Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-03T16:00:09.126Z Has data issue: false hasContentIssue false

Germinal Matrix

from Section 4 - Disruptions / Hypoxic-Ischemic Injury

Published online by Cambridge University Press:  07 August 2021

Mirna Lechpammer
Affiliation:
New York University School of Medicine
Marc Del Bigio
Affiliation:
University of Manitoba, Canada
Rebecca Folkerth
Affiliation:
New York University School of Medicine
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rorke, LB. Pathology of Perinatal Brain Injury. New York: Raven Press; 1982. p. 146.Google Scholar
Friede, RL. Hemorrhages in Asphyxiated Premature Infants: Developmental Neuropathology, 2nd rev. ed. Berlin: Springer-Verlag; 1989. pp. 4458.Google Scholar
Leviton, A, Gilles, FH, Dooling, EC. The epidemiology of ganglionic eminence hemorrhage. In: Gilles, FH, Leviton, A, Dooling, EC, editors. The Developing Human Brain Growth and Epidemiologic Neuropathology. Boston: John Wright; 1983. pp. 204–16.Google Scholar
Leech, RW, Kohnen, P. Subependymal and intraventricular hemorrhages in the newborn. Am J Pathol. 1974;77(3):465–75.Google Scholar
Kutuk, MS, Yikilmaz, A, Ozgun, MT, Dolanbay, M, Canpolat, M, Uludag, S, et al. Prenatal diagnosis and postnatal outcome of fetal intracranial hemorrhage. Childs Nerv Syst. 2014;30(3):411–8.Google Scholar
Kirkinen, P, Partanen, K, Ryynanen, M, Orden, MR. Fetal intracranial hemorrhage. Imaging by ultrasound and magnetic resonance imaging. J Reprod Med. 1997;42(8):467–72.Google Scholar
Sanapo, L, Whitehead, MT, Bulas, DI, Ahmadzia, HK, Pesacreta, L, Chang, T, et al. Fetal intracranial hemorrhage: role of fetal MRI. Prenat Diagn. 2017;37(8):827–36.Google Scholar
Goto, T, Kakita, H, Takasu, M, Takeshita, S, Ueda, H, Muto, D, et al. A rare case of fetal extensive intracranial hemorrhage and whole-cerebral hypoplasia due to latent maternal vitamin K deficiency. J Neonatal Perinatal Med. 2018;11(2):191–4.Google Scholar
Burrows, RF, Caco, CC, Kelton, JG. Neonatal alloimmune thrombocytopenia: spontaneous in utero intracranial hemorrhage. Am J Hematol. 1988;28(2):98102.Google Scholar
Gherman, RB, Chauhan, SP. Placental abruption and fetal intraventricular hemorrhage after airbag deployment: a case report. J Reprod Med. 2014;59(9–10):501–3.Google Scholar
Kapur, RP, Shaw, CM, Shepard, TH. Brain hemorrhages in cocaine-exposed human fetuses. Teratology. 1991;44(1):1118.Google Scholar
Tongsong, T, Sukpan, K, Wanapirak, C, Phadungkiatwattna, P. Fetal cytomegalovirus infection associated with cerebral hemorrhage, hydrops fetalis, and echogenic bowel: case report. Fetal Diagn Ther. 2008;23(3):169–72.Google Scholar
Matsumoto, T, Miyakoshi, K, Fukutake, M, Ochiai, D, Minegishi, K, Tanaka, M. Intracranial sonographic features demonstrating in utero development of hemorrhagic brain damage leading to schizencephaly-associated COL4A1 mutation. J Med Ultrason. (2001) 2015;42(3):445–6.Google Scholar
Kutuk, MS, Balta, B, Kodera, H, Matsumoto, N, Saitsu, H, Doganay, S, et al. Is there a relation between COL4A1/A2 mutations and antenatally detected fetal intraventricular hemorrhage? Childs Nerv Syst. 2014;30(3):419–24.Google Scholar
Huang, YF, Chen, WC, Tseng, JJ, Ho, ES, Chou, MM. Fetal intracranial hemorrhage (fetal stroke): report of four antenatally diagnosed cases and review of the literature. Taiwan J Obstet Gynecol. 2006;45(2):135–41.Google Scholar
Morioka, T, Hashiguchi, K, Nagata, S, Miyagi, Y, Mihara, F, Hikino, S, et al. Fetal germinal matrix and intraventricular hemorrhage. Pediatr Neurosurg. 2006;42(6):354–61.CrossRefGoogle ScholarPubMed
Kim, KR, Jung, SW, Kim, DW. Risk factors associated with germinal matrix-intraventricular hemorrhage in preterm neonates. J Korean Neurosurg Soc. 2014;56(4):334–7.Google Scholar
Chevallier, M, Debillon, T, Pierrat, V, Delorme, P, Kayem, G, Durox, M, et al. Leading causes of preterm delivery as risk factors for intraventricular hemorrhage in very preterm infants: results of the EPIPAGE 2 cohort study. Am J Obstet Gynecol. 2017;216(5):518.e1e12.Google Scholar
Lim, J, Hagen, E. Reducing germinal matrix-intraventricular hemorrhage: perinatal and delivery room factors. Neoreviews. 2019;20(8):e452–e63.CrossRefGoogle ScholarPubMed
Poryo, M, Boeckh, JC, Gortner, L, Zemlin, M, Duppre, P, Ebrahimi-Fakhari, D, et al. Ante-, peri- and postnatal factors associated with intraventricular hemorrhage in very premature infants. Early Hum Dev. 2018;116:18.Google Scholar
Ment, LR, Aden, U, Lin, A, Kwon, SH, Choi, M, Hallman, M, et al. Gene-environment interactions in severe intraventricular hemorrhage of preterm neonates. Pediatr Res. 2014;75(1–2):241–50.Google Scholar
Rong, Z, Liu, H, Xia, S, Chang, L. Risk and protective factors of intraventricular hemorrhage in preterm babies in Wuhan, China. Childs Nerv Syst. 2012;28(12):2077–84.CrossRefGoogle ScholarPubMed
Shalak, L, Perlman, JM. Hemorrhagic-ischemic cerebral injury in the preterm infant: current concepts. Clin Perinatol. 2002;29(4):745–63.Google Scholar
Ment, LR, Bada, HS, Barnes, P, Grant, PE, Hirtz, D, Papile, LA, et al. Practice parameter: neuroimaging of the neonate: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2002;58(12):1726–38.Google Scholar
Papile, LA, Burstein, J, Burstein, R, Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr. 1978;92(4):529–34.Google Scholar
Intrapiromkul, J, Northington, F, Huisman, TA, Izbudak, I, Meoded, A, Tekes, A. Accuracy of head ultrasound for the detection of intracranial hemorrhage in preterm neonates: comparison with brain MRI and susceptibility-weighted imaging. J Neuroradiol. 2013;40(2):81–8.Google Scholar
Parodi, A, Morana, G, Severino, MS, Malova, M, Natalizia, AR, Sannia, A, et al. Low-grade intraventricular hemorrhage: is ultrasound good enough? J Matern Fetal Neonatal Med. 2015;28 Suppl 1:2261–4.Google Scholar
McCormick, MC, Litt, JS, Smith, VC, Zupancic, JA. Prematurity: an overview and public health implications. Annu Rev Public Health. 2011;32:367–79.Google Scholar
De Noronha, L, Medeiros, F, Nones, RB, Martins, VD, Sepulcri R de, P, Sampaio, GA, et al. Injúria hipóxico-isquêmica de padrao hemorrágico em encéfalos de neomortos do Hospital de Clínicas de Curitiba. Análise de 1028 casos de necrópsia entre 1960 e 1995. Arq Neuropsiquiatr. 1999;57(4):950–8.Google Scholar
Jammes, JL, Gilles, FH. Telencephalic development: matrix volume and isocortex and allocortex surface areas. In: Gilles, FH, Leviton, A, Dooling, EC, editors. The Developing Human Brain Growth and Epidemiologic Neuropathology. Boston: John Wright; 1983. pp. 8793.Google Scholar
Terplan, KL. Histopathologic brain changes in 1152 cases of the perinatal and early infancy period. Biol Neonat. 1967;11:348–66.Google Scholar
Chen, HJ, Wei, KL, Zhou, CL, Yao, YJ, Yang, YJ, Fan, XF, et al. Incidence of brain injuries in premature infants with gestational age </= 34 weeks in ten urban hospitals in China. World J Pediatr. 2013;9(1):1724.Google Scholar
Del Bigio, MR. Hemorrhagic lesions. In: Adle-Biassette, H, Harding, BN, Golden, JA, editors. Developmental Neuropathology, 2nd ed. Hoboken: John Wiley and Sons; 2018. p. 203–11.Google Scholar
Berger, R, Bender, S, Sefkow, S, Klingmuller, V, Kunzel, W, Jensen, A. Peri/intraventricular haemorrhage: a cranial ultrasound study on 5286 neonates. Eur J Obstet Gynecol Reprod Biol. 1997;75(2):191203.Google Scholar
Ancel, PY, Goffinet, F, Kuhn, P, Langer, B, Matis, J, Hernandorena, X, et al. Survival and morbidity of preterm children born at 22 through 34 weeks’ gestation in France in 2011: results of the EPIPAGE-2 cohort study. JAMA Pediatr. 2015;169(3):230–8.Google Scholar
Sheth, RD. Trends in incidence and severity of intraventricular hemorrhage. J Child Neurol. 1998;13(6):261–4.Google Scholar
Groenendaal, F, Termote, J, van der Heide-Jalving, M, van Haastert, I, de Vries, L. Complications affecting preterm neonates from 1991 to 2006: what have we gained? Acta Paediatr. 2010;99(3):354–8.CrossRefGoogle ScholarPubMed
Kuban, KC, Allred, EN, Dammann, O, Pagano, M, Leviton, A, Share, J, et al. Topography of cerebral white-matter disease of prematurity studied prospectively in 1607 very-low-birthweight infants. J Child Neurol. 2001;16(6):401–8.Google Scholar
Larroche, JC. Hémorragies cérébrales intra-ventriculaires chez le prématuré. Ie partie: anatomie at physiopathologie. Biol Neonat. 1964;91:2656.CrossRefGoogle Scholar
Shankaran, S. Hemorrhagic lesions of the central nervous system. In: Stevenson, DK, Benitz, WE, Sunshine, P, editors. Fetal and Neonatal Brain Injury, 3rd ed. Cambridge: Cambridge University Press; 2003. pp. 175–88.Google Scholar
Darrow, VC, Alvord, ECJ, Mack, LA, Hodson, WA. Histologic evaluation of the reactions to hemorrhage in the premature human infant’s brain. A combined ultrasound and autopsy study and a comparison with the reaction in adults. Am J Pathol. 1988;130:4458.Google Scholar
Xue, M, Balasubramaniam, J, Del Bigio, MR. Brain inflammation following intracerebral hemorrhage. Current Neuropharmacol. 2003;1(4):325–32.CrossRefGoogle Scholar
Towbin, A. Cerebral intraventricular hemorrhage and subependymal matrix infarction in the fetus and premature newborn. Am J Pathol. 1968;52(1):121–40.Google Scholar
Lategan, B, Chodirker, BN, Del Bigio, MR. Fetal hydrocephalus caused by cryptic intraventricular hemorrhage. Brain Pathol. 2010;20(2):391–8.CrossRefGoogle ScholarPubMed
Dolfin, T, Skidmore, MB, Fong, KW, Hoskins, EM, Shennan, AT. Incidence, severity, and timing of subependymal and intraventricular hemorrhages in preterm infants born in a perinatal unit as detected by serial real-time ultrasound. Pediatrics. 1983;71(4):541–6.Google Scholar
Paneth, N, Pinto-Martin, J, Gardiner, J, Wallenstein, S, Katsikiotis, V, Hegyi, T, et al. Incidence and timing of germinal matrix/intraventricular hemorrhage in low birth weight infants. Am J Epidemiol. 1993;137(11):1167–76.Google Scholar
Ballabh, P. Pathogenesis and prevention of intraventricular hemorrhage. Clin Perinatol. 2014;41(1):4767.CrossRefGoogle ScholarPubMed
Tortora, D, Severino, M, Malova, M, Parodi, A, Morana, G, Sedlacik, J, et al. Differences in subependymal vein anatomy may predispose preterm infants to GMH-IVH. Arch Dis Child Fetal Neonatal Ed. 2018;103:F59F65.CrossRefGoogle ScholarPubMed
Ghazi-Birry, HS, Brown, WR, Moody, DM, Challa, VR, Block, SM, Reboussin, DM. Human germinal matrix: venous origin of hemorrhage and vascular characteristics. AJNR Am J Neuroradiol. 1997;18(2):219–29.Google ScholarPubMed
Nakamura, Y, Okudera, T, Hashimoto, T. Microvasculature in germinal matrix layer: its relationship to germinal matrix hemorrhage. Mod Pathol. 1991;4(4):475–80.Google Scholar
Nakamura, Y, Okudera, T, Fukuda, S, Hashimoto, T. Germinal matrix hemorrhage of venous origin in preterm neonates. Hum Pathol. 1990;21(10):1059–62.Google Scholar
Ment, LR, Stewart, WB, Ardito, TA, Madri, JA. Germinal matrix microvascular maturation correlates inversely with the risk period for neonatal intraventricular hemorrhage. Dev Brain Res. 1995;84(1):142–9.Google Scholar
Del Bigio, MR. Cell proliferation in human ganglionic eminence and suppression after prematurity-associated haemorrhage. Brain. 2011;134(Pt 5):1344–61.Google Scholar
Alderliesten, T, Lemmers, PM, Smarius, JJ, van de Vosse, RE, Baerts, W, van Bel, F. Cerebral oxygenation, extraction, and autoregulation in very preterm infants who develop peri-intraventricular hemorrhage. J Pediatr. 2013;162(4):698704.CrossRefGoogle ScholarPubMed
McAllister, JP, Guerra, MM, Ruiz, LC, Jimenez, AJ, Dominguez-Pinos, D, Sival, D, et al. Ventricular zone disruption in human neonates with intraventricular hemorrhage. J Neuropathol Exp Neurol. 2017;76(5):358–75.Google Scholar
Folkerth, RD. Germinal matrix haemorrhage: destroying the brain’s building blocks. Brain. 2011;134(Pt 5):1261–3.Google Scholar
Bruschettini, M, Romantsik, O, Zappettini, S, Banzi, R, Ramenghi, LA, Calevo, MG. Antithrombin for the prevention of intraventricular hemorrhage in very preterm infants. Cochrane Database Syst Rev. 2016;3:CD011636.Google Scholar
Whitelaw, A, Lee-Kelland, R. Repeated lumbar or ventricular punctures in newborns with intraventricular haemorrhage. Cochrane Database Syst Rev. 2017;4:Cd000216.Google ScholarPubMed
Lekic, T, Klebe, D, Pichon, P, Brankov, K, Sultan, S, McBride, D, et al. Aligning animal models of clinical germinal matrix hemorrhage, from basic correlation to therapeutic approach. Curr Drug Targets. 2017;18(12):1316–28.CrossRefGoogle ScholarPubMed
Flores, JJ, Klebe, D, Tang, J, Zhang, JH. A comprehensive review of therapeutic targets that induce microglia/macrophage-mediated hematoma resolution after germinal matrix hemorrhage. J Neurosci Res. 2020 98(1):121–128.Google Scholar
Klebe, D, McBride, D, Krafft, PR, Flores, JJ, Tang, J, Zhang, JH. Posthemorrhagic hydrocephalus development after germinal matrix hemorrhage: established mechanisms and proposed pathways. J Neurosci Res. 2020 98(1):105–120.Google Scholar
Larroque, B, Marret, S, Ancel, PY, Arnaud, C, Marpeau, L, Supernant, K, et al. White matter damage and intraventricular hemorrhage in very preterm infants: the EPIPAGE study. J Pediatr. 2003;143(4):477–83.Google Scholar
Gilles, FH, Leviton, A, Golden, JA, Paneth, N, Rudelli, RD. Groups of histopathologic abnormalities in brains of very low birthweight infants. J Neuropathol Exp Neurol. 1998;57(11):1026–34.Google Scholar
Wang, LW, Lin, YC, Tu, YF, Wang, ST, Huang, CC. Isolated cystic periventricular leukomalacia differs from cystic periventricular leukomalacia with intraventricular hemorrhage in prevalence, risk factors and outcomes in preterm infants. Neonatology. 2017;111(1):8692.Google Scholar
Mito, T, Becker, LE, Perlman, M, Takashima, S. A neuropathologic analysis of neonatal deaths occurring in a single neonatal unit over a 20-year period. Pediatr Pathol. 1993;13(6):773–85.Google Scholar
Golden, JA, Gilles, FH, Rudelli, R, Leviton, A. Frequency of neuropathological abnormalities in very low birth weight infants. J Neuropathol Exp Neurol. 1997;56(5):472–8.Google Scholar
Armstrong, DL, Sauls, CD, Goddard-Finegold, J. Neuropathologic findings in short-term survivors of intraventricular hemorrhage. Am J Dis Child. 1987;141(6):617–21.Google Scholar
Babcock, DS, Bove, KE, Han, BK. Intracranial hemorrhage in premature infants: sonographic-pathologic correlation. AJNR Am J Neuroradiol. 1982;3(3):309–17.Google Scholar
Lun, MP, Monuki, ES, Lehtinen, MK. Development and functions of the choroid plexus-cerebrospinal fluid system. Nat Rev Neurosci. 2015;16(8):445–57.CrossRefGoogle ScholarPubMed
Xiang, J, Routhe, LJ, Andrew Wilkinson, D, Hua, Y, Moos, T, Xi, G, et al. The choroid plexus as a site of damage in hemorrhagic and ischemic stroke and its role in responding to injury. Fluids Barriers CNS. 2017;14(1):8.Google Scholar
Haines, KM, Wang, W, Pierson, CR. Cerebellar hemorrhagic injury in premature infants occurs during a vulnerable developmental period and is associated with wider neuropathology. Acta Neuropathol Commun. 2013;1(1):69.Google Scholar
Pierson, CR, Al Sufiani, F. Preterm birth and cerebellar neuropathology. Semin Fetal Neonatal Med. 2016;21(5):305–11.Google Scholar
Kusters, CD, Chen, ML, Follett, PL, Dammann, O.Intraventricular” hemorrhage and cystic periventricular leukomalacia in preterm infants: how are they related? J Child Neurol. 2009;24(9):1158–70.Google Scholar
Lin, PY, Hagan, K, Fenoglio, A, Grant, PE, Franceschini, MA. Reduced cerebral blood flow and oxygen metabolism in extremely preterm neonates with low-grade germinal matrix- intraventricular hemorrhage. Sci Rep. 2016;6:25903.Google Scholar
Goldstein, RF, Cotten, CM, Shankaran, S, Gantz, MG, Poole, WK. Influence of gestational age on death and neurodevelopmental outcome in premature infants with severe intracranial hemorrhage. J Perinatol. 2013;33(1):2532.Google Scholar
Bolisetty, S, Dhawan, A, Abdel-Latif, M, Bajuk, B, Stack, J, Lui, K. Intraventricular hemorrhage and neurodevelopmental outcomes in extreme preterm infants. Pediatrics. 2014;133(1):5562.Google Scholar
Fumagalli, M, Bassi, L, Sirgiovanni, I, Mosca, F, Sannia, A, Ramenghi, LA. From germinal matrix to cerebellar haemorrhage. J Matern Fetal Neonatal Med. 2015;28 Suppl 1:2280–5.Google Scholar
Reubsaet, P, Brouwer, AJ, van Haastert, IC, Brouwer, MJ, Koopman, C, Groenendaal, F, et al. The impact of low-grade germinal matrix-intraventricular hemorrhage on neurodevelopmental outcome of very preterm infants. Neonatology. 2017;112(3):203–10.Google Scholar
Ou, X, Glasier, CM, Ramakrishnaiah, RH, Mulkey, SB, Ding, Z, Angtuaco, TL, et al. Impaired white matter development in extremely low-birth-weight infants with previous brain hemorrhage. AJNR Am J Neuroradiol. 2014;35(10):1983–9.Google Scholar
Jeong, HJ, Shim, SY, Cho, HJ, Cho, SJ, Son, DW, Park, EA. Cerebellar development in preterm infants at term-equivalent age is impaired after low-grade intraventricular hemorrhage. J Pediatr. 2016;175:86–92 e2.CrossRefGoogle ScholarPubMed
Sancak, S, Gursoy, T, Karatekin, G, Ovali, F. Effect of intraventricular hemorrhage on cerebellar growth in preterm neonates. Cerebellum. 2017;16(1):8994.CrossRefGoogle ScholarPubMed
Young, JM, Vandewouw, MM, Mossad, SI, Morgan, BR, Lee, W, Smith, ML, et al. White matter microstructural differences identified using multi-shell diffusion imaging in six-year-old children born very preterm. Neuroimage Clin. 2019;23:101855.Google Scholar
Dewan, MC, Rattani, A, Mekary, R, Glancz, LJ, Yunusa, I, Baticulon, RE, et al. Global hydrocephalus epidemiology and incidence: systematic review and meta-analysis. J Neurosurg. 2019; 130:1065–1079.Google Scholar
Nagra, G, Del Bigio, MR. Pathology of pediatric hydrocephalus. In: Cinalli, G, Özek, MM, Sainte-Rose, C, editors. Pediatric Hydrocephalus, 2nd ed. New York: Springer; 2019. pp. 359–77.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×