterization of strong quasi-static magnetic fields. New J. Phys. 17, 083061/1-16.
Sauerbrey, R. (1996). Acceleration of femtosecond laser produced plasmas. Phys. Plasmas 3, 47124716.
Tabak, M., Hammer, J., Glinsky, M.N., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.
Tahir, N.A. & Hoffmann, D.H.H. (1997). Development of advanced inertial fusion targets. Laser Part. Beams 15, 575587.
Tikhonchuk, V., Baylly-Grandvaux, M., Santos, J.J. & Poye, A. (2017). Quai-stationary magnetic field generation with capacitor-coil targets. Inertial Fusion Science and Applications 2017, Conference abstracts p. 81.
Xu, Y., Wang, J.X., Qi, M., Li, Y., Xing, Y. & Long, L. (2016). Improving the quality of proton beams via double targets driven by an intense circularly polarized laser pulse. AIP Adv. 6, 105304.
Xu, Y., Wang, J.X., Qi, M., Li, Y., Xing, Y., Long, L. & Zhu, W. (2017). Plasma block acceleration via double targets driven by an ultraintense circulatory polarized laser pulse. Phys. Plasmas 24, 033108.
Zhang, M., He, J.T., Chen, D.B., Li, Z.H., Zhang, Y., Wang, L., Feng, B.L., Zhang, D.F., Tang, X.W. & Zhang, J. (1998). Effects of a prepulse on γ-ray radiation produced by a femtosecond laser with only 5-mJ energy. Phys. Rev. E 57, 37463748.


Road map to clean energy using laser beam ignition of boron-hydrogen fusion

  • H. Hora (a1), S. Eliezer (a2) (a3), G.J. Kirchhoff (a4), N. Nissim (a2) (a5), J.X. Wang (a6), P. Lalousis (a7), Y.X. Xu (a6), G.H. Miley (a8), J.M. Martinez-Val (a3), W. McKenzie (a9) and J. Kirchhoff (a9)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed