We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Deformation occurs in a thin liquid film when it is subjected to a non-uniform electric field, which is referred to as the electrohydrodynamic patterning. Due to the development of a non-uniform electrical force along the surface, the film would evolve into microstructures/nanostructures. In this work, a linear and a nonlinear model are proposed to thoroughly investigate the steady state (i.e. equilibrium state) of the electrohydrodynamic deformation of thin liquid film. It is found that the deformation is closely dependent on the electric Bond number BoE. Interestingly, when BoE is larger than a critical value, the film would be deformed remarkably and get in contact with the top template. To model the ‘contact’ between the liquid film and the solid template, the disjoining pressure is incorporated into the numerical model. From the nonlinear numerical model, a hysteresis deformation is revealed, i.e. the film may have different equilibrium states depending on whether the voltage is increased or decreased. To analyse the stability of these multiple equilibrium states, the Lyapunov functional is employed to characterise the system’s free energy. According to the Lyapunov functional analysis, at most three equilibrium states can be formed. Among them, one is stable, another is metastable and the third one is unstable. Finally, the model is extended to study the three-dimensional deformation of the electrohydrodynamic patterning.
As a novel type of catalytic Janus micromotor (JM), a double-bubble-powered Janus micromotor has a distinct propulsion mechanism that is closely associated with the bubble coalescence in viscous liquids and corresponding flow physics. Based on high-speed camera and microscopic observation, we provide the first experimental results of the coalescence of two microbubbles near a JM. By performing experiments with a wide range of Ohnesorge numbers, we identify a universal scaling law of bubble coalescence, which shows a cross-over at dimensionless time $\tilde{t}$ = 1 from an inertially limited viscous regime with linear scaling to an inertial regime with 1/2 scaling. Due to the confinement from the nearby solid JM, we observe asymmetric neck growth and find the combined effect of the surface tension and viscosity. The bubble coalescence and detachment can result in a high propulsion speed of ∼0.25 m s−1 for the JM. We further characterise two contributions to the JM’s displacement propelled by the coalescing bubble: the counteraction from the liquid due to bubble deformation and the momentum transfer during bubble detachment. Our findings provide a better understanding of the flow dynamics and transport mechanism in micro- and nano-scale devices like the swimming microrobot and bubble-powered microrocket.
Carbon storage in saline aquifers is a prominent geological method for reducing CO2 emissions. However, salt precipitation within these aquifers can significantly impede CO2 injection efficiency. This study examines the mechanisms of salt precipitation during CO2 injection into fractured matrices using pore-scale numerical simulations informed by microfluidic experiments. The analysis of varying initial salt concentrations and injection rates revealed three distinct precipitation patterns, namely displacement, breakthrough and sealing, which were systematically mapped onto regime diagrams. These patterns arise from the interplay between dewetting and precipitation rates. An increase in reservoir porosity caused a shift in the precipitation pattern from sealing to displacement. By incorporating pore structure geometry parameters, the regime diagrams were adapted to account for varying reservoir porosities. In hydrophobic reservoirs, the precipitation pattern tended to favour displacement, as salt accumulation occurred more in larger pores than in pore throats, thereby reducing the risk of clogging. The numerical results demonstrated that increasing the gas injection rate or reducing the initial salt concentration significantly enhanced CO2 injection performance. Furthermore, identifying reservoirs with high hydrophobicity or large porosity is essential for optimising CO2 injection processes.
The aspect ratio effect on side and basal melting in fresh water is systematically investigated across a range of Rayleigh numbers and ambient temperatures using direct numerical simulations. The side mean melt rate follows a ${Ra}^{1/4}\,\gamma ^{-3/8}$ scaling relation in the side-melting dominant regime, where ${Ra}$ is the Rayleigh number, and $\gamma$ is the width-to-height aspect ratio of the ice block. In the basal-melting dominant regime, the basal mean melt rate follows a ${Ra}^{1/4}\gamma ^{3/8}$ scaling relation at low Rayleigh numbers, but transitions to a ${Ra}^{1/3}\gamma ^{1/2}$ scaling relation at higher Rayleigh numbers. This scaling transition is attributed to the formation of a bottom cavity resulting from flow separation at high Rayleigh numbers. The overall mean melt rate exhibits a non-monotonic dependence on the aspect ratio, driven by the competition between side and basal melting. The proposed theoretical model successfully captures the observed non-monotonic behaviour, and accurately predicts the overall mean melt rate over the considered range of Rayleigh numbers and ambient temperatures, especially in the side- and basal-melting dominant regimes. More specifically, the side, basal and overall mean melt rates follow a linear ${St}$ scaling relation for ambient temperatures $T_{w}\geqslant 15^{\,\circ }\textrm {C}$, with ${St}$ being the Stefan number (the ratio between sensible heat and latent heat), but deviations from this scaling relation and a non-monotonic dependence on the ambient temperature are observed at lower ambient temperatures, which can be attributed to the density anomaly effect.
Experimental and numerical observations in turbulent shear flows point to the persistence of the anisotropy imprinted by the large-scale velocity gradient down to the smallest scales of turbulence. This is reminiscent of the strong anisotropy induced by a mean passive scalar gradient, which manifests itself by the ‘ramp–cliff’ structures. In the shear flow problem, the anisotropy can be characterised by the odd-order moments of $\partial _y u$, where $u$ is the fluctuating streamwise velocity component, and $y$ is the direction of mean shear. Here, we extend the approach proposed by Buaria et al. (Phys. Rev. Lett., 126, 034504, 2021) for the passive scalar fields, and postulate that fronts of width $\delta \sim \eta Re_\lambda ^{1/4}$, where $\eta$ is the Kolmogorov length scale, and $Re_\lambda$ is the Taylor-based Reynolds number, explain the observed small-scale anisotropy for shear flows. This model is supported by the collapse of the positive tails of the probability density functions (PDFs) of $(\partial _y u)/(u^{\prime }/\delta )$ in turbulent homogeneous shear flows (THSF) when the PDFs are normalised by $\delta /L$, where $u^{\prime }$ is the root-mean-square of $u$ and $L$ is the integral length scale. The predictions of this model for the odd-order moments of $\partial _y u$ in THSF agree well with direct numerical simulation (DNS) and experimental results. Moreover, the extension of our analysis to the log-layer of turbulent channel flows (TCF) leads to the prediction that the odd-order moments of order $p (p \gt 1)$ of $\partial _y u$ have power-law dependencies on the wall distance $y^{+}$: $\langle (\partial _y u)^p \rangle /\langle (\partial _y u)^2 \rangle ^{p/2} \sim (y^{+})^{(p-5)/8}$, which is consistent with DNS results.
Mapping reviews (MRs) are crucial for identifying research gaps and enhancing evidence utilization. Despite their increasing use in health and social sciences, inconsistencies persist in both their conceptualization and reporting. This study aims to clarify the conceptual framework and gather reporting items from existing guidance and methodological studies. A comprehensive search was conducted across nine databases and 11 institutional websites, including documents up to January 2024. A total of 68 documents were included, addressing 24 MR terms and 55 definitions, with 39 documents discussing distinctions and overlaps among these terms. From the documents included, 28 reporting items were identified, covering all the steps of the process. Seven documents mentioned reporting on the title, four on the abstract, and 14 on the background. Ten methods-related items appeared in 56 documents, with the median number of documents supporting each item being 34 (interquartile range [IQR]: 27, 39). Four results-related items were mentioned in 18 documents (median: 14.5, IQR: 11.5, 16), and four discussion-related items appeared in 25 documents (median: 5.5, IQR: 3, 13). There was very little guidance about reporting conclusions, acknowledgments, author contributions, declarations of interest, and funding sources. This study proposes a draft 28-item reporting checklist for MRs and has identified terminologies and concepts used to describe MRs. These findings will first be used to inform a Delphi consensus process to develop reporting guidelines for MRs. Additionally, the checklist and definitions could be used to guide researchers in reporting high-quality MRs.
The study aims were to present in vitro susceptibilities of clinical isolates from Gram-negative bacteria bloodstream infections (GNBSI) collected in China. GNBSI isolates were collected from 18 tertiary hospitals in 7 regions of China from 2018 to 2020. Minimum inhibitory concentrations were assessed using a Trek Diagnostic System. Susceptibility was determined using CLSI broth microdilution, and breakpoints were interpreted using CLSI M100 (2021). A total of 1,815 GNBSI strains were collected, with E. coli (42.4%) and Klebsiella pneumoniae (28.6%) being the most prevalent species, followed by P. aeruginosa (6.7%). Susceptibility analyses revealed low susceptibilities (<40%) of ESBL-producing E. coli and K. pneumonia to third-/fourth-generation cephalosporins, monobactamases, and fluoroquinolones. High susceptibilities to colistin (95.0%) and amikacin (81.3%) were found for K. pneumoniae, while Acinetobacter baumannii exhibited a high susceptibility (99.2%) to colistin but a low susceptibility to other antimicrobials (<27.5%). Isolates from ICUs displayed lower drug susceptibility rates of K. pneumoniae and A. baumannii than isolates from non-ICUs (all P < 0.05). Carbapenem-resistant and ESBL-producing K. pneumoniae detection was different across regions (both P < 0.05). E. coli and K. pneumoniae were major contributors to GNBSI, while A. baumannii exhibited severe drug resistance in isolates obtained from ICU departments.
The analysis of data from experiments in economics routinely involves testing multiple null hypotheses simultaneously. These different null hypotheses arise naturally in this setting for at least three different reasons: when there are multiple outcomes of interest and it is desired to determine on which of these outcomes a treatment has an effect; when the effect of a treatment may be heterogeneous in that it varies across subgroups defined by observed characteristics and it is desired to determine for which of these subgroups a treatment has an effect; and finally when there are multiple treatments of interest and it is desired to determine which treatments have an effect relative to either the control or relative to each of the other treatments. In this paper, we provide a bootstrap-based procedure for testing these null hypotheses simultaneously using experimental data in which simple random sampling is used to assign treatment status to units. Using the general results in Romano and Wolf (Ann Stat 38:598–633, 2010), we show under weak assumptions that our procedure (1) asymptotically controls the familywise error rate—the probability of one or more false rejections—and (2) is asymptotically balanced in that the marginal probability of rejecting any true null hypothesis is approximately equal in large samples. Importantly, by incorporating information about dependence ignored in classical multiple testing procedures, such as the Bonferroni and Holm corrections, our procedure has much greater ability to detect truly false null hypotheses. In the presence of multiple treatments, we additionally show how to exploit logical restrictions across null hypotheses to further improve power. We illustrate our methodology by revisiting the study by Karlan and List (Am Econ Rev 97(5):1774–1793, 2007) of why people give to charitable causes.
The study aimed to determine the patterns of the vestibular and ocular motor findings in cerebellar infarction (CI).
Methods:
We retrospectively analyzed vestibular and ocular motor test results in 23 CI patients and 32 acute unilateral vestibulopathy (AUVP) patients.
Results:
Among CI cases, the posterior inferior cerebellar artery (PICA) was the most commonly affected territory. Vertigo is predominantly observed in patients with infarctions affecting PICA or anterior inferior cerebellar artery (AICA). Lesions involving the superior cerebellar artery (SCA) mainly result in dizziness. Saccadic intrusion and oscillation, abnormal bilateral smooth pursuit (SP) and abnormal saccades were more prevalent in the CI group than in the AUVP group (all p < 0.05). Horizontal saccades were abnormal in 11 patients (47.8%) with CI. All AUVP patients had normal horizontal saccades. Horizontal SP was impaired in 13 patients (56.5%) with CI, with decreased gain toward both sides in 10 and toward 1 side in 3. Impaired horizontal SP was noted in nine patients (28.1%) with AUVP, with decreased gain toward the contralesional side in all cases. A total of 26.3% (5/19) of patients with CI exhibited subjective visual vertical (SVV) deviation toward the affected side and 31.6% (6/19) toward the unaffected side. In patients with AUVP, 70.0% (21/30) showed SVV deviation toward the affected side.
Conclusions:
Vertigo is mainly seen in PICA or AICA infarctions. SCA lesions mostly cause dizziness. Saccadic intrusion and oscillation, abnormal bilateral SP and abnormal saccades contribute to the diagnosis of CI. Moreover, SVV deviation varies depending on the cerebellar structures involved.
We prove a large deviation principle for the slow-fast rough differential equations (RDEs) under the controlled rough path (RP) framework. The driver RPs are lifted from the mixed fractional Brownian motion (FBM) with Hurst parameter $H\in (1/3,1/2)$. Our approach is based on the continuity of the solution mapping and the variational framework for mixed FBM. By utilizing the variational representation, our problem is transformed into a qualitative property of the controlled system. In particular, the fast RDE coincides with Itô stochastic differential equation (SDE) almost surely, which possesses a unique invariant probability measure with frozen slow component. We then demonstrate the weak convergence of the controlled slow component by averaging with respect to the invariant measure of the fast equation and exploiting the continuity of the solution mapping.
The article uses the scandal surrounding Jackson Yee, a state-endorsed celebrity and household name in China, as a case study to critically examine how the “government–industry–fan–platform” alliance co-conducts what we call “collaborative celebrity PR” to rescue co-opted stars from scandal. We find that the relationship between the four agents is symbiotic but that the government plays the most important “arbitrator” role. We argue that the state-endorsed celebrities face an inherent dilemma of “power(lessness)” in which they have to dedicate more effort towards propaganda and behave in a moral and exemplary way to please the government to gain more political capital and power and minimize their own precarity. We also highlight the uncertainty and risks using celebrities in its pop propaganda can bring to the CCP: if a state-endorsed celebrity cannot be saved, the scandal can damage the legitimacy and reliability of the Party propaganda.
In this paper, on–off switching digitization of a W-band variable gain power amplifier (VGPA) with above 60 dB dynamic range is introduced for large-scale phased array. Digitization techniques of on–off switching modified stacking transistors with partition are proposed to optimize configuration of control sub-cells. By the proposed techniques, gain control of a radio frequency variable gain amplifier (VGA) could be highly customized for both coarse and fine switching requirements instead of using additional digital-to-analog converters to tune the overall amplifier bias. The designed VGA in 130 nm SiGe has achieved switchable gain range from −46.4 to 20.6 dB and power range from −25.0 to 15.7 dBm at W band. The chip size of the fabricated VGPA is about 0.31 mm × 0.1 mm.
The double-cone ignition scheme is a promising novel ignition method, which is expected to greatly save the driver energy and enhance the robustness of the implosion process. In this paper, ablation of the inner surface of the cone by the hard X-ray from coronal Au plasma is studied via radiation hydrodynamics simulations. It is found that the X-ray ablation of the inner wall will form strong pre-plasma, which will significantly affect the implosion process and cause the Au plasma to mix with the fuel, leading to ignition failure. The radiation and pre-ablation intensities in the system are estimated, and the evolutions of areal density, ion temperature and the distribution of Au ions are analysed. In addition, the mixing of Au in CH at collision is quantified. Then, a scheme to reduce the X-ray pre-ablation by replacing the gold cone with a tungsten cone is proposed, showing that it is effective in reducing high-Z mixing and improving collision results.
This research seeks to ascertain the prevalence and determinants of mirror-image dextrocardia in fetuses
Study design:
With December 2022 as the reference point, we compiled colleted data on pregnant women who carried fetuses with mirror-image dextrocardia in Xi’an, Shaanxi Province: September–October 2022, November 2022, and December 2022–January 2023. An online questionnaire was distributed to 209 pregnant across China who had contracted COVID-19. The case group comprised women whose final menstrual cycle occurred in November 2022 and who had a fetus with mirror-image dextrocardia. Women with a November 2022 final menstrual period and a fetus without this condition made up the control group. To identify the risk factors associated with fetal mirror-image dextrocardia, both univariate and multivariate logistic regression analyses were employed.
Results:
A significant difference was noted in the gestational age at COVID-19 infection women with a September to October 2022 and December 2022 to January 2023 final menstrual period who did not bear a fetus with mirror-image dextrocardia, and those with a November 2022 final menstrual period whose fetus exhibited this condition. The univariate and multivariate analyses conducted on pregnant women with a final menstrual period in November 2022 who had contracted COVID-19 revealed significant differences in the presence and duration of fever between those bearing fetuses with mirror-image dextrocardia and those without (P = 0.000).
Conclusion:
The findings suggest two critical factors to the increased prevalence of fetal mirror-image dextrocardia: 1) the infection timing which occurs between the 4th and 6th week of pregnancy and 2) the presence of fever and its prolonged duration.
The rapid and efficient removal of weeds is currently a research hotspot. With the integration of robotics and automation technology into agricultural production, intelligent field-weeding robots have emerged. An overview of the development status of weeding robots based on bibliometric and scientific mapping methods is presented. Two key technologies of weeding robots are summarized, and the research progress of precision-spraying weeding robots, mechanical weeding robots, and thermal weeding robots with laser devices, categorized by weeding method, is reviewed. Finally, a summary and an outlook on the future development trends of intelligent field-weeding robots are provided, aiming to offer a reference for further promoting the development of weeding robots.
This paper proposes an online robust self-learning terminal sliding mode control (RS-TSMC) with stability guarantee for balancing control of reaction wheel bicycle robots (RWBR) under model uncertainties and disturbances, which improves the balancing control performance of RWBR by optimising the constrained output of TSMC. The TSMC is designed for a second-order mathematical model of RWBR. Then robust adaptive dynamic programming based on an actor-critic algorithm is used to optimise the TSMC only by data sampled online. The system closed-loop stability and convergence of the neural network weights are guaranteed based on the Lyapunov analysis. The effectiveness of the proposed algorithm is demonstrated through simulations and experiments.
This study demonstrates a kilowatt-level, spectrum-programmable, multi-wavelength fiber laser (MWFL) with wavelength, interval and intensity tunability. The central wavelength tuning range is 1060–1095 nm and the tunable number is controllable from 1 to 5. The wavelength interval can be tuned from 6 to 32 nm and the intensity of each channel can be adjusted independently. Maximum output power up to approximately 1100 W has been achieved by master oscillator power amplifier structures. We also investigate the wavelength evolution experimentally considering the difference of gain competition, which may give a primary reference for kW-level high-power MWFL spectral manipulation. To the best of our knowledge, this is the highest output power ever reported for a programmable MWFL. Benefiting from its high power and flexible spectral manipulability, the proposed MWFL has great potential in versatile applications such as nonlinear frequency conversion and spectroscopy.
A high-energy pulsed vacuum ultraviolet (VUV) solid-state laser at 177 nm with high peak power by the sixth harmonic of a neodymium-doped yttrium aluminum garnet (Nd:YAG) amplifier in a KBe2BO3F2 prism-coupled device was demonstrated. The ultraviolet (UV) pump laser is a 352 ps pulsed, spatial top-hat super-Gaussian beam at 355 nm. A high energy of a 7.12 mJ VUV laser at 177 nm is obtained with a pulse width of 255 ps, indicating a peak power of 28 MW, and the conversion efficiency is 9.42% from 355 to 177 nm. The measured results fitted well with the theoretical prediction. It is the highest pulse energy and highest peak power ever reported in the VUV range for any solid-state lasers. The high-energy, high-peak-power, and high-spatial-uniformity VUV laser is of great interest for ultra-fine machining and particle-size measurements using UV in-line Fraunhofer holography diagnostics.
We report a high-power ultra-narrow fiber-coupled diode laser using a Faraday anomalous dispersion optical filter (FADOF) as an external cavity element. An external cavity suitable for both the fiber-coupled package and FADOF configuration has been proposed. Using a 87Rb-based FADOF as the frequency-selective element, we realized a 103 W continuous laser output with a uniform circular beam. The center wavelength was precisely locked at the D2 line of the Rb resonance, and the bandwidth was narrowed from 1.8 nm (free-running, full width at half maximum (FWHM)) to 0.013 nm (6.9 GHz, FWHM). The side mode suppression ratio reached 31 dB. Such diode lasers with precise wavelength and high spectral brightness have critical applications in many fields, such as high-energy gas laser pumping, spin-exchange optical pumping, Raman spectroscopy and nonlinear optics.