We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The interaction between planar incident shocks and cylindrical boundary layers is prevalent in missiles equipped with inverted inlets, which typically leads to substantial three-dimensional flow separation and the formation of vortical flow. This study utilizes wind-tunnel experiments and theoretical analysis to elucidate the shock structure, surface topology and pressure distributions induced by a planar shock with finite width impinging on a cylinder wall at Mach 2.0. In the central region, a refraction phenomenon occurs as the transmitted shock bends within the boundary layer, generating a series of compression waves that coalesce into a shock, forming a ‘shock triangle’ structure. As the incident shock propagates backward along both sides, it gradually evolves into a Mach stem, where the transmitted shock refracts the expansion wave. The incident shock interacts with the boundary layer, resulting in the formation of a highly swept separation region that yields a pair of counter-rotating horseshoe-like vortices above the separation lines. These vortices facilitate the accumulation of low-energy fluid on both sides. Although the interaction of the symmetry plane aligns with free-interaction-theory, the separation shock angle away from the centre significantly deviates from the predicted value owing to the accumulation of low-energy fluids. The primary separation line and pressure distribution jointly exhibit an elliptical similarity on the cylindrical surface. Furthermore, the potential unsteady behaviour is assessed, and the Strouhal number of the low-frequency oscillation is found to be 0.0094, which is insufficient to trigger significant alterations in the flow field structure.
Recently, it has been recognized that the commonly used linear structural equation model is inadequate to deal with some complicated substantive theory. A new nonlinear structural equation model with fixed covariates is proposed in this article. A procedure, which utilizes the powerful path sampling for computing the Bayes factor, is developed for model comparison. In the implementation, the required random observations are simulated via a hybrid algorithm that combines the Gibbs sampler and the Metropolis-Hastings algorithm. It is shown that the proposed procedure is efficient and flexible; and it produces Bayesian estimates of the parameters, latent variables, and their highest posterior density intervals as by-products. Empirical performances of the proposed procedure such as sensitivity to prior inputs are illustrated by a simulation study and a real example.
The main purpose of this article is to develop a Bayesian approach for structural equation models with ignorable missing continuous and polytomous data. Joint Bayesian estimates of thresholds, structural parameters and latent factor scores are obtained simultaneously. The idea of data augmentation is used to solve the computational difficulties involved. In the posterior analysis, in addition to the real missing data, latent variables and latent continuous measurements underlying the polytomous data are treated as hypothetical missing data. An algorithm that embeds the Metropolis-Hastings algorithm within the Gibbs sampler is implemented to produce the Bayesian estimates. A goodness-of-fit statistic for testing the posited model is presented. It is shown that the proposed approach is not sensitive to prior distributions and can handle situations with a large number of missing patterns whose underlying sample sizes may be small. Computational efficiency of the proposed procedure is illustrated by simulation studies and a real example.
In behavioral, biomedical, and psychological studies, structural equation models (SEMs) have been widely used for assessing relationships between latent variables. Regression-type structural models based on parametric functions are often used for such purposes. In many applications, however, parametric SEMs are not adequate to capture subtle patterns in the functions over the entire range of the predictor variable. A different but equally important limitation of traditional parametric SEMs is that they are not designed to handle mixed data types—continuous, count, ordered, and unordered categorical. This paper develops a generalized semiparametric SEM that is able to handle mixed data types and to simultaneously model different functional relationships among latent variables. A structural equation of the proposed SEM is formulated using a series of unspecified smooth functions. The Bayesian P-splines approach and Markov chain Monte Carlo methods are developed to estimate the smooth functions and the unknown parameters. Moreover, we examine the relative benefits of semiparametric modeling over parametric modeling using a Bayesian model-comparison statistic, called the complete deviance information criterion (DIC). The performance of the developed methodology is evaluated using a simulation study. To illustrate the method, we used a data set derived from the National Longitudinal Survey of Youth.
We report an experimental study of Rayleigh–Bénard convection of liquid metal GaInSn in a cuboid cell with an aspect ratio of 0.5 under the effect of a horizontal magnetic field. The Rayleigh number spans a range of $3.8\times 10^5 \leqslant Ra \leqslant 1.1\times 10^7$, while the magnetic field strength reaches up to 0.5 T, corresponding to a maximum Hartmann number to 2041. By combining temperature and velocity measurements, we identify several flow morphologies, including a novel cellular pattern characterized by four stacked vortices that periodically squeeze and induce velocity reversals. Based on the identified flow morphologies, we partition the entire ($Ra, Ha$) parameter space into five distinct flow regimes and systematically investigate the flow characteristics within each regime. The temperature gradient and oscillation frequency exhibit scaling relationships with the combined parameters $Ra$ and $Ha$. Notably, we observe a coupling between flow regime and global transport efficiencies, particularly in a regime dominated by the double-roll structure, which experiences a maximum 36 % decrease in heat transfer efficiency compared with the single-roll structure. The dependencies of heat and momentum transport on $Ra$ and $Ha$ follow scaling laws as $Nu \sim (Ha^{-2/3}RaPr^{-1})^{3/5}$ and $Re \sim (Ha^{-1}RaPr^{-1})^{4/3}$, respectively.
This study examined the sour grapes/sweet lemons rationalization through 2 conditions: ‘attainable’ (sweet lemons) and ‘unattainable’ (sour grapes), reflecting China’s 2019-nCoV vaccination strategy. The aim was to find ways to change people’s beliefs and preferences regarding vaccines by easing their safety concerns and encouraging more willingness to get vaccinated. An online survey was conducted from January 22 to 27, 2021, with 3,123 residents across 30 provinces and municipalities in the Chinese mainland. The direction of belief and preference changed in line with the sour grapes/sweet lemons rationalization. Using hypothetical and real contrasts, we compared those for whom the vaccine was relatively unattainable (‘sour grapes’ condition) with those who could get the vaccine easily (‘sweet lemons’). Whether the vaccine was attainable was determined in the early stage of the vaccine roll-out by membership in a select group of workers that was supposed to be vaccinated to the greatest extent possible, or, by being in the second stage when the vaccine was available to all. The attainable conditions demonstrated higher evaluation in vaccine safety, higher willingness to be vaccinated, and lower willingness to wait and see. Hence, we propose that the manipulation of vaccine attainability, which formed the basis of the application of sour grapes/sweet lemons rationalization, can be utilized as a means to manipulate the choice architecture to nudge individuals to ease vaccine safety concerns, reducing wait-and-see tendencies, and enhancing vaccination willingness. This approach can expedite universal vaccination and its associated benefits in future scenarios resembling the 2019-nCoV vaccine rollout.
We report a numerical investigation of a previously noticed but less explored flow state transition in two-dimensional turbulent Rayleigh–Bénard convection. The simulations are performed in a square domain over a Rayleigh number range of $10^7 \leq Ra \leq 2 \times 10^{11}$ and a Prandtl number range of $0.25 \leq Pr \leq 20$. The transition is characterized by the emergence of multiple satellite eddies with increasing $Ra$, which orbit around and interact with the main vortex roll in the system. Consequently, the main roll is squeezed to a smaller size compared with the domain and wanders around in the bulk region irregularly and extensively. This is in sharp contrast to the flow state before the transition, which is featured by a domain-sized circulatory roll with its vortex centre ‘condensed’ near the domain's centre. Detailed velocity field analysis reveals that there exists an abrupt increase in the energy fluctuations of the Fourier modes during the transition. Based on this phase-transition-like signal, the critical condition for the transition is found to follow a scaling relation as $Ra_t \sim Pr^{1.41}$ where $Ra_t$ is the critical Rayleigh number for the transition. This scaling relation is quantitatively explained by a phenomenological model grounded on the bistability behaviour (i.e. spontaneous and stochastic switching between the two flow states) observed at the edge of the transition. The model can also account for the effects of aspect ratio on the transition reported in the literature (van der Poel et al., Phys. Fluids, vol. 24, 2012).
The epidemiological and burden characteristics of nutritional deficiencies (ND) have been evolving, and it is crucial to identify geographical disparities and emerging trends. This study aimed to analyse the global, regional and national trends in the burden of ND over the past 30 years. Data were obtained from the Global Burden of Disease (GBD) 2019 database for the period 1990–2019. The study examined the incidence rates and disability-adjusted life years (DALY) of ND at various levels. Globally, the incidence rate of ND decreased from 2226·2 per 100 000 in 2019 to 2096·3 per 100 000 in the same year, indicating a decline of 5·8 %. The average annual percentage change (AAPC) was −0·21 (–0·31, −0·11). Similarly, DALY, prevalence and mortality rates of ND exhibited significant declines (AAPC = −3·21 (–3·45, −2·96), AAPC = −0·53 (–0·55, −0·51) and AAPC = −4·97 (–5·75, −4·19), respectively). The incidence rate of ND varied based on age group, sex, cause and geographical area. Moreover, a negative association was observed between incidence and the sociodemographic index. At the regional level, the South Asia and sub-Saharan Africa regions had the highest incidence rates of ND. In conclusion, the global incidence rate of ND showed a mixed pattern, while the DALY rate consistently declined. Additionally, prevalence and mortality rates of ND decreased between 1990 and 2019.
Various psychosocial and psychological interventions have been developed to reduce schizophrenia relapse prevention. A better understanding of these active interventions is important for clinical practice and for meaningful allocation of resources. However, no bibliometric analysis of this area has been conducted. Studies were retrieved from the Web of Science Core Collection database. The publication outputs and cooperation of institutions were visualized with Origin 2021. Global cooperation was visualized using ArcGIS Pro3.0. VOSviewer was used to generate visualizations of network of authors and keywords. The number of annual publications generally showed a fluctuating upward trend over the past 20 years. Germany published the most relevant articles (361, 26.76%). The Technical University of Munich was the most productive institution (70, 9.86%). Leucht Stefan published the most articles (46, 6.48%) and had the highest number of citations (4,375 citations). Schizophrenia Research published the most studies (39, 5.49%). Keywords were roughly classified into three clusters: cognitive behavioral therapy (CBT), family interventions and family psychoeducation and other factors related to interventions. The findings provided the current status of research on psychosocial and psychological interventions for schizophrenia relapse prevention from a bibliometric perspective. Recent research has mainly focused on CBT, family interventions and family psychoeducation.
This paper examines the career mobility and performance evaluation of the leaders of China's state-owned enterprises (SOEs) at the central, provincial and prefectural levels. Using data on executive turnover within publicly listed SOEs, we find that central and local SOE leaders have a similar career flow pattern. Specifically, vertical mobility within the same business group is common and more than 60 per cent of SOE leaders leave their office within three years. Only a minority of SOE leaders achieve political promotion. We also find that performance evaluation criteria are different across central and local SOEs. The leaders who provide better economic outcomes for central SOEs obtain a higher evaluation score, while close political connections boost the promotion prospects of local SOE leaders. Overall, our findings provide granular evidence on the personnel management of China's SOEs from a comparative perspective.
With the advantages of short duration and extreme brightness, laser proton accelerators (LPAs) show great potential in many fields for industrial, medical, and research applications. However, the quality of current laser-driven proton beams, such as the broad energy spread and large divergence angle, is still a challenge. We use numerical simulations to study the propagation of such proton bunches in the plasma. Results show the bunch will excite the wakefield and modulate itself. Although a small number of particles at the head of the bunch cannot be manipulated by the wakefield, the total energy spread is reduced. Moreover, while reducing the longitudinal energy spread, the wakefield will also pinch the beam in the transverse direction. The space charge effect of the bunch is completely offset by the wakefield, and the transverse momentum of the bunch decreases as the bunch transports in the plasma. For laser-driven ion beams, our study provides a novel idea about the optimization of these beams.
A typical feature of thermal convection is the formation of large-scale flow (LSF) structures of the order of system size. How this structure affects global heat transport is an important issue in the study of thermal convection. We present an experimental study of the coupling between the flow structure and heat transport in liquid metal convection with different degrees of spatial confinement, characterized by the aspect ratio $\varGamma$ of the convection cell. Combining measurements in two convection cells with $\varGamma =1.0$ and 0.5, the study shows that a large-scale circulation (LSC) transports ${\sim }35\,\%$ more heat than a twisted LSC. It is further found that when the LSF is in the form of the LSC state, the system is in a fully developed turbulence state with a $Nu\sim Ra^{0.29}$ scaling for the heat transport. However, the twisted LSC state with a heat transport scaling of $Nu\sim Ra^{0.37}$ appears when the system is not in the fully developed turbulence state. Bistability is observed when the system evolves from the twisted-LSC-dominated to the LSC-dominated state.
The collection of facial action data is essential for the accurate evaluation of a patient’s condition in the intensive care unit, such as pain evaluation. An automatic face-tracking system is demanded to reduce the burden of data collection on the medical staff. However, many previous studies assume that the optimal trajectory of a robotic tracking system is reachable which is inapplicable for large-amplitude head motions. To tackle this problem, we propose a region-based face-tracking algorithm for large-amplitude head motion with a 7-DOF manipulator. A configuration-based optimization algorithm is proposed to trade-off between theoretical optimal pose and workspace constraints through the assignment of importance weights. To increase the probability of recapturing the face exceeding the reachable workspace of the manipulator, the camera is directed toward the center of the head, named the facial orientation center (FOC) constraint. Furthermore, a region-based tracking approach is designed to stabilize the manipulator for small amplitude head motions and smooth the tracking trajectory by adjusting the joint angle in the null space of the 7-DOF manipulator. Experimental results demonstrate the effectiveness of the proposed algorithm in tracking performance and finding an appropriate configuration for the unreachable theoretical optimal configuration. Moreover, the proposed algorithm with FOC constraint can successfully follow the head motion as losing 33.2% of the face during the tracking.
Straightplasma channels are widely used to guide relativistic intense laser pulses over several Rayleigh lengths for laser wakefield acceleration. Recently, a curved plasma channel with gradually varied curvature was suggested to guide a fresh intense laser pulse and merge it into a straight channel for staged wakefield acceleration [Phys. Rev. Lett. 120, 154801 (2018)]. In this work, we report the generation of such a curved plasma channel from a discharged capillary. Both longitudinal and transverse density distributions of the plasma inside the channel were diagnosed by analyzing the discharging spectroscopy. Effects of the gas-filling mode, back pressure and discharging voltage on the plasma density distribution inside the specially designed capillary are studied. Experiments show that a longitudinally uniform and transversely parabolic plasma channel with a maximum channel depth of 47.5 μm and length of 3 cm can be produced, which is temporally stable enough for laser guiding. Using such a plasma channel, a laser pulse with duration of 30 fs has been successfully guided along the channel with the propagation direction bent by 10.4°.
Although ketamine can rapidly decrease suicidal ideation (SI), its neurobiological mechanism of action remains unclear. Several areas of the cingulate cortex have been implicated in SI; therefore, we aimed to explore the neural correlates of the anti-suicidal effect of ketamine with cingulate cortex functional connectivity (FC) in depression.
Methods
Forty patients with unipolar or bipolar depression with SI underwent six infusions of ketamine over 2 weeks. Clinical symptoms and resting-state functional magnetic resonance imaging data were obtained at baseline and on day 13. Remitters were defined as those with complete remission of SI on day 13. Four pairs of cingulate cortex subregions were selected: the subgenual anterior cingulate cortex (sgACC), pregenual anterior cingulate cortex (pgACC), anterior mid-cingulate cortex (aMCC), and posterior mid-cingulate cortex (pMCC), and whole-brain FC for each seed region was calculated.
Results
Compared with non-remitters, remitters exhibited increased FC of the right pgACC–left middle occipital gyrus (MOG) and right aMCC–bilateral postcentral gyrus at baseline. A high area under the curve (0.91) indicated good accuracy of the combination of the above between-group differential FCs as a predictor of anti-suicidal effect. Moreover, the change of SI after ketamine infusion was positively correlated with altered right pgACC–left MOG FC in remitters (r = 0.66, p = 0.001).
Conclusions
Our findings suggest that the FC of some cingulate cortex subregions can predict the anti-suicidal effect of ketamine and that the anti-suicidal mechanism of action of ketamine may involve alteration of FC between the right pgACC and left MOG.
Coastal eutrophication and hypoxia remain a persistent environmental crisis despite the great efforts to reduce nutrient loading and mitigate associated environmental damages. Symptoms of this crisis have appeared to spread rapidly, reaching developing countries in Asia with emergences in Southern America and Africa. The pace of changes and the underlying drivers remain not so clear. To address the gap, we review the up-to-date status and mechanisms of eutrophication and hypoxia in global coastal oceans, upon which we examine the trajectories of changes over the 40 years or longer in six model coastal systems with varying socio-economic development statuses and different levels and histories of eutrophication. Although these coastal systems share common features of eutrophication, site-specific characteristics are also substantial, depending on the regional environmental setting and level of social-economic development along with policy implementation and management. Nevertheless, ecosystem recovery generally needs greater reduction in pressures compared to that initiated degradation and becomes less feasible to achieve past norms with a longer time anthropogenic pressures on the ecosystems. While the qualitative causality between drivers and consequences is well established, quantitative attribution of these drivers to eutrophication and hypoxia remains difficult especially when we consider the social economic drivers because the changes in coastal ecosystems are subject to multiple influences and the cause–effect relationship is often non-linear. Such relationships are further complicated by climate changes that have been accelerating over the past few decades. The knowledge gaps that limit our quantitative and mechanistic understanding of the human-coastal ocean nexus are identified, which is essential for science-based policy making. Recognizing lessons from past management practices, we advocate for a better, more efficient indexing system of coastal eutrophication and an advanced regional earth system modeling framework with optimal modules of human dimensions to facilitate the development and evaluation of effective policy and restoration actions.
Clay-swelling inhibitors are often used to prevent the hydration of clay minerals, which can reduce the risk of wellbore instability and reservoir damage. The molecular behaviour of clay-swelling inhibitors at the montmorillonite–water interface is crucial for revealing their inhibition mechanisms and for evaluating and designing inhibitor molecules. N1,N1'-(ethane-1,2-diyl)bis(N1-(2-aminoethyl)ethane-1,2-diamine) (NETS), a low-molecular-weight clay-swelling inhibitor, is used widely to prevent clay swelling. Herein, the adsorption mechanism of NETS on the surface of montmorillonite (Mnt) was investigated using molecular dynamics (MD) simulations. In particular, the effects of molecular conformation and temperature on adsorption ability were investigated. The results show that the adsorption ability of NETS on the Mnt surface was affected significantly by the molecular conformation. Specifically, the dihedral angle of NETS adsorbed on the surface of Mnt decreases by ~20° and tends to adsorb on the surface of Mnt in a plane state. In addition, the adsorption stability of NETS on the Mnt surface decreased with increasing temperature, as was found using MD simulations. Detailed analysis shows that increasing temperature can lead to more frequent conformational changes, which weaken the interaction between NETS and Mnt, thus reducing adsorption stability. These molecular insights into the interaction mechanism between NETS and Mnt are beneficial for the evaluation of inhibitory effects and for the selection and molecular design of new clay-swelling inhibitors for use in drilling fluids.
Lower-crust-derived adakitic rocks in the Gangdese belt provide important constraints on the timing of Tibetan crustal thickening and on the relative contributions of magmatic and tectonic processes. Here we present geochronological and geochemical data for the Wangdui porphyritic monzogranites in the western Gangdese belt. Zircon U–Pb dating yields emplacement ages of 46–44 Ma. All samples have high Sr (321–599 ppm), low Yb (0.76–1.33 ppm) and Y (10.6–18.3 ppm) contents, with high La/Yb (51.1–72.3) and Sr/Y (21.0–51.4) ratios, indicating adakitic affinities. The low MgO (0.97–1.76 wt %), Cr (7.49–53.6 ppm) and Ni (4.75–29.1 ppm) contents, as well as high 87Sr/86Sr(i) (0.7143–0.7145), low ϵNd(t) (−10.4 to −9.8) and zircon ϵHf(t) (−17.7 to 0.4) values, suggest that the Wangdui pluton most likely originated from partial melting of the thickened ancient lower crust. In combination with previously published data, despite the east–west-trending heterogeneity of crustal composition in the Gangdese belt, the La/Yb ratios of magmatic rocks reveal that both western and eastern segments experienced remarkable crustal thickening in the Eocene. However, in contrast to the thickened juvenile lower crust in the eastern segment formed by the underplating of mantle-derived magmas, tectonic shortening plays a more crucial role in thickening of the ancient basement in western Gangdese. In fact, such Eocene-thickened ancient lower-crust-derived adakitic rocks are widely distributed in the central Himalayan–Tibetan orogen. This, together with the extensive development of fold–thrust belts, suggests that tectonic shortening might be the main mechanism accounting for the crustal thickening associated with the India–Asia collision.
The fall armyworm (Spodoptera frugiperda), a destructive pest that originated in South and North America, spread to China in early 2019. Controlling this invasive pest requires an understanding of its population structure and migration patterns, yet the invasion genetics of Chinese S. frugiperda is not clear. Here, using the mitochondrial cytochrome oxidase subunit I (COI) gene, triose phosphate isomerase (Tpi) gene and eight microsatellite loci, we investigated genetic structure and genetic diversity of 16 S. frugiperda populations in China. The Tpi locus identified most S. frugiperda populations as the corn-strains, and a few were heterozygous strains. The microsatellite loci revealed that the genetic diversity of this pest in China was lower than that in South America. Furthermore, we found moderate differentiation among the populations, distinct genetic structures between adjacent populations and abundant genetic resources in the S. frugiperda populations from China sampled across 2 years. The survival rate of S. frugiperda was significantly higher when it was fed on corn leaves than on rice leaves, and the larval stage mortality rate was the highest under both treatments. Our results showed that S. frugiperda probably invaded China via multiple independent introductions and careful pesticide control, continuous monitoring and further studies will be needed to minimize its potential future outbreak.
This retrospective study investigated the predictive value of the Controlling Nutritional Status (CONUT) score in patients with intermediate-stage hepatocellular carcinoma (HCC) who received transarterial chemoembolization (TACE). Nomograms were developed to predict progression-free and overall survival (PFS, OS). The medical data of 228 patients with HCC and treated with TACE were collected. The patients were apportioned to 2 groups according to CONUT score: low or high (<4, ≥4). Univariate and multivariate analyses were performed using Cox regression for OS and PFS. OS and PFS were estimated by the Kaplan-Meier curve and compared with the log-rank test. Nomograms were constructed to predict patient OS and PFS. The nomograms were evaluated for accuracy, discrimination, and efficiency. The cut-off value of CONUT score was 4. The higher the CONUT score, the worse the survival; Kaplan-Meier curves showed significant differences in OS and PFS between the low and high CONUT score groups (P = 0·033, 0·047). The nomograms including CONUT, based on the prognostic factors determined by the univariate and multivariate analyses, to predict survival in HCC after TACE were generated. The CONUT score is an important prognostic factor for both OS and PFS for patients with intermediate HCC who underwent TACE. The cut-off value of the CONUT score was 4. A high CONUT score suggests poor survival outcomes. Nomograms generated based on the CONUT score were good models to predict patient OS and PFS.