Skip to main content
×
×
Home

Avalanche boron fusion by laser picosecond block ignition with magnetic trapping for clean and economic reactor

  • H. Hora (a1), G. Korn (a2), S. Eliezer (a3) (a4), N. Nissim (a4), P. Lalousis (a5), L. Giuffrida (a2), D. Margarone (a2), A. Picciotto (a6), G.H. Miley (a7), S. Moustaizis (a8), J.-M. Martinez-Val (a3), C.P.J. Barty (a9) and G.J. Kirchhoff (a10)...
Abstract

Measured highly elevated gains of proton–boron (HB11) fusion (Picciotto et al., Phys. Rev. X 4, 031030 (2014)) confirmed the exceptional avalanche reaction process (Lalousis et al., Laser Part. Beams 32, 409 (2014); Hora et al., Laser Part. Beams 33, 607 (2015)) for the combination of the non-thermal block ignition using ultrahigh intensity laser pulses of picoseconds duration. The ultrahigh acceleration above $10^{20}~\text{cm}~\text{s}^{-2}$ for plasma blocks was theoretically and numerically predicted since 1978 (Hora, Physics of Laser Driven Plasmas (Wiley, 1981), pp. 178 and 179) and measured (Sauerbrey, Phys. Plasmas 3, 4712 (1996)) in exact agreement (Hora et al., Phys. Plasmas 14, 072701 (2007)) when the dominating force was overcoming thermal processes. This is based on Maxwell’s stress tensor by the dielectric properties of plasma leading to the nonlinear (ponderomotive) force $f_{\text{NL}}$ resulting in ultra-fast expanding plasma blocks by a dielectric explosion. Combining this with measured ultrahigh magnetic fields and the avalanche process opens an option for an environmentally absolute clean and economic boron fusion power reactor. This is supported also by other experiments with very high HB11 reactions under different conditions (Labaune et al., Nature Commun. 4, 2506 (2013)).

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Avalanche boron fusion by laser picosecond block ignition with magnetic trapping for clean and economic reactor
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Avalanche boron fusion by laser picosecond block ignition with magnetic trapping for clean and economic reactor
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Avalanche boron fusion by laser picosecond block ignition with magnetic trapping for clean and economic reactor
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Correspondence to: H. Hora, Department of Theoretical Physics, University of New South Wales, Sydney 2052, Australia. Email: h.hora@unsw.edu.au
References
Hide All
1. Hora, H. Korn, G. Giuffrida, L. Margarone, D. Picciotto, A. Krasa, J. Jungwirth, K. Ullschmied, J. Lalousis, P. Eliezer, S. Miley, G. H. Moustaizis, S. and Mourou, G. Laser Part. Beams 33, 607 (2015).
2. Oliphant, M. L. E. and Rutherford, L. Proc. R. Soc. Lond. A 141, 259 (1933).
3. Weaver, T. Zimmerman, G. and Wood, L. Exotic CTR fuel: Non-thermal effects and laser fusion application, Report UCRL-74938 (1973).
4. Kouhi, M. Ghoraneviss, M. Malekynia, B. Hora, H. Miley, G. H. Sari, A. H. Azizi, N. and Razavipour, S. S. Laser Part. Beams 29, 125 (2011).
5. Azechi, H. Jitsuno, T. Kanabe, T. Katayama, M. Mima, K. Miyanaga, N. Nakai, M. Nakai, S. Nakaichi, H. Nishiguchi, A. Norreys, P. A. Setsuhara, Y. Takagi, M. Yamanaka, M. and Yamanaka, C. Laser Part. Beams 9, 193 (1991).
6. Hora, H. Miley, G. H. Ghorannviss, M. Malekynia, H. Azizi, N. and He, X.-T. Energy Environ. Sci. 3, 479 (2010).
7. Fujioka, S. Zhang, Z. Ishihara, K. Shigemori, K. Hironaka, Y. Johzaki, T. Sun ahara, A. Yamamoto, N. Nakashima, H. Watanabe, T. Shiraga, H. Nishimura, H. and Azechi, H. Sci. Rep. 3, 1170 (2013).
8. Picciotto, A. Margarone, D. Velyhan, A. Bellini, P. Krasa, J. Szydlowski, A. Bertuccio, G. Shi, Y. Margarone, A. Prokupek, J. Malinowska, A. Krouski, E. Ullschmied, J. Laska, L. Kucharik, M. and Korn, G. Phys. Rev. X 4, 031030 (2014).
9. Labaune, C. Deprierraux, S. Goyon, S. Loisel, C. Yahia, G. and Rafelski, J. Nat. Commun. 4, 2506 (2013).
10. Lalousis, P. Hora, H. and Moustaizis, S. Laser Part. Beams 32, 409 (2014).
11. Hora, H. Plasmas at High Temperature and Densities (Springer, 1991).
12. Hora, H. Physics of Laser Driven Plasmas (Wiley, 1981) pp. 178 and 179.
13. Sauerbrey, R. Phys. Plasmas 3, 4712 (1996).
14. Stickland, D. and Mourou, G. Opt. Commun. 56, 219 (1985).
15. C. P. J, Barty Key, M. Britten, J. Beach, R. Beer, G. Brown, C. Bryan, S. Caird, J. Carlson, T. Crane, J. Dawson, J. Erlandson, A. C. Fittinghoff, D. Hermann, M. Hoaglan, C. Iyer, A. Jones, L. II Jovanovic, I. Komashko, A. Landen, O. Liao, Z. Molander, W. Mitchell, S. Moses, E. Nielsen, N. Nguyen, H. H. Nissen, J. Payne, S. Pennington, D. Risinger, L. Rushford, M. Skulina, K. Spaeth, M. Stuart, B. Tietbohl, G. and Wattellier, B. Nucl. Fusion 44, S266 (2004).
16. Hora, H. Laser Part. Beams 27, 207 (2009).
17. Lalousis, P. Hora, H. Eliezer, S. Martinez-Val, J.-M. Moustaizis, S. Miley, G. H. and Mourou, G. Phys. Lett. A 377, 885 (2013).
18. Földes, I. B. Bakos, J. S. Gal, K. Juhasz, Y. Kedves, M. A. Koscis, G. Szatmari, S. and Veres, G. Laser Phys. 10, 264 (2000).
19. Badziak, J. Makowski, J. Paris, P. Ryc, L. Wolowski, J. Woryna, E. Kozlov, A. A. and Vankov, A. B. Laser Part. Beams 17, 313 (1999).
20. Hora, H. Badziak, J. Read, M. N. Li, Y. T. Liang, T. J. Liu, H. Shang, Z. M. Zhang, J. Osman, F. Miley, G. H. Zhang, W. Y. He, X. T. Peng, H. S. Glowacz, S. Jablonski, S. Wolowski, J. Skladanowski, Z. Jungwirth, K. Rohlena, K. and Ullschmied, J. Phys. Plasmas 14, 072701 (2007).
21. Hora, H. Badziak, J. Boody, F. P. Höpfl, R. Jungwirth, K. Kralikowa, B. Kraska, J. Laska, L. Parys, P. Perina, V. Pfeifer, M. Rohlena, K. Skala, J. Ullschmied, J. Wolowski, J. and Woryna, E. Opt. Commun. 207, 333 (2002).
22. Hora, H. Czech. J. Phys. 53, 199 (2003).
23. Zhang, M. He, J. T. Chen, D. B. Li, Z. H. Zhang, Y. Wong, L. Feng, Z. H. B. F. Zhang, D. F. Tang, X. W. and Zhang, J. Phys. Rev. E 57, 3745 (1998).
24. Teubner, U. Uschmann, I. Gibbon, P. Altenbernd, D. Förster, E. Feurer, T. Sauerbrey, R. Hirst, G. Key, M. H. Lister, J. and Neely, D. Phys. Rev. E 54, 4167 (1996).
25. Yang, X. Miley, G. H. Flippo, K. A. and Hora, H. Phys. Plasmas 18, 032703 (2011).
26. Neely, D. in 2nd International Symposium on High Power Laser Science and Engineering (2016), p. 87.
27. Liu, H. Li, Y. and Neely, D. in 2nd International Symposium on High Power Laser Science and Engineering (2016), p. 126.
28. Hegelich, B. M. in 2nd International Symposium on High Power Laser Science and Engineering (2016), p. 38.
29. Gaillard, S. A. Kluge, T. Flippo, K. A. Bussmann, M. Gall, B. Lockard, T. Geissel, M. Offermann, D. T. Schollmeier, M. Sentoku, Y. and Cowan, T. E. Phys. Plasmas 18, 056710 (2011).
30. Banati, R. Hora, H. Lalousis, P. and Moustaizis, S. J. Intense Pulsed Lasers Appl. Adv. Phys. 4, 11 (2014).
31. Hora, H. and Banati, R. in 1st Symposium Romanian Embassy (2015).
32. Chu, M. S. Phys. Fluids 15, 412 (1972).
33. Bobin, J.-L. in Laser Interaction and Related Plasma Phenomena, H. Schwarz and H. Hora (eds), Vol. 3B (Plenum Press, 1974), p. 465.
34. Hora, H. Malekynia, B. Ghoranneviss, M. Miley, G. H. and He, X.-T. Appl. Phys. Lett. 93, 011101 (2008).
35. Lalousis, P. and Hora, H. Laser Part. Beams 1, 283 (1983).
36. Hora, H. Lalousis, P. and Eliezer, S. Phys. Rev. Lett. 53, 1650 (1984).
37. Hora, H. Miley, G. H. Ghoranneviss, M. Malekynia, B. and Azizi, N. Opt. Commun. 282, 4124 (2009).
38. Hora, H. Lalousis, P. and Moustaizis, S. Laser Part. Beams 32, 63 (2014).
39. Barty, C. P. J. J. Phys. Conf. 717, 012086 (2016).
40. Hora, H. Laser Plasma Physics – Forces and the Nonlinearity Principle 2nd edn. (SPIE, 2016), chapter 10.4.
41. Hora, H. Lalousis, P. Moustaizis, S. Földes, I. Miley, G. H. Yang, X. He, X. T. Eliezer, S. and Martinez-Val, J.-M. in IAEA Proceed. Fusion Energy (2012), paper IFE/P6-03 http://www.naweb.iaea.org/napc/physics/FEC/FEC2012/papers/27_IFEP603.pdf.
42. Belyaev, V. S. Matafonov, A. P. Vinogradov, V. I. Krainov, V. P. Lisitsa, V. S. Roussetski, A. S. Ignatyev, G. N. and Andrianov, V. P. Phys. Rev. E 72, 026406 (2005).
43. Rebentisch, W. see P. L. Günther, Paul Sessle & W. Rebentisch, Z. Anorg. Allg. Chem., 250, 357 (1943).
44. Shockly, W. Electrons and Holes in Semiconductors (Van Norstrand, 1952).
45. Boreham, B. W. Newman, D. S. Höpfl, R. and Hora, H. J. Appl. Phys. 78, 5848 (1995).
46. Korn, G. Margarone, D. and Picciotto, A. in IZEST Conference (2014).
47. Labaune, C. Baccou, C. Yahla, V. Neuville, C. and Rafelski., J. Nat. Sci. Rep. 6, 21202 (2016).
48. Nevins, W. M. and Swain, C. Nucl. Fusion 40, 865 (2000).
49. Eliezer, S. Hora, H. Korn, G. Nissim, N. and Martinez-Val, J. M. Phys. Plasmas 23, 050704 (2016). A comment follows in Issue 10 (October) of same journal.
50. Fortov, V. E. Iakubov, I. T. and Bronstein, H. A. Physics of Non-ideal Plasma (World Scientific, 2000).
51. Belyaev, V. S. Krainov, V. P. Matafonov, A. P. and Zagreev, B. V. Laser Phys. Lett. 12, 096001 (2015).
52. Miley, G. H. Hora, H. and Kirchhoff, G. J. Phys. Conf. Proc. 717, 012095 (2016).
53. Hora, H. and Kirchhoff, G. J. in World Patent Application WO 2015/144190 A1 (2015).
54. Gotham, D. J. and Heydt, G. T. IEEE Trans. Power Systems 13, 60 (1998).
55. Kanngiesser, K. W. Huang, D. H. and Lips, H. High-voltage Direct Current Transmission-Systems and Planning, Siemens Monographs Munich, EV HA 7. (1994).
56. Breuer, W. Povh, D. Retzmann, D. Urbanke, Ch. and Weinhold, M. in 20th World Energy Congress (2007).
57. Haan, S. in Nuclear Power without radioactivity Highlights in Chemical Technology (2010).
58. Mourou, G. Barty, C. P. J. and Perry, M. D. Phys. Today 51, 22 (1998).
59. Cowan, T. E. Perry, M. D. Key, M. H. Dittmire, T. R. Hatchett, S. P. Henry, E. A. Moody, J. D. Moran, M. J. Pennington, D. M. Phillips, T. W. Sangster, T. C. Sefcik, J. A. Singh, M. S. Snavely, R. A. Stoyer, M. A. Wilks, S. C. Young, P. W. Takahashi, Y. Dong, B. Fountain, W. Parnell, T. Johnson, J. Hunt, A. W. and Kuhl, T. Laser Part. Beams 17, 773 (1999).
60. Norreys, P. A. Fews, A. P. Beg, F. N. Bell, A. R. Dangor, A. E. Lee, P. Nelson, M. B. Schmidt, H. Tatarakis, M. and Cable, M. D. Plasma Phys. Control. Fusion 40, 175 (1998).
61. Steinke, S. Henig, A. Schnürer, M. Sokollik, T. Nickles, P. V. Jung, D. Kiefer, D. Hörlein, R. Schreiber, J. Tajima, T. Yan, X. Q. Hegelich, M. Meyer-ter-Vehn, J. Sandner, W. and Habs, D. Laser Part. Beams 28, 216 (2010).
62. Hora, H. Laser Part. Beams 30, 325 (2012).
63. Korn, G. Margarone, D. and Picciotto, A. in 2014 Boron–Proton Nuclear Fusion Enhancement Induced in Boron-doped Silicon Targets by Low-contrast Pulsed Lasers (2014).
64. Hora, H. Lalousis, P. Giuffrida, L. Margarone, D. Korn, G. Eliezer, S. and Miley, G. H. SPIE Proc. 9515, 951518 (2015).
65. Danson, C. et al. , High Power Lasers Sci. Engng 3, 38 (2015).
66. Li, R. X. Liang, X. Gan, Z. Lu, H. Yu, L. Yin, D. Leng, Y. Lu, X. Wang, C. and Xu, Z. in 4th Advanced Lasers and Photon Sources (ALPS’15) (2015).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

High Power Laser Science and Engineering
  • ISSN: 2095-4719
  • EISSN: 2052-3289
  • URL: /core/journals/high-power-laser-science-and-engineering
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed