We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We aimed to validate In-Body BIA measures with DXA as reference and to describe the BC profiling of Tibetan adults.
Design:
This cross-sectional study included 855 participants (391 men and 464 women).Correlation and Bland-Altman analyses were performed for method agreement of In-Body BIA and DXA. BC were described by obesity and metabolic status.
Setting:
Bioelectrical Impedance Analysis (In-Body BIA) and Dual-energy X-ray absorptiometry (DXA) have not been employed to characterize the body composition (BC) of the Tibetan population living in the Qinghai-Tibet Plateau.
Participants:
A total of 855 Tibetan adults, including 391 men and 464 women, were enrolled in the study.
Results:
Concordance correlation coefficient for total fat mass (FM) and total lean mass (LM) between In-Body BIA and DXA were 0.91 and 0.89. The bias of In-Body BIA for percentages of total FM and total LM was 0.91% (2.46%) and -1.74% (-2.80%) compared with DXA, respectively. Absolute limits of agreement were wider for total FM in obese men and women and for total LM in overweight men than their counterparts. Gradience in the distribution of total and regional FM content was observed across different BMI categories and its combinations with waist circumference and metabolic status.
Conclusions:
In-Body BIA and DXA provided overall good agreement at group level in Tibetan adults, but the agreement was inferior in participants being overweight or obese.
Adolescence marks a critical transition period, with significant mental health challenges including anxiety and depression symptoms that affect long-term happiness. There has been a lack of research exploring the factors mediating adolescent happiness.
Aims
To investigate the mediating effects of anxiety and depression on adolescent happiness, as well as the contributions of sociodemographic factors.
Methods
We recruited 392 adolescents. Anxiety symptoms, depression symptoms and happiness were assessed by the seven-item Generalized Anxiety Disorder scale, nine-item Patient Health Questionnaire and single-item happiness scale, respectively. Self-administered questionnaires were used to collect sociodemographic information.
Results
Spearman correlation analysis showed significant negative correlations of happiness with anxiety (r = −0.37, P < 0.0001) and depression (r = −0.47, P < 0.0001). Positive predictors of happiness included quality of parents’ marriage (β = 0.12, P = 0.006), regular physical exercise (β = 0.13, P = 0.006) and regular diet (β = 0.10, P = 0.03). Mediation analysis indicated that depressive symptoms (estimate = 0.50, 95% CI: 0.25 to 0.80) and anxiety symptoms (estimate = 0.32, 95% CI: 0.12 to 0.57) partially mediated the relationship between regular exercise and happiness, whereas depressive symptoms completely mediated the relationship between anxiety symptoms and happiness (estimate = −0.14, 95% CI: −0.20 to −0.08).
Conclusion
The findings of this study highlight the intricate interplay of mental health issues, lifestyle factors and adolescent happiness and emphasise the need for comprehensive interventions focusing on enhancing physical activity and addressing psychological health to foster happiness among adolescents.
Rhopalosiphum padi is an important grain pest, causing severe losses during crop production. As a systemic insecticide, flonicamid can control piercing-sucking pests efficiently. In our study, the lethal effects of flonicamid on the biological traits of R. padi were investigated via a life table approach. Flonicamid is highly efficiently toxic to R. padi, with an LC50 of 9.068 mg L−1. The adult longevity and fecundity of the R. padi F0 generation were markedly reduced under the LC25 and LC50 concentrations of flonicamid exposure. In addition, negative transgenerational effects on R. padi were observed under exposure to lethal concentrations of flonicamid, with noticeable decreases in the reproductive period, adult longevity, total longevity, and total fecundity of the F1 generation under the LC25 concentration of flonicamid. Furthermore, the third nymph stage (N3), preadult stage, duration of the adult pre-reproductive period, duration of the total pre-reproductive period, reproductive period, adult longevity, total longevity, and total fecundity of the F1 generation were significantly lower under treatment with the LC50 concentration of flonicamid. The life table parameters were subsequently analysed, revealing that the intrinsic rate of increase (rm) and the net reproductive rate (R0) were significantly lower but that the finite rate of increase (λ) and the mean generation time (T) were not significantly different under the LC25 and LC50 concentrations of flonicamid. These data are beneficial for grain aphid control and are critical for exploring the role of flonicamid in the integrated management of this key pest.
A liquid drop impacting a rigid substrate undergoes deformation and spreading due to normal reaction forces, which are counteracted by surface tension. On a non-wetting substrate, the drop subsequently retracts and takes off. Our recent work (Zhang et al., Phys. Rev. Lett., vol. 129, 2022, 104501) revealed two peaks in the temporal evolution of the normal force $F(t)$ – one at impact and another at jump-off. The second peak coincides with a Worthington jet formation, which vanishes at high viscosities due to increased viscous dissipation affecting flow focusing. In this article, using experiments, direct numerical simulations and scaling arguments, we characterize both the peak amplitude $F_1$ at impact and the one at takeoff ($F_2$) and elucidate their dependency on the control parameters: the Weber number $We$ (dimensionless impact kinetic energy) and the Ohnesorge number $Oh$ (dimensionless viscosity). The first peak amplitude $F_1$ and the time $t_1$ to reach it depend on inertial time scales for low viscosity liquids, remaining nearly constant for viscosities up to 100 times that of water. For high viscosity liquids, we balance the rate of change in kinetic energy with viscous dissipation to obtain new scaling laws: $F_1/F_\rho \sim \sqrt {Oh}$ and $t_1/\tau _\rho \sim 1/\sqrt {Oh}$, where $F_\rho$ and $\tau _\rho$ are the inertial force and time scales, respectively, which are consistent with our data. The time $t_2$ at which the amplitude $F_2$ appears is set by the inertiocapillary time scale $\tau _\gamma$, independent of both the viscosity and the impact velocity of the drop. However, these properties dictate the magnitude of this amplitude.
In this paper, on–off switching digitization of a W-band variable gain power amplifier (VGPA) with above 60 dB dynamic range is introduced for large-scale phased array. Digitization techniques of on–off switching modified stacking transistors with partition are proposed to optimize configuration of control sub-cells. By the proposed techniques, gain control of a radio frequency variable gain amplifier (VGA) could be highly customized for both coarse and fine switching requirements instead of using additional digital-to-analog converters to tune the overall amplifier bias. The designed VGA in 130 nm SiGe has achieved switchable gain range from −46.4 to 20.6 dB and power range from −25.0 to 15.7 dBm at W band. The chip size of the fabricated VGPA is about 0.31 mm × 0.1 mm.
Substantial changes resulting from the interaction of environmental and dietary factors contribute to an increased risk of obesity, while their specific associations with obesity remain unclear. We identified inflammation-related dietary patterns (DP) and explored their associations with obesity among urbanised Tibetan adults under significant environmental and dietary changes. Totally, 1826 subjects from the suburbs of Golmud City were enrolled in an open cohort study, of which 514 were followed up. Height, weight and waist circumference were used to define overweight and obesity. DP were derived using reduced rank regression with forty-one food groups as predictors and high-sensitivity C-reactive protein and prognostic nutritional index as inflammatory response variables. Altitude was classified as high or ultra-high. Two DP were extracted. DP-1 was characterised by having high consumptions of sugar-sweetened beverages, savoury snacks, and poultry and a low intake of tsamba. DP-2 had high intakes of poultry, pork, animal offal, and fruits and a low intake of butter tea. Participants in the highest tertiles (T3) of DP had increased risks of overweight and obesity (DP-1: OR = 1·37, 95 % CI 1·07, 1·77; DP-2: OR = 1·48, 95 % CI 1·18, 1·85) than those in the lowest tertiles (T1). Participants in T3 of DP-2 had an increased risk of central obesity (OR = 2·25, 95 % CI 1·49, 3·39) than those in T1. The positive association of DP-1 with overweight and obesity was only significant at high altitudes, while no similar effect was observed for DP-2. Inflammation-related DP were associated with increased risks of overweight and/or obesity.
Reducing nitrogen (N) fertilizer application is a sustainable practice in rice production. The effects of reducing N fertilizer input on grain yield and rice quality of early- and late-season dual-use rice (ELDR) in South China remain uncertain. Therefore, a short-term field trial was conducted with a high-yielding ELDR cultivar (Yuehesimiao, YHSM) and a low-yielding ELDR cultivar (Meixiangzhan 2, MXZ). The rice was cultivated with a 20% reduced N application rate (RN2), a 10% reduced rate (RN1) and the conventional N application rate (CN). In the early season, compared to CN, RN2 reduced the grain yield of YHSM and MXZ by an average of 16.1 and 6.6%, respectively, while RN1 lowered YHSM grain yield by 11.2% on average and had no effect on MXZ yield. In addition, RN2 decreased the milling and eating qualities of the two cultivars in the early season, while RN1 did not alter their milling, appearance or eating qualities. In the late season, neither RN2 nor RN1 affected grain yield or rice quality for both cultivars. Therefore, short-term reductions of 10 and 20% in N application could maintain grain yield and rice quality at current N fertilizer application rates in the late season. However, the early-season results only recommended a 10% reduced N fertilizer application rate for low-yielding ELDR cultivars to sustain grain yield and rice quality. The findings of this study can provide a theoretical basis for N management of ELDR in South China.
This paper proposes an online robust self-learning terminal sliding mode control (RS-TSMC) with stability guarantee for balancing control of reaction wheel bicycle robots (RWBR) under model uncertainties and disturbances, which improves the balancing control performance of RWBR by optimising the constrained output of TSMC. The TSMC is designed for a second-order mathematical model of RWBR. Then robust adaptive dynamic programming based on an actor-critic algorithm is used to optimise the TSMC only by data sampled online. The system closed-loop stability and convergence of the neural network weights are guaranteed based on the Lyapunov analysis. The effectiveness of the proposed algorithm is demonstrated through simulations and experiments.
Our study aimed to develop and validate a nomogram to assess talaromycosis risk in hospitalized HIV-positive patients. Prediction models were built using data from a multicentre retrospective cohort study in China. On the basis of the inclusion and exclusion criteria, we collected data from 1564 hospitalized HIV-positive patients in four hospitals from 2010 to 2019. Inpatients were randomly assigned to the training or validation group at a 7:3 ratio. To identify the potential risk factors for talaromycosis in HIV-infected patients, univariate and multivariate logistic regression analyses were conducted. Through multivariate logistic regression, we determined ten variables that were independent risk factors for talaromycosis in HIV-infected individuals. A nomogram was developed following the findings of the multivariate logistic regression analysis. For user convenience, a web-based nomogram calculator was also created. The nomogram demonstrated excellent discrimination in both the training and validation groups [area under the ROC curve (AUC) = 0.883 vs. 0.889] and good calibration. The results of the clinical impact curve (CIC) analysis and decision curve analysis (DCA) confirmed the clinical utility of the model. Clinicians will benefit from this simple, practical, and quantitative strategy to predict talaromycosis risk in HIV-infected patients and can implement appropriate interventions accordingly.
Accurately converting satellite instantaneous evapotranspiration (λETi) over time to daily evapotranspiration (λETd) is crucial for estimating regional evapotranspiration from remote sensing satellites, which plays an important role in effective water resource management. In this study, four upscaling methods based on the principle of energy balance, including the evaporative fraction method (Eva-f method), revised evaporative fraction method (R-Eva-f method), crop coefficient method (Kc-ET0 method) and direct canopy resistance method (Direct-rc method), were validated based on the measured data of the Bowen ratio energy balance system (BREB) in maize fields in northwestern (NW) and northeastern (NE) China (semi-arid and semi-humid continental climate regions) from 2021 to 2023. Results indicated that Eva-f and R-Eva-f methods were superior to Kc-ET0 and Direct-rc methods in both climatic regions and performed better between 10:00 and 11:00, with mean absolute errors (MAE) and coefficient of efficiency (ɛ) reaching <10 W/m2 and > 0.91, respectively. Comprehensive evaluation of the optimal upscaling time using global performance indicators (GPI) showed that the Eva-f method had the highest GPI of 0.59 at 12:00 for the NW, while the R-Eva-f method had the highest GPI of 1.18 at 11:00 for the NE. As a result, the Eva-f approach is recommended as the best way for upscaling evapotranspiration in NW, with 12:00 being the ideal upscaling time. The R-Eva-f method is the optimum upscaling method for the Northeast area, with an ideal upscaling time of 11:00. The comprehensive results of this study could be useful for converting λETi to λETd.
The AIMTB rapid test assay is an emerging test, which adopted a fluorescence immunochromatographic assay to measure interferon-γ (IFN-γ) production following stimulation of effector memory T cells in whole blood by mycobacterial proteins. The aim of this article was to explore the ability of AIMTB rapid test assay in detecting Mycobacterium tuberculosis (MTB) infection compared with the widely applied QuantiFERON-TB Gold Plus (QFT-Plus) test among rural doctors in China. In total, 511 participants were included in the survey. The concordance between the QFT-Plus test and the AIMTB rapid test assay was 94.47% with a Cohen’s kappa coefficient (κ) of 0.84 (95% CI, 0.79–0.90). Improved concordance between the two tests was observed in males and in participants with 26 or more years of service as rural doctors. The quantitative values of the QFT-Plus test was higher in individuals with a result of QFT-Plus-/AIMTB+ as compared to those with a result of QFT-Plus-/AIMTB- (p < 0.001). Overall, our study found that there was an excellent consistency between the AIMTB rapid test assay and the QFT-Plus test in a Chinese population. As the AIMTB rapid test assay is fast and easy to operate, it has the potential to improve latent tuberculosis infection testing and treatment at the community level in resource-limited settings.
Previous research has suggested a potential link between folic acid (FA) supplementary therapy and gastric ulcers (GU). To investigate this relationship further, we conducted a Mendelian randomisation (MR) analysis using data from the UK Biobank. Our analysis primarily employed inverse-variance weighted (IVW) methods, including both fixed-effect and random-effect models. To ensure the robustness of our findings, additional methods such as the simple median, the weighted median and the penalised weighted median were also applied. The MR analysis aimed to explore the causal effect of FA supplementary therapy on GU. Seven SNP at genetic loci associated with FA supplementary therapy were identified. Both the random-effect and fixed-effect IVW models indicated that genetically predicted FA supplementary therapy significantly reduced the risk of GU (OR, 0·870; 95 % CI 0·826, 0·917, P < 0·001). This result was consistent across other methods, with similar outcomes observed using the simple median (OR, 0·835; 95 % CI 0·773, 0·901, P < 0·001), the weighted median (OR, 0·854; 95 % CI 0·794, 0·919, P < 0·001) and the penalised weighted median (OR, 0·849; 95 % CI 0·789, 0·914, P < 0·001). Leave-one-out sensitivity analysis confirmed that no individual SNP significantly drove the association between FA supplementary therapy and GU. This MR study provides genetic evidence that FA supplementary therapy may decrease the risk of GU.
Studies on obesity and risk factors from a life-course perspective among residents in the Tibet Plateau with recent economic growth and increasing obesity are important and urgently needed. The birth cohort in this area provides a unique opportunity to examine the association between maternal dietary practice and neonatal obesity. The study aims to detect the prevalence of obesity among neonates, associated with maternal diet and other factors, supporting life-course strategies for obesity control. A cohort of pregnant women was enrolled in Tibet Plateau and followed till childbirth. Dietary practice during pregnancy was assessed using the Chinese FFQ – Tibet Plateau version, food items and other variables were associated with the risk for obesity of neonates followed by logistic regression, classification and regression trees (CART) and random forest. Of the total 1226 mother–neonate pairs, 40·5 % were Tibetan and 5·4 % of neonates with obesity. Consuming fruits as a protective factor for obesity of neonates with OR (95 % CI) = 0·61 (0·43, 0·87) from logistic regression; as well as OR = 0·20 (0·12, 0·35) for consuming fruits (≥ weekly) from CART. Removing fruit consumption to avoid overshadowing effects of other factors, the following were influential from CART: maternal education (more than middle school, OR = 0·22 (0·13, 0·37)) and consumption of Tibetan food (daily, OR = 3·44 (2·08, 5·69). Obesity among neonates is prevalent in the study population. Promoting healthy diets during pregnancy and strengthening maternal education should be part of the life-course strategies for obesity control.
This study aims to gain insight into each attribute as presented in the value of implantable medical devices, quantify attributes’ strength and their relative importance, and identify the determinants of stakeholders’ preferences.
Methods
A mixed-methods design was used to identify attributes and levels reflecting stakeholders’ preference toward the value of implantable medical devices. This design combined literature reviewing, expert’s consultation, one-on-one interactions with stakeholders, and a pilot testing. Based on the design, six attributes and their levels were settled. Among 144 hypothetical profiles, 30 optimal choice sets were developed, and healthcare professionals (decision-makers, health technology assessment experts, hospital administrators, medical doctors) and patients as stakeholders in China were surveyed. A total of 134 respondents participated in the survey. Results were analyzed by mixed logit model and conditional logit model.
Results
The results of the mixed logit model showed that all the six attributes had a significant impact on respondents’ choices on implantable medical devices. Respondents were willing to pay the highest for medical devices that provided improvements in clinical safety, followed by increased clinical effectiveness, technology for treating severe diseases, improved implement capacity, and innovative technology (without substitutes).
Conclusions
The findings of DCE will improve the current evaluation on the value of implantable medical devices in China and provide decision-makers with the relative importance of the criteria in pricing and reimbursement decision-making of implantable medical devices.
In order to establish a compact all-optical Thomson scattering source, experimental studies were conducted on the 45 TW Ti: sapphire laser facility. By including a steel wafer, mixed gas, and plasma mirror into a double-exit jet, several mechanisms, such as shock-assisted ionization injection, ionization injection, and driving laser reflection, were integrated into one source. So, the source of complexity was remarkably reduced. Electron bunches with central energy fluctuating from 90 to 160 MeV can be produced. Plasma mirrors were used to reflect the driving laser. The scattering of the reflected laser on the electron bunches led to the generation of X-ray photons. Through comparing the X-ray spots under different experimental conditions, it is confirmed that the X-ray photons are generated by Thomson scattering. For further application, the energy spectra and source size of the Thomson scattering source were measured. The unfolded spectrum contains a large amount of low-energy photons besides a peak near 67 keV. Through importing the electron energy spectrum into the Monte Carlo simulation code, the different contributions of the photons with small and large emitting angles can be used to explain the origin of the unfolded spectrum. The maximum photon energy extended to about 500 keV. The total photon production was 107/pulse. The FWHM source size was about 12 μm.
The global transition towards diets high in calories has contributed to 2.1 billion people becoming overweight, or obese, which damages male reproduction and harms offspring. Recently, more and more studies have shown that paternal exposure to stress closely affects the health of offspring in an intergenerational and transgenerational way. SET Domain Containing 2 (SETD2), a key epigenetic gene, is highly conserved among species, is a crucial methyltransferase for converting histone 3 lysine 36 dimethylation (H3K36me2) into histone 3 lysine 36 trimethylation (H3K36me3), and plays an important regulator in the response to stress. In this study, we compared patterns of SETD2 expression and the H3K36me3 pattern in pre-implantation embryos derived from normal or obese mice induced by high diet. The results showed that SETD2 mRNA was significantly higher in the high-fat diet (HFD) group than the control diet (CD) group at the 2-cell, 4-cell, 8-cell, and 16-cell stages, and at the morula and blastocyst stages. The relative levels of H3K36me3 in the HFD group at the 2-cell, 4-cell, 8-cell, 16-cell, morula stage, and blastocyst stage were significantly higher than in the CD group. These results indicated that dietary changes in parental generation (F0) male mice fed a HFD were traceable in SETD2/H3K36me3 in embryos, and that a paternal high-fat diet brings about adverse effects for offspring that might be related to SETD2/H3K36me3, which throws new light on the effect of paternal obesity on offspring from an epigenetic perspective.
A wideband tunable balanced phase shifter is achieved by utilizing varactor-loaded coupled lines (VLCLs)-embedded multistage branch-line structure. The tunable phase shift with low in-band phase deviation is attributed to the regulation in phase shift of the VLCLs and the horizontal microstrip lines in series. The wideband differential-mode (DM) impedance matching and common-mode (CM) suppression are due to multiple DM transmission poles and CM transmission zeros, which are brought about by the cascade of VLCLs and a microstrip line with short-circuited stubs in the DM-equivalent circuit and open-circuited stubs in the CM-equivalent circuit, respectively. Compared with the state-of-the-art tunable balanced phase shifters, the proposed design not only has the advantages of wide operating bandwidth (BW) with low in-band phase deviation but also has low insertion loss and easily fabricated structure. Theoretical analysis and design procedure were conducted, resulting in a prototype covering the frequency of 1.8 GHz. This prototype offers a tunable phase shift capability ranging from 0° to 90°. The prototype exhibits an operating BW of 45%, with a maximum phase deviation of ±6°. It also achieves a 10 dB DM return loss and CM suppression, while maintaining a maximum insertion loss of 2.5 dB.
We study the stability and collapse of holes at the wall in liquid layers on circular bounded containers with various wettabilities. Three distinct wetting modes of the hole are observed, which are related to the wettability of the container: when the substrate and the inner wall of the container are superhydrophobic, a stable hole remains as the liquid volume is continuously increased until the liquid layer covers the entire substrate; when the substrate and the inner wall are hydrophobic, an eye-shaped hole remains stable as the projected area of the hole exceeds a critical value $A_c$, however, the hole collapses if the liquid volume is further increased; when the substrate is superhydrophobic but the wall is hydrophilic, on increasing the liquid volume, the hole suddenly transfers into a circular hole and is pushed against the wall, leaving the hole dwelling around the centre of the container. Theoretical analyses and numerical simulations are conducted to establish the phase diagram for different wetting modes. It is found that, in the second mode, $A_c$ increases with the size of the container but decreases with the contact angle of the substrate and the wall. Furthermore, we experimentally investigate the dynamics of the hole. The time evolution of the area of the hole obeys a scaling relationship $A \sim (t_0 - t)^{1.1}$ after the hole collapses at time $t_0$.
Edited by
Jong Chul Ye, Korea Advanced Institute of Science and Technology (KAIST),Yonina C. Eldar, Weizmann Institute of Science, Israel,Michael Unser, École Polytechnique Fédérale de Lausanne
In this chapter, we review largely targeted tasks in the computed tomography (CT) literature, including low-dose CT, sparse-view CT, limited angle CT, interior CT, etc. We present deep-learning-based methods which operate as image post-processing techniques or raw-to-image mapping techniques.
An example of a nonfinitely based involution monoid of order five has recently been discovered. We confirm that this example is, up to isomorphism, the unique smallest among all involution monoids.