We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study explored how collaborative writing, an often-used instructional strategy in second language (L2) learning, intersects with large-group dynamics, and investigated their potential impact on the quality of writing outcomes in an online distance learning course. Using a mixed-methods approach, the research scrutinized intra-group interaction processes in two large groups undertaking a computer-assisted language learning writing assignment and evaluated the impact of these interaction processes on their writing products. Data from discussions in both a public online forum and a private social communication platform (WeChat) were collected, systematically coded, and analysed quantitatively and qualitatively based on language functions. Data collection also included an assessment of the written products and follow-up group interviews. The findings indicate distinct interaction patterns between high-performing and low-performing groups, characterised by an expert/participant pattern and a dominant/passive pattern, respectively. Additionally, insights from the interviews shed light on these interaction patterns and the potential impact on student learning outcomes. The study suggests practical implications, highlighting the importance of task design in promoting high levels of collaborative knowledge construction to enhance students’ writing skills and L2 language learning in large-group settings.
This work presents a detailed taxonomic study on organic-walled microfossils from the Ediacaran Sete Lagoas Formation (Bambuí Group) at the Barreiro section in the Januária area of the São Francisco basin, Brazil. Seven species are described, including Siphonophycus robustum (Schopf, 1968), Ghoshia januarensis new species, Leiosphaeridia crassa (Naumova, 1949), Leiosphaeridia jacutica (Timofeev, 1966), Leiosphaeridia minutissima (Naumova, 1949), Leiosphaeridia tenuissima Eisenack, 1958, and Germinosphaera bispinosa Mikhailova, 1986. These taxa are recovered for the first time in the Sete Lagoas Formation. They occur abundantly in the lower portion of the studied section, but only Ghoshia januarensis is present in the upper part of the studied section, probably due to environmental or taphonomic changes. Leiosphaeridia species, particularly Leiosphaeridia minutissima, dominate the organic-walled microfossil assemblage. Although most taxa described here have long stratigraphic ranges, they are consistent with a terminal Ediacaran age as inferred from detrital zircon data and tubular fossils (e.g., Cloudina and Corumbella) from the Sete Lagoas Formation.
The passive film of reinforcing steel in marine concrete is damaged by the infiltration of chloride and sulfate ions. Layered double hydroxide (LDH) can adsorb anions and release interlayer ions to form passive films due to its ion exchange property. A Mg-Al-NO3 layered double hydroxide/montmorillonite (LDH/Mnt) composite inhibitor was prepared by layer-by-layer self-assembly (LBL) of LDH and Mnt. The structure and morphology of the LDH/Mnt composites were characterized by X-ray diffraction (XRD), laser Raman spectroscopy, N2-adsorption/desorption measurements, and transmission electron microscopy (TEM). The LDH/Mnt composites, as inhibitors of chloride ions and sulfate ions, exhibited high slow-release efficiency. The mass ratio of LDH and Mnt affected the curing capacity of the synthesized composites, and the optimum mass ratio was LDH/Mnt = 1:1 for which slow-release efficiency reached 94.16%.
To evaluate the feasibility and safety of employing a Eustachian tube video endoscope with a supporting balloon as a viable treatment and examination option for patients with Eustachian tube dysfunction.
Methods
A study involving nine fresh human cadaver heads was conducted to investigate the potential of balloon dilatation Eustachian tuboplasty using a Eustachian tube video endoscope and a supporting balloon catheter. The Eustachian tube cavity was examined with the Eustachian tube video endoscope during the procedure, which involved the dilatation of the cartilaginous portion of the Eustachian tube with the supporting balloon catheter.
Results
The utilisation of the Eustachian tube video endoscope in conjunction with the supporting balloon catheter demonstrated technical ease during the procedure, with no observed damage to essential structures, particularly the Eustachian tube cavity.
Conclusion
This newly introduced method of dilatation and examination of the Eustachian tube cavity using a Eustachian tube video endoscope and the supporting balloon is a feasible, safe procedure.
Currently, most of the robot path planning methods for spray painting are based on slicing the Computer-Aided Design model of the target surface to generate a series of path points. They usually neglect the geometric boundary of the model and the smoothness of the generated path, leading to a non-uniform coating thickness. To ameliorate it, an improved “boundary fitting approach” is proposed. In this method, the upper and lower boundaries of the target surface are firstly detected based on the topology of the stereolithography model. For each pass, several sample points are extracted with a uniform length interval from the intersection points generated by the basic slicing method. The path pass is then described by a fourth-order polynomial curve. It fits the boundary points and sample points for the
$z$
-
$t$
and
$y$
-
$t$
relationships, respectively. Based on the spray gun’s motion direction and spray direction, the orientation of each path point is also defined. The parameters of the path pass are optimized by particle swarm optimization to get the optimal uniformity of the resulting coating thickness. Both of the global uniformity and the local uniformity between two adjacent passes are considered. The strength of the proposed approach is validated by comparing the simulation with the basic and other typical algorithms. The results denote that boundary fitting approach could improve the uniformity of coating thickness. It brings about a better performance for the painted workpiece.
The Bangong–Nujiang suture zone (BNSZ), which separates the Gondwana-derived Qiangtang and Lhasa terranes, preserves limited geological records of the Bangong–Nujiang Ocean (BNO). The timing of opening of this ocean has been hotly debated due to the rare and complicated rock records in the suture zones, which span over 100 Ma from Carboniferous–Permian to Early Jurassic time, based on geological, palaeontological and palaeomagnetic data. A combination of geochemical, geochronological and isotopic data are reported for the Riasairi trachytes, central BNSZ, northern Tibet, to constrain its petrogenesis and tectonic settings. Zircon U–Pb dating by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) yields mean ages of 236 Ma. Geochemically, these rocks are high-K calc-alkaline with moderate SiO2 (59.1–67.5 wt%) and high K2O + Na2O (8.1–11.6 wt%) contents. They are enriched in light rare earth elements with negative Eu anomalies, and show enrichments in high-field-strength elements with positive ‘Nb, Ta’ anomalies, similar to the intra-continental rift setting-related felsic lavas from the African Rift System. The high positive zircon ϵHf(t) and bulk ϵNd(t) values, as well as high initial Pb isotopes, imply a heterogeneous source involving both asthenospheric and subcontinental lithospheric mantle. The field and geochemical data jointly suggest that the Riasairi trachytes within the Mugagangri Group were formed in a continental rift setting. We interpret that the continental-rift-related Riaisairi trachytic lavas as derived from the southern margin of the Qiangtang terrane, implying that the BNO would have opened by Middle Triassic time, well after the commonly interpreted break-up of the Qiangtang terrane from Gondwana.
Primitive lamprophyres in orogenic belts can provide crucial insights into the nature of the subcontinental lithosphere and the relevant deep crust–mantle interactions. This paper reports a suite of relatively primitive lamprophyre dykes from the North Qiangtang, central Tibetan Plateau. Zircon U–Pb ages of the lamprophyre dykes range from 214 Ma to 218 Ma, with a weighted mean age of 216 ± 1 Ma. Most of the lamprophyre samples are similar in geochemical compositions to typical primitive magmas (e.g. high MgO contents, Mg no. values and Cr, with low FeOt/MgO ratios), although they might have experienced a slightly low degree of olivine crystallization, and they show arc-like trace-element patterns and enriched Sr–Nd isotopic composition ((87Sr/86Sr)i = 0.70538–0.70540, ϵNd(t) = −2.96 to −1.65). Those geochemical and isotopic variations indicate that the lamprophyre dykes originated from partial melting of a phlogopite- and spinel-bearing peridotite mantle modified by subduction-related aqueous fluids. Combining with the other regional studies, we propose that slab subduction might have occurred during Late Triassic time, and the rollback of the oceanic lithosphere induced the lamprophyre magmatism in the central Tibetan Plateau.
Understanding factors associated with post-discharge sleep quality among COVID-19 survivors is important for intervention development.
Aims
This study investigated sleep quality and its correlates among COVID-19 patients 6 months after their most recent hospital discharge.
Method
Healthcare providers at hospitals located in five different Chinese cities contacted adult COVID-19 patients discharged between 1 February and 30 March 2020. A total of 199 eligible patients provided verbal informed consent and completed the interview. Using score on the single-item Sleep Quality Scale as the dependent variable, multiple linear regression models were fitted.
Results
Among all participants, 10.1% reported terrible or poor sleep quality, and 26.6% reported fair sleep quality, 26.1% reported worse sleep quality when comparing their current status with the time before COVID-19, and 33.7% were bothered by a sleeping disorder in the past 2 weeks. After adjusting for significant background characteristics, factors associated with sleep quality included witnessing the suffering (adjusted B = −1.15, 95% CI = −1.70, −0.33) or death (adjusted B = −1.55, 95% CI = −2.62, −0.49) of other COVID-19 patients during hospital stay, depressive symptoms (adjusted B = −0.26, 95% CI = −0.31, −0.20), anxiety symptoms (adjusted B = −0.25, 95% CI = −0.33, −0.17), post-traumatic stress disorders (adjusted B = −0.16, 95% CI = −0.22, −0.10) and social support (adjusted B = 0.07, 95% CI = 0.04, 0.10).
Conclusions
COVID-19 survivors reported poor sleep quality. Interventions and support services to improve sleep quality should be provided to COVID-19 survivors during their hospital stay and after hospital discharge.
Our previous research showed that increased phosphorylation of connexin (Cx)36 indicated extended coupling of AII amacrine cells (ACs) in the rod-dominant mouse myopic retina. This research will determine whether phosphorylation at serine 276 of Cx35-containing gap junctions increased in the myopic chicken, whose retina is cone-dominant. Refractive errors and ocular biometric dimensions of 7-days-old chickens were determined following 12 h and 7 days induction of myopia by a −10D lens. The expression pattern and size of Cx35-positive plaques were examined in the early (12 h) and compensated stages (7 days) of lens-induced myopia (LIM). At the same time, phosphorylation at serine 276 (functional assay) of Cx35 in strata 5 (S5) of the inner plexiform layer was investigated. The axial length of the 7 days LIM eyes was significantly longer than that of non-LIM controls (P < 0.05). Anti-phospho-Ser276 (Ser276-P)-labeled plaques were significantly increased in LIM retinas at both 12 h and 7 days. The density of Ser276-P of Cx35 was observed to increase after 12 h LIM. In the meanwhile, the areas of existing Cx35 plaques did not change. As there was more phosphorylation of connexin35 at Ser276 at both the early and late stages (12 h) and 7 days of LIM chicken retinal activity, the coupling with ACs could be increased in myopia development of the cone-dominated chicken retina.
The dependence of fishbone cycle on energetic particle intensity has been investigated in EAST low-magnetic-shear plasmas. It is observed that the fishbone mode growth rate, saturation amplitude as well as fishbone cycle frequency clearly increase with increasing neutral beam injection (NBI) power. Moreover, enhanced electron density and temperature perturbations as well as energetic particle loss were observed with greater injected NBI power. Simulation results using M3D-K code show that as the NBI power increases, the resonant frequency and the energy of the resonant particles become higher, and the saturation amplitude of the mode also changes, due to the non-perturbative energetic particle contribution. The relationship between the calculated energetic particle pressure ratio and fishbone cycle frequency is obtained as ${f_{\textrm{FC}}} = 2.2{(1000{\beta _{\textrm{ep,calc}}} - 0.1)^{5.9 \pm 0.5}}$. Results consistent with the experimental observations have been achieved based on a predator–prey model.
To evaluate the effects of dietary Ca intake and Ca supplementation during pregnancy on low birth weight (LBW) and small for gestational age (SGA) infants.
Design:
A birth cohort study was conducted in 2010–2012 at the Gansu Provincial Maternity and Child Care Hospital in Lanzhou, China.
Setting:
A birth cohort study.
Participants:
Totally, 9595 pregnant women who came to the hospital for delivery at 20 weeks of gestation or more, and who were 18 years of age or older.
Results:
Compared with non-users, Ca supplement users had a reduced risk of LBW infants (OR = 0·77, 95 % CI: 0·63, 0·95) and a reduced risk of nulliparous women giving birth to LBW infants (OR = 0·75, 95 % CI: 0·58, 0·98) (P < 0·05). More specifically, both the use of Ca supplement before conception and during pregnancy (OR = 0·44, 95 % CI: 0·19, 0·99) and during pregnancy only (OR = 0·80, 95 % CI: 0·65, 0·99) had the main effect of reducing risk of nulliparous women giving birth to LBW infants (P < 0·05). There was no association between Ca supplementation and SGA (OR = 0·87, 95 % CI: 0·75, 1·01) (P > 0·05). However, higher dietary Ca intake during pregnancy decreases the risk of both LBW (quartile 2: OR = 0·72, 95 % CI: 0·55, 0·94; quartile 3: OR = 0·68, 95 % CI: 0·50, 0·62) and SGA infants (quartile 2: OR = 0·77, 95 % CI: 0·63, 0·95; quartile 3: OR = 0·71, 95 % CI: 0·57, 0·88, quartile 4: OR = 0·71, 95 % CI: 0·57, 0·88) (P < 0·05).
Conclusions:
Ca supplementation and adequate dietary intake of Ca during pregnancy are associated with a decreased risk of LBW infants born to nulliparous women.
X-ray powder diffraction data for estra-4,9-diene-3,17-dione, C18H22O2, are reported [a = 9.236(7) Å, b = 10.294(4) Å, c = 15.471(1) Å, unit cell volume V = 1471.11 Å3, Z = 4, and space group P212121]. All measured lines were indexed and are consistent with the P212121 space group. No detectable impurities were observed. The single-crystallographic data of the compound are also reported [a = 9.2392(7) Å, b = 10.2793(5) Å, c = 15.4822(7) Å, unit cell volume V = 1470.37(15) Å3, Z = 4, and space group P212121]. Both single-crystal and powder diffraction methods can get the similar structure data.
Clonorchis sinensis (C. sinensis) is one of the most serious food-borne parasites, which can lead to liver fibrosis or cholangiocarcinoma. Effective measures for clonorchiasis prevention are still urgently needed. Bacillus subtilis (B. subtilis) is an effective antigen delivery platform for oral vaccines. Chonorchis sinensis serpin (CsSerpin) was proved to be potential vaccine candidates. In this study, CsSerpin3 was displayed on the surface of B. subtilis spore and recombinant spores were orally administrated to BALB/C mice. CsSerpin3-specific IgA levels in faecal, bile and intestinal mucous increased at 4–8 weeks after the first administration compared with those in control groups. The mucus production and the number of goblet cells in intestinal mucosa elevated in B.s-CotC-CsSerpin3 (CotC, coat protein of B. subtilis spore) spores treated group compared to those in blank control. No significant difference in the activities of glutamic-pyruvic transaminase/ alanine aminotransferase and glutamic oxalacetic transaminase/aspartate aminotransferase were observed between groups. There was no side effect inflammation and observable pathological damage in the liver tissue of mice after administration. Moreover, collagen deposition and Ishak score were statistically reduced in B.s-CotC-CsSerpin3 spores treated mice. In conclusion, B. subtilis spores displaying CsSerpin3 could be investigated further as an oral vaccine against clonorchiasis.
This paper presents a comprehensive study of the zircon geochronology, geochemistry and Sr–Nd isotope geology of Devonian mafic rocks developed in the East Kunlun orogenic belt, northern Tibetan Plateau, and reveals their mantle sources, petrogenesis and geodynamic implications for continental exhumation. The zircon geochronology of typical samples indicates that these mafic rocks crystallized at 406∼408 Ma. They can be classified into two different groups based on petrographic observations and geochemical compositions. Group 1 rocks exhibit low TiO2 and FeOt contents and Nb/Y ratios and have enriched mid-ocean ridge basalt (E-MORB)-like compositions with slight negative Nb and Ta anomalies. However, Group 2 rocks have distinctly high TiO2 and FeOt contents and Nb/Y ratios, comparable to typical Fe–Ti-rich mafic rocks worldwide. All the samples exhibit weak enrichments in light rare earth elements, Nb and Ta relative to the primitive mantle. Based on geochemical and isotopic studies, Group 1 rocks are suggested to be derived from depleted asthenospheric mantle that was metasomatized by c. 3–5 % continental crustal components, while Group 2 rocks originated from partial melting of enriched lithospheric mantle. The high contents of Fe, Ti and Nb for Group 2 rocks could be attributed to a high degree of olivine crystallization under low fO2 conditions with delayed nucleation of Fe–Ti oxides. Combining those results with other geological data, we conclude that slab break-off was the key factor causing exhumation of eclogites and triggering flare-up of the Devonian magmatism, and that continental collision or continental subduction may have initiated at 431∼436 Ma.
The linear theory stability of different collisionless plasma sheath structures, including the classic sheath, inverse sheath and space-charge limited (SCL) sheath, is investigated as a typical eigenvalue problem. The three background plasma sheaths formed between a Maxwellian plasma source and a dielectric wall with a fully self-consistent secondary electron emission condition are solved by recent developed 1D3V (one-dimensional space and three-dimensional velocities), steady-state, collisionless kinetic sheath model, within a wide range of Maxwellian plasma electron temperature $T_{e}$. Then, the eigenvalue equations of sheath plasma fluctuations through the three sheaths are numerically solved, and the corresponding damping and growth rates $\unicode[STIX]{x1D6FE}$ are found: (i) under the classic sheath structure (i.e. $T_{e}<T_{ec}$ (the first threshold)), there are three damping solutions (i.e. $\unicode[STIX]{x1D6FE}_{1}$, $\unicode[STIX]{x1D6FE}_{2}$ and $\unicode[STIX]{x1D6FE}_{3}$, $0>\unicode[STIX]{x1D6FE}_{1}>\unicode[STIX]{x1D6FE}_{2}>\unicode[STIX]{x1D6FE}_{3}$) for most cases, but there is only one growth-rate solution $\unicode[STIX]{x1D6FE}$ when $T_{e}\rightarrow T_{ec}$ due to the inhomogeneity of sheath being very weak; (ii) under the inverse sheath structure, which arises when $T_{e}>T_{ec}$, there are no background ions in the sheath so that the fluctuations are stable; (iii) under the SCL sheath conditions (i.e. $T_{e}\geqslant T_{e\text{SCL}}$, the second threshold), the obvious ion streaming through the sheath region again emerges and the three damping solutions are again found.
A series of double-perovskite LaAMnNiO6 (A = La, Pr, Sm) catalysts with mesoporous morphology was prepared by a sol–gel method and further applied into photothermal synergistic degradation of gaseous toluene. Transmission electron microscopy and Brunauer–Emmett–Teller characterizations confirmed that double-perovskite LaAMnNiO6 (A = La, Pr, Sm) had obvious mesoporous structure, which can provide a larger specific surface area and further enhancing the reactivity of catalyst. UV-vis and X-ray photoelectron spectroscopy characterization illustrated that LaSmMnNiO6 possessed higher adsorption oxygen content and light absorption capacity, which contribute to the occurrence of catalytic oxidation in the Mars–van Krevelen redox cycle mechanism. A group of active tests showed that the double-perovskite LaSmMnNiO6 catalyst had a lower reaction initiation temperature (starting reaction at 75 °C) and a lower activity temperature of optimal reaction (more than 90% at 255 °C). Moreover, the research on reaction kinetics of the catalyst demonstrated that LaAMnNiO6 (A = La, Pr, Sm) had lower activation energy and thus exhibited better catalytic activity. The results of the study indicate that the double-perovskite LaAMnNiO6 (A = La, Pr, Sm) has broad application prospects in the field of volatile organic pollutant degradation.
We recently reported Cambrowania ovata Tang and Xiao in Tang et al., 2019, from the early Cambrian Hetang Formation in South China and interpreted it as a problematic animal fossil, possibly related to either sponges or bivalved arthropods (Tang et al., 2019). Slater and Budd (2019) contested our taxonomic identification and phylogenetic interpretation; instead, they claimed that Cambrowania ovata is a large acritarch referable to morphotaxon Leiosphaeridia Eisenack, 1958, and thus is not an animal. Here we refute their criticisms, clarify the differences between Cambrowania and Leiosphaeridia and other acritarchs, and reiterate why an animal affinity for Cambrowania cannot be ruled out.
The lower-middle Hetang Formation (Cambrian Stage 2–3) deposited in slope-basinal facies in South China is well known for its preservation of the earliest articulated sponge fossils, providing an important taphonomic window into the Cambrian Explosion. However, the Hetang Formation also hosts a number of problematic animal fossils that have not been systematically described. This omission results in an incomplete picture of the Hetang biota and limits its contribution to the understanding of the early evolution of animals. Here we describe a new animal taxon, Cambrowania ovata Tang and Xiao, new genus new species, from the middle Hetang Formation in the Lantian area of southern Anhui Province, South China. Specimens are preserved as carbonaceous compressions, although some are secondarily mineralized. A comprehensive analysis using reflected light microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and micro-CT reveals that the new species is characterized by a spheroidal to fusoidal truss-like structure consisting of rafter-like crossbars, some of which are secondarily baritized and may have been internally hollow. Some specimens have aperture-like structures that are broadly similar to oscula of sponges, whereas others show evidence of a medial split reminiscent of gaping carapaces. While the phylogenetic affinity of Cambrowania ovata Tang and Xiao, n. gen. n. sp. remains problematic, we propose that it may represent carapaces of bivalved arthropods or more likely sponges in early life stages. Along with other problematic metazoan fossils such as hyolithids and sphenothallids, Cambrowania ovata Tang and Xiao, n. gen. n. sp. adds to the diversity of the sponge-dominated Hetang biota in an early Cambrian deepwater slope-basinal environment.