We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Based on a 4f system, a 0° reflector and a single laser diode side-pump amplifier, a new amplifier is designed to compensate the spherical aberration of the amplified laser generated by a single laser diode side-pump amplifier and enhance the power of the amplified laser. Furthermore, the role of the 4f system in the passive spherical aberration compensation and its effect on the amplified laser are discussed in detail. The results indicate that the amplification efficiency is enhanced by incorporating a 4f system in a double-pass amplifier and placing a 0° reflector only at the focal point of the single-pass amplified laser. This method also effectively uses the heat from the gain medium (neodymium-doped yttrium aluminium garnet) of the amplifier to compensate the spherical aberration of the amplified laser.
Rhopalosiphum padi is an important grain pest, causing severe losses during crop production. As a systemic insecticide, flonicamid can control piercing-sucking pests efficiently. In our study, the lethal effects of flonicamid on the biological traits of R. padi were investigated via a life table approach. Flonicamid is highly efficiently toxic to R. padi, with an LC50 of 9.068 mg L−1. The adult longevity and fecundity of the R. padi F0 generation were markedly reduced under the LC25 and LC50 concentrations of flonicamid exposure. In addition, negative transgenerational effects on R. padi were observed under exposure to lethal concentrations of flonicamid, with noticeable decreases in the reproductive period, adult longevity, total longevity, and total fecundity of the F1 generation under the LC25 concentration of flonicamid. Furthermore, the third nymph stage (N3), preadult stage, duration of the adult pre-reproductive period, duration of the total pre-reproductive period, reproductive period, adult longevity, total longevity, and total fecundity of the F1 generation were significantly lower under treatment with the LC50 concentration of flonicamid. The life table parameters were subsequently analysed, revealing that the intrinsic rate of increase (rm) and the net reproductive rate (R0) were significantly lower but that the finite rate of increase (λ) and the mean generation time (T) were not significantly different under the LC25 and LC50 concentrations of flonicamid. These data are beneficial for grain aphid control and are critical for exploring the role of flonicamid in the integrated management of this key pest.
Femtosecond oscillators with gigahertz (GHz) repetition rate are appealing sources for spectroscopic applications benefiting from the individually accessible and high-power comb line. The mode mismatch between the potent pump laser diode (LD) and the incredibly small laser cavity, however, limits the average output power of existing GHz Kerr-lens mode-locked (KLM) oscillators to tens of milliwatts. Here, we present a novel method that solves the difficulty and permits high average power LD-pumped KLM oscillators at GHz repetition rate. We propose a numerical simulation method to guide the realization of Kerr-lens mode-locking and comprehend the dynamics of the Kerr-lens mode-locking process. As a proof-of-principle demonstration, an LD-pumped Yb:KGW oscillator with up to 6.17-W average power and 184-fs pulse duration at 1.6-GHz repetition rate is conducted. The simulation had a good agreement with the experimental results. The cost-effective, compact and powerful laser source opens up new possibilities for research and industrial applications.
In this paper, a brand-new adaptive fault-tolerant non-affine integrated guidance and control method based on reinforcement learning is proposed for a class of skid-to-turn (STT) missile. Firstly, considering the non-affine characteristics of the missile, a new non-affine integrated guidance and control (NAIGC) design model is constructed. For the NAIGC system, an adaptive expansion integral system is introduced to address the issue of challenging control brought on by the non-affine form of the control signal. Subsequently, the hyperbolic tangent function and adaptive boundary estimation are utilised to lessen the jitter due to disturbances in the control system and the deviation caused by actuator failures while taking into account the uncertainty in the NAIGC system. Importantly, actor-critic is introduced into the control framework, where the actor network aims to deal with the multiple uncertainties of the subsystem and generate the control input based on the critic results. Eventually, not only is the stability of the NAIGC closed-loop system demonstrated using Lyapunov theory, but also the validity and superiority of the method are verified by numerical simulations.
Adolescence is a period marked by highest vulnerability to the onset of depression, with profound implications for adult health. Neuroimaging studies have revealed considerable atrophy in brain structure in these patients with depression. Of particular importance are regions responsible for cognitive control, reward, and self-referential processing. However, the causal structural networks underpinning brain region atrophies in adolescents with depression remain unclear.
Objectives
This study aimed to investigate the temporal course and causal relationships of gray matter atrophy within the brains of adolescents with depression.
Methods
We analyzed T1-weighted structural images using voxel-based morphometry in first-episode adolescent patients with depression (n=80, 22 males; age = 15.57±1.78) and age, gender matched healthy controls (n=82, 25 males; age = 16.11±2.76) to identify the disease stage-specific gray matter abnormalities. Then, with granger causality analysis, we arranged the patients’ illness duration chronologically to construct the causal structural covariance networks that investigated the causal relationships of those atypical structures.
Results
Compared to controls, smaller volumes in ventral medial prefrontal cortex (vmPFC), dorsal anterior cingulate cortex (dACC), middle cingulate cortex (MCC) and insula areas were identified in patients with less than 1 year illness duration, and further progressed to the subgenual ACC, regions of default, frontoparietal networks in longer duration. Causal network results revealed that dACC, vmPFC, MCC and insula were prominent nodes projecting exerted positive causal effects to regions of the default mode and frontoparietal networks. The dACC, vmPFC and insula also had positive projections to the reward network, which included mainly the thalamus, caudate and putamen, while MCC also exerted a positive causal effect on the insula and thalamus.
Conclusions
These findings revealed the progression of structural atrophy in adolescent patients with depression and demonstrated the causal relationships between regions involving cognitive control, reward and self-referential processes.
To evaluate the mental health of paediatric cochlear implant users and analyse the relationship between six dimensions (movements, cognitive ability, emotion and will, sociality, living habits and language) and hearing and speech rehabilitation.
Methods
Eighty-two cochlear implant users were assessed using the Mental Health Survey Questionnaire. Age at implantation, time of implant use and listening modes were investigated. Categories of Auditory Performance and the Speech Intelligibility Rating Scale were used to score hearing and speech abilities.
Results
More recipients scored lower in cognitive ability and language. Age at implantation was statistically significant (p < 0.05) for movements, cognitive ability, emotion and will, and language. The time of implant usage and listening mode indicated statistical significance (p < 0.05) in cognitive ability, sociality and language.
Conclusion
Timely attention should be paid to the mental health of paediatric cochlear implant users, and corresponding psychological interventions should be implemented to make personalised rehabilitation plans.
Choline plays a crucial role in hepatic lipid homeostasis by acting as a major methyl-group donor. However, despite this well-accepted fact, no study has yet explored how choline’s methyl-donor function contributes to preventing hepatic lipid dysregulation. Moreover, the potential regulatory role of Ire-1α, an ER-transmembrane transducer for the unfolded protein response (UPRer), in choline-mediated hepatic lipid homeostasis remains unexplored. Thus, this study investigated the mechanism by which choline prevents hepatic lipid dysregulation, focusing on its role as a methyl-donor and the involvement of Ire-1α in this process. To this end, a model animal for lipid metabolism, yellow catfish (Pelteobagrus fulvidraco) were fed two different diets (adequate or deficient choline diets) in vivo for 10 weeks. The key findings of studies are as follows: 1. Dietary choline, upregulated selected lipolytic and fatty acid β-oxidation transcripts promoting hepatic lipid homeostasis. 2. Dietary choline ameliorated UPRer and prevented hepatic lipid dysregulation mainly through ire-1α signalling, not perk or atf-6α signalling. 3. Choline inhibited the transcriptional expression level of ire-1α by activating site-specific DNA methylations in the promoter of ire-1α. 4. Choline-mediated ire-1α methylations reduced Ire-1α/Fas interactions, thereby further inhibiting Fas activity and reducing lipid droplet deposition. These results offer a novel insight into the direct and indirect regulation of choline on lipid metabolism genes and suggests a potential crosstalk between ire-1α signalling and choline-deficiency-induced hepatic lipid dysregulation, highlighting the critical contribution of choline as a methyl-donor in maintaining hepatic lipid homeostasis.
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility (SULF). The peak power reaches 2.4 PW on target without the last amplifying during the experiment. The laser energy of 72 ± 9 J is directed to a focal spot of approximately 6 μm diameter (full width at half maximum) in 30 fs pulse duration, yielding a focused peak intensity around 2.0 × 1021 W/cm2. The first laser-proton acceleration experiment is performed using plain copper and plastic targets. High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4 μm via target normal sheath acceleration. For plastic targets of tens of nanometers thick, the proton cut-off energy is approximately 20 MeV, showing ring-like or filamented density distributions. These experimental results reflect the capabilities of the SULF-10 PW beamline, for example, both ultrahigh intensity and relatively good beam contrast. Further optimization for these key parameters is underway, where peak laser intensities of 1022–1023 W/cm2 are anticipated to support various experiments on extreme field physics.
Stimulated Raman-scattering-based lasers provide an effective way to achieve wavelength conversion. However, thermally induced beam degradation is a notorious obstacle to power scaling and it also limits the applicable range where high output beam quality is needed. Considerable research efforts have been devoted to developing Raman materials, with diamond being a promising candidate to acquire wavelength-versatile, high-power, and high-quality output beam owing to its excellent thermal properties, high Raman gain coefficient, and wide transmission range. The diamond Raman resonator is usually designed as an external-cavity pumped structure, which can easily eliminate the negative thermal effects of intracavity laser crystals. Diamond Raman converters also provide an approach to improve the beam quality owing to the Raman cleanup effect. This review outlines the research status of diamond Raman lasers, including beam quality optimization, Raman conversion, thermal effects, and prospects for future development directions.
Dyslipidaemia, a significant risk factor of CVD, is threatening human health worldwide. PUFA are crucial long-chain fatty acids for TAG synthesis and removal, potentially decreasing dyslipidaemia risk. We examined dyslipidaemia prevalence among 15 244 adults aged ≥ 20 years from National Health and Nutrition Examination Survey 2009–2016. Dyslipidaemia was defined as total cholesterol ≥ 240 mg/dl, or HDL-cholesterol < 40 mg/dl/50 mg/dl for males/females, respectively, or LDL-cholesterol ≥ 160 mg/dl, or TAG ≥ 200 mg/dl, or taking lipid-modifying medications. We measured the daily PUFA intake using a 24-h dietary recall. Demographics, social economics, and lifestyle factors were collected using questionnaires/interviews. Additionally, we measured Se and Hg levels in the whole blood. Logistic regression models were used to examine the association between PUFA and dyslipidaemia. The unweighted and weighted dyslipidaemia prevalences were 72·4% and 71·0 %, respectively. When grouped into tertiles, PUFA intake above 19·524 g/d was associated with an independent 19 % decrease in dyslipidaemia risk (OR = 0·81 (95 % CI 0·71, 0·94)) compared with the lowest tertile (PUFA intake ≤ 12·349 g/d). A threshold inverse association was further determined by the restricted cubic spline analysis. When PUFA intake was increased to its turning point, that is, 19 g/d, the lower nadir risk for dyslipidaemia was obtained (OR = 0·72 (95 % CI 0·56, 0·89)). When the exposure was the sum of α-linolenic acid and octadecatetraenoic acid, the inverse linear association remained. Dietary PUFA intake is a beneficial factor for dyslipidaemia among American adults, independent of many potential confounders, including Hg and Se.
The coexistence of underweight (UW) and overweight (OW)/obese (OB) at the population level is known to affect iron deficiency (ID) anaemia (IDA), but how the weight status affects erythropoiesis during pregnancy is less clear at a population scale. This study investigated associations between the pre-pregnancy BMI (pBMI) and erythropoiesis-related nutritional deficiencies.
Design:
Anthropometry, blood biochemistry and 24-h dietary recall data were collected during prenatal care visits. The weight status was defined based on the pBMI. Mild nutrition deficiency-related erythropoiesis was defined if individuals had an ID, folate depletion or a vitamin B12 deficiency.
Setting:
The Nationwide Nutrition and Health Survey in Taiwan (Pregnant NAHSIT 2017–2019).
Participants:
We included 1456 women aged 20 to 45 years with singleton pregnancies.
Results:
Among these pregnant women, 9·6 % were UW, and 29·2 % were either OW (15·8 %) or OB (13·4 %). A U-shaped association between the pBMI and IDA was observed, with decreased odds (OR; 95 % CI) for OW subjects (0·6; 95 % CI (0·4, 0·9)) but increased odds for UW (1·2; 95 % CI (0·8, 2·0)) and OB subjects (1·2; 95 % CI (0·8, 1·8)). The pBMI was positively correlated with the prevalence of a mild nutritional deficiency. Compared to normal weight, OB pregnant women had 3·4-fold (3·4; 95 % CI (1·4, 8·1)) higher odds for multiple mild nutritional deficiencies, while UW individuals had lowest odds (0·3; 95 % CI (0·1, 1·2)). A dietary analysis showed negative relationships of pBMI with energy, carbohydrates, protein, Fe and folate intakes, but positive relationship with fat intakes.
Conclusion:
The pre-pregnancy weight status can possibly serve as a good nutritional screening tool for preventing IDA during pregnancy.
The core toroidal plasma intrinsic rotation has been studied by experiments and simulations in the Joint Texas Experimental Tokamak (J-TEXT). The direction of core intrinsic rotation in the J-TEXT plasma is counter-current. As the plasma density ramps up, the rotation velocity increases in the counter-current direction. By comparing four different electron densities, linear local gyrokinetic simulations have been performed by the Gyrokinetic Electromagnetic Numerical Experiment code for the first time on J-TEXT. It is found that the most dominant turbulence is the ion temperature gradient at $0.2a$, where $a$ is the minor radius of the plasma and this is unchanged during the plasma density ramp up. By scanning the radial wave vectors, it is found that the residual stress term reverses from negative to positive when the plasma density exceeds a certain threshold. The pinch term is larger than the residual stress term at all four electron densities, which means that the pinch term is always dominant in the core of a J-TEXT plasma.
Terrorist attacks can occur anywhere. As the threat of terrorism develops, the China-Eurasia Expo held in Ürümqi, China is attracting fewer potential visitors. A nationwide survey of 2034 residents from 31 provinces and municipalities in China was conducted to examine the relation between the distance to respondents’ city of residence from Ürümqi and their levels of concern for safety and security concerning the Expo. The two were found to be positively related: the closer the respondents lived to Ürümqi, the less concerned they were with the safety and security of the Expo. This is consistent with the “psychological typhoon eye” effect, which states that people living closer to the center of an unfortunate event (whether natural or man-made hazards) are less concerned with the event’s negative consequences. This effect appears to hold for terrorism. There are implications of this finding for international counter-terrorism practice, tourism, and research.
One of Tom Dishion's most significant contributions to prevention science was the development of affordable, ecologically valid interventions, such as the Family Check-Up, that screen for child and family risk factors broadly, but concentrate family-specific interventions on those with greatest potential for population impact. In the spirit of this approach, investigators examined effects of a brief, universal postnatal home visiting program on child emergency medical care and billing costs from birth to age 24 months. Family Connects is a community-wide public health intervention that combines identification and alignment of community services and resources with brief, postpartum nurse home visits designed to assess risk, provide supportive guidance, and connect families with identified risk to community resources. Over 18 months, families of all 4,777 resident Durham County, North Carolina, births were randomly assigned based on even or odd birth date to receive a postnatal nurse home visiting intervention or services as usual (control). Independently, 549 of these families were randomly selected and participated in an impact evaluation study. Families, blind to study goals, provided written consent to access hospital administrative records. Results indicate that children randomly assigned to Family Connects had significantly less total emergency medical care (by 37%) through age 24 months, with results observed across almost all subgroups. Examination of billing records indicate a $3.17 decrease in total billing costs for each $1 in program costs. Overall, results suggest that community-wide postpartum support program can significantly reduce population rates of child emergency medical care through age 24 months while being cost-beneficial to communities.
Major depressive disorder (MDD) is highly heterogeneous and can be classified as treatment-resistant depression (TRD) or antidepressant-responsive depression (non-TRD) based on patients' responses to antidepressant treatment. Methods for distinguishing between TRD and non-TRD are critical clinical concerns. Deficits of cortical inhibition (CI) have been reported to play an influential role in the pathophysiology of MDD. Whether TRD patients' CI is more impaired than that of non-TRD patients remains unclear.
Methods
Paired-pulse transcranial magnetic stimulation (ppTMS) was used to measure cortical inhibitory function including GABAA- and GABAB-receptor-related CI and cortical excitatory function including glutamate-receptor-related intracortical facilitation (ICF). We recruited 36 healthy controls (HC) and 36 patients with MDD (non-TRD, n = 16; TRD, n = 20). All participants received evaluations for depression severity and ppTMS examinations. Non-TRD patients received an additional ppTMS examination after 3 months of treatment with the SSRI escitalopram.
Results
Patients with TRD exhibited reduced short-interval intracortical inhibition (SICI) and long-interval intracortical inhibition (LICI), as shown by abnormally higher estimates, than those with non-TRD or HC (F = 11.030, p < 0.001; F = 10.309, p < 0.001, respectively). After an adequate trial of escitalopram treatment, the LICI of non-TRD reduced significantly (t = − 3.628, p < 0.001), whereas the ICF remained lower than that of HC and showed no difference from pretreatment non-TRD.
Conclusions
TRD was characterized by relatively reduced CI, including both GABAA- and GABAB-receptor-mediated neurons while non-TRD preserved partial CI. In non-TRD, SSRIs may mainly modulate GABAB-receptor-related LICI. Our findings revealed distinguishable features of CI in antidepressant-resistant and responsive major depression.
Minimally invasive surgery is a developing direction of modern medicine. With the successful development of controllable capsule endoscopies, capsule robots are very popular in the field of gastrointestinal medicine. At present, the study of intestinal robots is aimed at the pipeline environment of a single-phase liquid flow. But there exist food residues (i.e. solid particles) or liquid foods in the actual intestine, so intestinal fluid should be liquid–solid or liquid–liquid two-phase mixed fluid. For inner spiral capsule robots with different internal diameters and outer spiral capsule robots, using computational fluid dynamics (CFD) method, the operational performance indicators (i.e. axial thrust force, circumferential resisting moment and maximum pressure to pipeline wall) of spiral capsule robots are numerically calculated in the liquid–solid or liquid–liquid two-phase mixed fluid. By the orthogonal experimental optimization method, the optimum design of spiral capsule robots is obtained in the liquid–solid mixed fluid. The experimental verification has been also carried out. The results show that in the liquid–solid two-phase fluid, the axial thrust force and circumferential resisting moment of the spiral capsule robots decrease with the increase of the size or concentration of solid particles. In the same liquid–solid or liquid–liquid mixed fluid, the operational performance indicators of outer spiral robots are much higher than those of inner spiral robots, and the operational performance indicators of inner spiral robots with bigger internal diameters are higher than those with smaller internal diameters. Adding solid particles of high concentration in the pipeline containing liquid will reduce the drive performance of spiral capsule robots, but adding another liquid of high viscosity will improve the drive performance of spiral capsule robots.